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TaBLE 1. Percentage increase per degree change in latitude.

No added absorber 10 cm lead
Total Vertical Total Vertical
Amag ionization radiation ionization radiation
A. Along longitude 80° W
45°N 1.3 1.3 1.9 —
50°-64°N 0.16 0.18 0.25 —_—
B. Along longitude 115° W

45°N 0.7 0.6 —_— 0.6
50°-64°N 0.2 0.1 _— 0.18
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F1G. 3. The longitude effect at 310 g/cm ™2 air pressure as determined with
the unshielded ionization chamber.

was applied when necessary. The result is plotted in Fig. 3. It is
seen that there is in fact a longitude effect amounting to —0.24
percent per degree change in longitude. Extrapolated to 80° W
and 115° W this curve would indicate on 8.2 percent decrease in
going from 80° W to 115° W at this geomagnetic latitude and
altitude. From Figs. 1 and 2 we find a corresponding difference of
6.2 percent for the ionization chamber and 8.2 percent for the
counter telescope, each unshielded.

With the help of the theory of the behavior of charged particles
in the magnetic field of a dipole as worked out by Vallarta ef al.
we have made an estimate of the longitude effect to be expected
at this latitude due only to the eccentricity of the equivalent mag-
netic dipole of the earth. Thus one can calculate approximately
the change in minimum momentum of the incident particles for a
given change in longitude in terms of the corresponding change in
latitude. Using the experimental data for the latitude effect as
given in Fig. 1 the calculated value of the longitude effect at
40.8° geomagnetic north and 100° geographic west is —0.29, a
value consistent with the measured value of —0.24 percent per
degree change in longitude.

We wish to express our gratitude to the ONR and the United
States Air Forces for making these flights possible. We also wish
to thank Major W. A. Gustafson, Captain Z. Shawhan, Captain
George Freyer and other members of the crew of the B-29 for their
cooperation and expert handling of the plane.

* Supported in part by the joint program of the ONR and AEC.
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Energy Band Structures in Semiconductors
W. SHOCKLEY

Bell Telephone Laboratories, Murray Hill, New Jersey
March 6, 1950

METHOD of attack is proposed which for semiconductors
has the potentiality of actually determining the shapes of
the energy surfaces in the Brillouin zone in detail by proper com-
parison with experiment. The essential feature is that the most
complicated family of energy surfaces arising from a degenerate
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energy band in a cubic crystal can be described by three param-
eters. Similar results for the restricted case of tight binding have
been discussed by Sommerfeld and Bethe.! We shall illustrate the
more general case in terms of the wave functions near the bottom
of an energy band which has its lowest energy H, at the center of
the Brillouin zone and is triply degenerate with p-type wave
functions,? type 8, which have the periodicity of the lattice. These
are denoted by

Vo =xus (2% 32, 2%) = xu, (22, 22, 3?),

A wave function near the lowest energy of the band may be
written as

b= [a¥: oy +ad4Zai baivail exp(iP-r/k),

where the ¢q; are also periodic and satisfy Hegai=Hg@aqi. In
order to solve the eigenvalue problem (H—W)®=0, a set of
equations for the coefficients is found by multiplying by
exp(—iP-r/k)¢.*, etc. and the resulting system treated by a
method similar to that of Van Vleck? so as to eliminate the b’s.
This gives

[AP22+B(P:12+P:2) - K:laz+c[PzPyay+Pszaz]= 0, (1)
and similar equations with permuted indices (x,y,3), where
K=W—H, is essentially the kinetic energy of motion and
A— %m=zai(xlpzIai)(ailpzlx)/mz(HO—Ha);

B—im=2Zai(x| py| ai) (ai| py | ) /m*(Ho—Hoa),

C= Eai[(xl 23 I ai)(ailpuly)
(x| py| i) (ai| pz| ) 1/ m*(Ho— Ha).

These equations are formally identical with equations for the
frequency and polarization of an acoustical wave of displacement

or=G expi(k-r+wt)

etc.

which gives
[Cukzz‘i"cu(kyz‘f"kzz) - P‘-'?z]Gz‘*'(Cm_ CM) (kzkuGu+kzszz) =0.

The secular equations for both the quantum and the mechanical
cases give surfaces of three sheets in k space for a given eigen-
value, the “polarization vector” (as, @y, a.) of the wave function
being analogous to G. The present treatment was suggested by
the analogy of the surfaces Fig. 1 computed* for the 3p band in
NaCl to acoustical surfaces. The symmetry of (1) follows directly,
of course, from the fact that it is quadratic in P and that the
crystal is cubic.

A similar procedure for wave functions of the form? x2—y?
y2—2? (type v) leads to secular equation of two constants:

K2+4+2FK+GP4+43(F*— L(P.A+P,+P.") =0,

Fi1G. 1. Energy surface for degenerate band for k=0,
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where F and G are similar to 4, B, C. This formula can also be
obtained directly from the condition that for P||[[111] the de-
generacy of x*+wy?+w¥%? and x’+w?+wz? (w*=1) is not
removed.

In the event that the minimum energy occurs at a lower sym-
metry point in the Brillouin zone, similar procedures can be
adopted ; however, more parameters may be involved.

Experimental results of G. L. Pearson® and H. Suhl® of the
magneto-resistance of germanium indicate strongly that isotropic
scattering and spherical energy surfaces cannot explain the data.
It is to be hoped that the method of ‘“‘deformation potentials’?
can be extended to the case of degenerate energy bands so as to
give a not more than three parameter (4, B, C) theory which
may be compared with experiment to determine the band shapes.

I am indebted to J. Bardeen, C. Herring, and F. Seitz for
helpful discussions of group-theoretical aspects of this problem,
and to P. M. Morse for suitable perspective.
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Microwave Measurements on the Stable
Selenium Isotopes in OCSe*

S. Gescawinp, H. MINDEN, AND C. H. TowNES
Columbia University, New York, New York
February 27, 1950

ROM a re-examination of the J=2—3 transition in OCSe

(previously studied by Strandberg!), the relative masses of

the stable Se isotopes have been determined, and an upper limit
of 0.002X 1072 cm? assigned to the quadrupole moments.

A balanced bridge superheterodyne spectrometer? was used to
obtain OCSe rotational lines (which occur near 24,000 Mc) as
narrow as 60 kc. This high resolution allowed very accurate fre-
quency measurements to be made by the usual comparison with
harmonics of a quartz crystal. The differences between isotopic
lines and their statistical errors resulting from approximately
seven measurements of each are given in Table I. Allowing for
possible systematic errors, these separations are probably accurate
to 0.015 Mc. They differ appreciably—in one case as much as 0.5
Mc—from an earlier measurement,! and hence modify considerably
the isotopic masses previously obtained.
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FIG. 1. Variation of masses of the stable Se isotopes as a function of mass
number. The experimental masses are determined after assuming Se’s and
Ses0 are correctly given by the semi-empirical Bohr-Wheeler formula.

TaBLE I. Observed frequency differences between the O1#C12Se lines.

Av(Mc/sec.)
Q18C12Se78 O CSe™ 320.43+0.013
0186C12Se78 O CSe’6 156.15 +0.006
018C128e78 O CSe?? 76.95 +0.008
018C12Se78 O CSe80 148.58 3-0.008
016C12Se78 O CSes? 290.10 3-0.004
O18C12832 QO CSe?7* 5.458 +0.007

* The absolute frequency of the OCSe? line is 29,331.38 assuming the
0O16C12S% frequency as previously measured to be 24,325.92.

TasLE II. Experimentally determined masses of stable Se isotopes com-
pared with masses calculated from semi-empirical mass formula.

Masses calculated from
Bohr-Wheeler
mass formula

A (mass number) Experimental masses

74 73.9481 +£0.0006 73.9484
76 75.9465* 75.9465
77 76.9482 +0.0004 76.9476
78 77.9465 +0.0004 77.9463
80 79.9478% 79.9478
82 81.9500 +-0.0006 81.9508

* These masses are assumed to be given exactly by the Bohr-Wheeler
formula.

If zero-point vibrations were not present, the rotational fre-
quencies of OCSe and a known mass of one Se isotope would give
the other five Se masses to an accuracy limited only by the errors
of measurement. The 0.015 Mc frequency uncertainty would then
correspond to an error of 0.00018 mass unit. Zero-point vibrations
are of course unavoidable, but if two isotopic Se masses are taken
to be known, the errors due to zero-point vibrations can be largely
eliminated and the other four Se masses determined with rather
good accuracy.??® Table II lists the masses and the maximum errors
expected due to a combination of experimental uncertainty and
the residual errors due to zero-point vibrations. These latter will
be discussed more fully in a subsequent paper.

The experimental masses (assuming values of Se’® and Se8?
given by the Bohr-Wheeler formula) are plotted in Fig. 1 and
compared with predictions of the Bohr-Wheeler formula.* It may
be seen that agreement between the curvature of the mass defect
and the odd-even mass difference is rather good, although there are
some discrepancies larger than the errors allowed in Table II.
This method of mass measurement is especially good for deter-
mination of the odd-even mass difference since the distance which
the odd isotope, Se”, lies off the curve of the even masses is
unaffected by errors in the assumed Se’ and Se® masses or by
uncertainties due to zero-point vibrations. The odd-even mass
difference is found to be 0.0018 mass units, rather than
5=0.036/41=0.0014 from the Bohr-Wheeler formula.

Although the OCSe lines were obtained as narrow as 60 kc, no
noticeable asymmetry or splitting suggestive of hyperfine struc-
ture was observed in Se’ or in any other Se isotopes. In addition,
the Se’ line-width was measured to be the same, within 5 kc, as
that of Se’. This agrees with previous observations,! and is a
rather strong indication that the spins of the even isotopes are
zero, and that of Se’” one-half, since then no quadrupole hyperfine
structure could be observed. If the Se” spin is not §, examination
of the theoretical quadrupole coupling patterns for various spins
gives an upper limit of 1 Mc to the quadrupole coupling constant
eQ3?V /dz®. In comparison, S® shows a coupling constant of
—28.5 Mc in the very similar molecule OCS. Estimating 8%/92?
for Se in OCSe by the same method® as was used for OCS, an
upper limit of 0.002X10"% cm? may be assigned to the Se?
quadrupole moment. Such a small quadrupole moment is puzzling
in view of measurements on the optical hyperfine structure which
indicate a spin for Se” of 5/2 or greater.® It may be connected,
however, with closure of a proton shell” at Se?”.



