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In this paper we apply sum rules to calculate under certain
approximations the integrated cross section and the mean energy
for photon absorption by heavy nuclei. In Section II we calculate
the summed oscillator strength for dipole transitions as
Zofon=(NZ/A)(1+0.8x) where x is the fraction of attractive
exchange force for the neutron-proton potential. For N=2Z2Z
this gives the cross section integrated over photon energy
Jo®edW =0.0154 (140.8x) Mev-barns. In Section III we calculate
the mean energy W for photon absorption. The mean energy is
4/3 the average kinetic energy of a nucleon for pure ordinary
forces, or about 19 Mev; and is greatly increased by attractive
exchange force. The harmonic mean energy

WK = Enfon/Eanon/(En —‘Ea) ]

is much too low using the model of uncorrelated nucleons, but is
reasonable if we use the alpha-particle model of the nucleus. In

Section IV we develop a sum rule for quadrupole transitions, and
show that quadrupole transitions can account for only about six
percent of the experimentally observed integrated cross section.
In Section V we apply the sum rules for dipole transitions to the
photo-disintegration of the deuteron, and compare the results
from sum rules with those from direct calculations of the cross
section. In Section VI we determine the asymptotic behavior of
the cross section for dipole transitions at high photon energies.
This is determined by the nature of the singularities in the
neutron-proton potential. In the last section we discuss the G.E.
experiments on the cross section for photo-disintegration, and its
energy dependence, and find that our calculations explain the
general features of the experiments. It is not necessary to assume
the Goldhaber-Teller model of dipole vibrations by the entire
nucleus.

I. INTRODUCTION

HE recent G.E. experiments’? on the cross section
and energy dependence of the nuclear photo-
effect indicate that there are strong dipole transitions.
At low excitation energy (a few Mev) it is commonly
assumed that dipole and quadrupole transitions are
about equally strong, the dipole transitions being greatly
reduced by correlations between the motions of the
nucleons.® Following this assumption, calculations of
quadrupole transitions in the nuclear photo-effect were
made some time ago by Weisskopf,* and others. How-
ever, correlations between the nucleons should cease to
exist when very highly excited states (excitation energy
more than about 20 Mev) are considered. Indeed,
Goldhaber and Teller® have suggested that radiative
transitions lead to rather sharply defined states in
which there is anticorrelation between neutrons and
protons, i.e., all protons move together against all
neutrons.

In this paper we shall calculate dipole transitions in
the nuclear photo-effect, without making Goldhaber
and Teller’s assumption of dipole vibrations of the
whole nucleus. We wish to see which results are peculiar
to their model, and which are characteristic for all
dipole transitions.

Calculations of the photoelectric cross section for a
nuclear transition from the ground state to a particular
excited state demands knowledge of the wave functions
of both the ground state and excited state. Very little
is known of the wave function for the ground state of
a heavy nucleus, and much less is known of the wave
functions for the excited states. In this paper we shall
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sum over all excited states, using closure for the matrix
elements, so that our results will depend only on the
wave function assumed for the ground state.

In Section II we calculate Y .fon for heavy nuclei,
where f.n is the oscillator strength for a dipole transition
from ground state o to excited state ». Feenberg® and
Siegert” have shown that attractive exchange forces
increase the summed oscillator strength above the
customary value for pure ordinary forces. We shall
calculate this increase for two assumed shapes of the
neutron-proton potential. From the summed oscillator
strength we find /"odW, where W is the photon energy,
and o is the cross section for photon absorption. (s is
the sum of all the partial cross sections for the various
nuclear reactions that may occur subsequent to the
photon absorption: y—n, y—p, y—v, etc.)

In Section III we calculate > .(E.—E,)fon, where
E,—E, is the energy difference between the ground and
excited state. The ratio

S a(En—Eo) fon/ (T nfor) = f SWdW / f cdW =T,

the mean energy for photons absorbed in the photo-
electric effect. We also discuss the harmonic mean
energy Y. nfon/[2nfon/(Ea—Es)]. In Section IV we
develop a sum rule for quadrupole transitions, and
show that quadrupole transitions alone are unable to
account for the results of the G.E. experiments. In
Section V we apply the sum rules for dipole transitions
to the photoelectric cross section of the deuteron, and
compare the results with those from direct calculations
of the cross section. In Section VI we discuss the
asymptotic form for the dipole cross section at high
energies. In Section VII we discuss the G.E. experi-

6 E. Feenberg, Phys. Rev. 49, 328 (1936).
7A. J. F. Siegert, Phys. Rev. 52, 787 (1937).
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ments on the nuclear photo-effect, and compare the
experimental results with the calculations of this paper.

We shall make several important approximations for
the nuclear ground state. First, we shall use the
Hartree-type approximation of one nucleon moving in
the potential due to all the other nucleons; i.e., we
assume that there are no correlation effects among the
nucleons. We shall also neglect surface effects due to
the finite size of the nucleus. Further, we are considering
the case of pure central forces, and we are assuming that
the forces on a nucleon in a nucleus are just the sum
of the forces due to all the other nucleons. This neglects
the possibility of “many-body forces.”

We shall calculate the results from the dipole sum
rules for both square and Yukawa wells for the neutron-
proton potential; and we shall use the fraction of the
neutron-proton force that is exchange as a parameter.
In principle this parameter could be determined by
comparison of our calculations with experimental data,
but both the data and the calculations are at present
too uncertain to make this practical. The nuclear radius
also enters into our calculations. We shall use nuclear
radius=7,4% and calculate for both 7,=1.50X10"13
cm, and 7,=1.37X1071% cm.?

II. SUM RULE FOR OSCILLATOR STRENGTH

The oscillator strength f,, for a photoelectric dipole
transition between state o and state # is defined as

f Yo oy dr

Here z is the component of the displacement along the
direction of polarization of the photon; and X, is the
wave-length divided by 2, for a nucleon of mass M
and energy (E,—E,).

The photoelectric cross section for absorption of a
photon of energy W=E,—E, is proportional to the
oscillator strength:

con=(2m%h/ Mc) fon, 2

fon=[2M(E,— EJ)/h?] /Rl (1)

where fo. is the oscillator strength per unit energy in
the final state.

For the case of electrons in an atom, the Thomas-
Reiche-Kuhn sum rule® states that the sum of the
oscillator strengths equals the number of electrons:

Lnfon=Z. ©)

>_» means sum over discrete levels and integrate over
the continuum.

When we consider the displacement from the center
of mass of the nucleus,® each proton behaves as if its
charge were e(IV/A), where N is the number of neutrons
in the nucleus; and each neutron as if its charge were

8 Fernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).
*H. A. Bethe, Handbuch der Physik (1933), Vol. 24/1, p. 434.
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—e(Z/A). The summed oscillator strength becomes
Safom=Z(N/AP+N(—Z/A)2=NZ/A. (&)

Thus, for the case N=Z=A4/2, the summed oscillator
strength is Z/2. The remainder goes into transitions in
which the nucleus as a whole vibrates due to the
electric field and this vibration does not lead to photon
absorption.

Using Eqgs. (2) and (4) for the case N=Z, we have
the integrated cross section for photon absorption

w%h A
f cdW = —=0.0154 Mev-barn. (5)
Mc 2

This result agrees with that given by Goldhaber and
Teller® in their theory of dipole vibrations of the entire
nucleus.

Feenberg® and Siegert” have shown that the sum
rules are modified for exchange forces. We want first
to find (E,— E,)(3_i2:)on, where >_; means summation
over all protons in the nucleus. We multiply the
Schrodinger equations for ¢,* and ¥, by ¥, and ¥,*,
respectively, subtract, multiply by the coordinate 3 .z;,
and integrate over-all space for all nucleon coordinates.
¥, is the wave function of the ground state for the
whole nucleus.

(B 2M )V *+Epe*—Vip*=0 | ¢n, ©)
(B 2M)VtEpfn— Vi =0 | ¢.*,

(En - Ea) ‘/’n\{/o*'*' (hz/ M ) (‘I/o* Vzll’n - ‘pnvg\bo*)
—‘an‘l/o*‘*" \bo*V‘p’/nzoy (7)

h?
(Enm B (T 2)on=— f YT — Yo V)2l
2M

+ f 2 iz Vi — Yo 2 Vn)dr.  (8)

The first integral on the right is integrated by parts.
The second integral on the right gives a contribution
only for exchange forces between neutron and proton.
For ordinary forces the potential and coordinate com-
mute. Exchange between two protons does not con-
tribute since we sum over all protons in the dipole
moment. We shall consider an attractive exchange force
of the same shape as the ordinary force, and of mag-
nitude a fraction x of the entire force between neutron
and proton. We then write in the second integral
V=xV (r;;) P:;; where r;; is the distance between proton
and neutron and P;; is the operator for exchanging the
ith the proton with the jth neutron. Using the Her-
mitian character of zP;;, Eq. (8) becomes:

h? * s
En_Eo i2i)on=___ i\ T ¥n 0* dr
B B) Cedom [T 0

_Ziijf YV (rs) (2i—2;) Pispo¥dr.  (9)
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We want N/A times the result summed over all protons
combined with —Z/A times this result summed over
all neutrons. When we sum over all neutrons the roles
of neutron and proton are reversed in the second integral
on the right, and we have the negative of the result of
Eq. (9). We find

N Ya o™
Zn on=anf[_Zi(¢o* _'pn )
A4 9z, 0z;
Z W aw.*
(2
A aZj 6Zj

2 |4 Piiy.*d
_Zzz]—hz—xfl//n (ri)(2i—27) Pijo Tl

N Z
XU(—Enﬁnma*——Z,- ‘Pnzﬁl/o*)df},
A A
(10)
2M
>nfon=NZ/A——=x
h2

X f 0o 3 =)+ (N /A=) (@t53)]
X (Zi— Zj) V(f,‘j)P,-jlﬁod’r.

We have two reasons to neglect the term (NV/A—3%)
X (z2—27) as small when compared with 3(z;—3z;)% One
is that (NV/4—3)<3, and the other that protons and
neutrons have similar distributions in the nucleus, so
z2—2;* is small. Making this approximation we have a
result in agreement!® with Siegert’s.

anon=IVZ/A - (ZM/hg)x
1
X- flPo*ZifoifV(fij)PiﬁﬁodT- (11)
6

We shall compute the last term of Eq. (11) on two dif-
ferent assumptions as to the potential V(r). For pur-
poses of illustration, let us first ignore the exchange
operator P;; and evaluate Eq. (11) for the square well
potential.

V=-7,
V=0

where b is the intrinsic range and s is the depth param-
eter of Blatt and Jackson.!! , is the wave function for
all nucleons involving all their coordinates. When we
consider the contribution of the sth proton and jth
neutron, integration over the coordinates of all the
other particles gives just unity. We shall neglect effects
due to the edge of the nucleus, and use the model of a

r<b V,=swh?/4AMb?,
r>b

(12)

10 Qur exchange term appears at first to be twice that given by
Siegert. This apparent difference arises from our different notation
for summing over the nucleons.

11 7. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

117

uniformly dense nucleus of radius 7,43.

[¥o| = (13)

4/3)7r34

For this wave function, each nucleon is “smeared out”
over the whole nucleus; and each of the NZ neutron-
proton pairs gives the same contribution. Using this
potential and wave function in Eq. (11) we have

2

2M 1 w h?
Zn an=~’VZ/A-(—’_x)(S— )
h* 6 4 Mbp?
4 -1 b
X (—mﬁA) NZ f r24wridr
3 0

- (A\"Z/A)[1+7r—;s(b/ra)3xj|-
20

(14)

The exchange effect on the summed oscillator strengths
is the same order of magnitude as the first term in the
bracket due to ordinary forces. For three-fourths of the
interactions we should use the triplet well and for
one-fourth of the interactions the singlet well.

Ignoring the exchange operator in Eq. (11), as is
done in reaching this result, overestimates the effect of
the exchange forces since the P;; term has an inter-
ference effect. In calculating the effect of the exchange
operator with interference we shall follow the treatment
of the mixed density for a completely degenerate Fermi
gas.!> We use plane waves for each nucleon, with wave
numbers chosen in accord with the Pauli principle. This
neglects surface effects at the edge of the nucleus; as
well as correlation effects among nucleons. For ground
state wave function we use®

vo=]LI1, exp(ik,-r.) exp(ik;-r;). (15)

Then
¥o*Pipo=]1d1; exp(—ik;-r) exp(ik;- 1),

where r=r,—1; is the vector between the sth proton
and jth neutron. We now wish to sum this over all
protons and neutrons, for use in Eq. (11). Take the
direction of r as the polar axis. The Y_; over protons is
replaced by an integral over their wave numbers:

(16)

k
((4/3) wk%) 1 f exp(—iks- £)ki* sinddk:d6d
0

3 [sinkr
el B

Here & is the maximum wave number for protons in the

- Coskr]. an

12 H, A. Bethe and R. Bacher, Rev. Mod. Phys. 8, 25 (1936).

1B Tt is not necessary to write the determinantal wave function
obeying the Pauli principle of antisymmetry between protons (or
between neutrons) since we are concerned only with exchange
between proton and neutron.
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nucleus. We obtain the same result for the sum, or
integration, over neutrons using k', the maximum wave
number for neutrons.

To a first approximation, Z=N, and for this case

k=k=9)Y/2r, (18)

In evaluating Eq. (11) we use Eq. (17) for the inter-
ference effect due to the exchange operator and other-
wise follow our derivation of Eq. (14).

M1 NZ

n, on=NZ Ad—-——
2 A 6 (4/3)nrid

©r 3 /sinkr 2 \
Xj; [(k7)2( . —coskr)] V(r)dxridr. (19)

The integral is evaluated for both square and Yukawa
wells. For the former,

5 fon (NZ/A)[1+;—Os(b/r,,) 3xf1(kb)],

where

J1(kb)=

45 f 1 sin2kb sin%kb
- ]- (20)

+ -
@2 4k (k)
For the Yukawa well V=—V, exp(—ur)/r,

M T,
En for= (V21 16— 40,
M. (I""o)

ult?

%,(kb)

Yukawa Well

0 t P ¥
kb
F16.1. Interference functions f1(kb) and fa(kb). See Egs. (20)
and (21) of the text. & is the maximum nucleon wave number, and

b is the intrinsic range of the neutron-proton potential. The arrows
show the values of kb used, using the nuclear constants of Eq. (22).
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where
3/u\* u?
fz(kb)=§(;) [—2+( 1+5k—2) log(1+4k/u )] 21)

and!! u1=p/2.12. The interference functions f;(kbd)
for square well and f»(kb) for Yukawa well are plotted
in Fig. 1. For %k small, the interference function gives
unity. In these equations 7, is the parameter for nuclear
radius taken as 1.50X 10713 cm or 1.37X 1071 cm, and x
is the fraction of attractive exchange force.

The following were assumed for the neutron-proton
potential ;! 14

Square well:

triplet range 5=1.8X10"1 cm,
depth V,=1.50(x%/4)(#*/ M),

singlet range 5=2.5X10"1 cm,
depth V,=0.95(=%/4)(#*/Mb?).
Yukawa well for both singlet and triplet:

p1=1.18X10"1 cm;
intrinsic range 5=2.12u71=2.5X10"1% cm,

triplet depth V,=(1.45)3.56b k?/M??,
singlet depth V,=(0.95)3.56b h*/Mb?.

The numerical results for Egs. (20) and (21) are given
in Table I.

The summed oscillator strength, considering inter-
ference, is about (NVZ/A)(1+0.8x). That is, attractive
exchange forces roughly double the summed oscillator
strength.

Neglecting the interference effect, the result for the
summed oscillator strengths is proportional to the
assumed value of (b/7,)%. [See Eq. (14) for the square
well.] Since the interference function decreases with
increasing kb (and % depends on 7,), the result including
interference is seen to be much less sensitive to the
assumed value of b/r,. Neglecting interference, the
long tail of the Yukawa well gave a much larger con-
tribution to the summed oscillator strength than did the
square well. With interference this tail has very little
effect, and the Yukawa well and square well give about
the same contribution.

Corresponding to this summed oscillator strength
we have the integrated cross section for photon absorp-
tion

fadW= (27%h/MC)Y nfon
= (2w2%2h/Mc)(NZ/A)(14-0.8%).

(22)

(23)

For the case N=Z=A/2 this gives the numerical result
fadW=0.015A (14-0.8x) Mev barns. (24)

In the last section we show that this result is con-
sistent with present experimental data.

14 H. A. Bethe, Phys. Rev. 76, 38 (1949).
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TasLE I. Summed oscillator strength (times 4/NZ).

Square well Yukawa well
7o(cm) X 1013 1.50 1.37 1.50 1.37
Neglecting
inﬁerference (14+1.48x) (1+1.96x) (146.5x) (1+8.5x)
Wit
interference  (14+0.80x) (1+4+091x) (140.69x) (1+40.71x)

III. MEAN ENERGY FOR PHOTON ABSORPTION

In this section we shall evaluate the mean energy for
photon absorption:

W= anon(En_EO)/(Zn on)

=faWdW/fo‘dW. (25)

The numerator of this expression is given from Eq. (9)
(integrate the first term on the right of Eq. (9) by parts).

Zn on(En—Eo)

M N z 2
s <E,,—E.,>[—<z,-z,->m——<z,-z,»>an]

h? 4 A

2M Yn
2;‘2 f (2—2 z\bo o _ZJ¢0 % )

2

Y f UV (si—5) Poidr| . (26)

The first term in the second writing of Eq. (26) occurs
for any force and the second term is due only to ex-
change forces. When squared we will have three terms:
(1) the first term squared, which we shall call the
ordinary term (it is the only term for pure ordinary
forces); (2) the cross-product term; and (3) the pure
exchange term. We shall evaluate these separately.

The ordinary term can be written using matrix
notations where P is the z component of momentum :

Zd foﬂ(Eﬂ_Eo)
2M__ ihyN > .P) Z > P
- hz ZnM ;1-( L i/on Z( 3L on)

x[—g(gmizﬂaw—%‘zm)n,)]

2
= EE(N [AY (P oot (Z/A) (P00l (27)

In writing the last term we are neglecting correlation
terms by taking only the diagonal elements in the
double summation. That is, we are neglecting terms of
the form (P;P; )00, Where i1’; and similar terms for
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two different neutrons, or a neutron and a proton. There
will always be at least a small amount of correlation of
momentum since the center of mass of the nucleus
remains at rest in the ground state. If a particular
proton has a momentum p;, then the sum of the
momenta of all the other nucleons is —p;. If this
momentum —gp; is assumed to be distributed evenly
among the other 4—1 nucleons, the correlation terms
can be computed to be 1/(4—1) of the diagonal terms
that we shall calculate, and can therefore be neglected
for heavy nuclei.

We can rewrite Eq. (27) using p?/2M =3T; where
T; is the kinetic energy of the ¢th particle. (P is the
z-component of momentum)

Zd foﬂ(En— Eo)
= (4/3)[(N/A)* T )0t (Z/A) (T 1) o0]

=(4/3)T(NZ/A). (28)
Here T is the expectation value of the kinetic energy
for the average nucleon in the nucleus.’ Using the
uncorrelated plane-wave model of the nucleus with
nucleons of wave number from 0 to km.x filling up
phase space according to the Pauli principle,

(M
M

T:

and

(Bn= ( f kmxk?kzdk) / ( f kmk?dk)—~km (29)

_ For the case of pure ordinary forces, the mean energy
W for photon absorption is from Egs. (12), (28), and
(29),

W =3 for(En—Eo)/Znfon=(4/5) Tmax.

The value of Amax and Tmax depend on the assumed
nuclear radius. For parameter 7,=1.37X10"13 cm,
(4/5)Tmax=19 Mev; while for 7,=1.50X10"'* cm,
(4/5)Tmax=16 Mev. (The value of W depends on 1/7.2;
but is independent of 4 in our approximation where we
neglect surface effects.)

The cross product (cp) term in 3 .(E.—E,)fon is
from Eq. (26)

Z (En_ Ea)fon

ncp

N Y * Z o*
-y, z[ | (——z,- ANl VR )d]
A aZ,' A C"Zj

X[ZfZ:’xf‘PnV(Zi"z;‘)Pz'j%*dT]

(30)

% In taking the average, each proton is given weight V%, and
each neutron is given weight Z2,
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_4—xf > ZJ V(Z, 2;)Pibodr

VA Yo *
i f S Y (52 P, (31)
A aZj

Using the plane-wave expression for ¢, given in
Eq. (15), we have 9y,*/9z;=—kiy,* and 0y,.*/0z;
= —ik;.0,*. Equation (31) becomes

Z (En_En)fon

n cp

e [ STV )Py
= i2uilL T WRizWo  V\8i—2j) L 40
Ax 7

ik *V (zi—2;) Pispo JdT

4 (—~+ ) o[ £t

X V(Z,j—Zj)P,'jl//QdT. (32)

We neglect the second term, since for actual nuclei
|Z/A—N/A|<KN/A; and we take N/A=3. Using
z;—z;=z and Eq. (16) for Y,*P;jy, the first term can be
rewritten as

a
2 (En"“Ea)fon= 2xf ZiZf(;;(‘po*Piﬂﬁo) Vadr

n cp

0
- f SE Pt (V. (39

The sum over protons and neutrons is performed by
integrating over their momenta, as in deriving Eq. (19).

We have
NZ 6 19V
~ e (-_4+v)
A 7’03 3 or

3 /sinkr 2
X [ ( - coskr) ] ridr. (34)
(kr)2\ kr

We shall evaluate this for both a square well and for a
Yukawa well. For the square well of depth V, and
width b the integration gives

2 (En—Eo) fon=(NZ/A)2V(b/ro)xf5(kb),

n cp

Z (Eﬂ_Eo)fan=

ncp

where

(k)= sinkb sm2kb
f _(kb)“l_ ( )

- 2+kai(2kb)].

(35)
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where Si(x) is the integral sine function. For the Yukawa
well, V=—V,exp(—ur)/r, Eq. (34) gives

2 (En—Eo)fon=(NZ/A)18(V o/ u’re®)xfs(kD),

n cp

where
fa(kb)=—1(u/k)*+3(u/k)?— (u/k)* tan—*(2k/u)
+ 76[ (w/%)*+8(u/k)* ] log(1+4%%/u?)  (36)

and p~'=0/2-12. The functions f3(kb) and f,(kb) are
plotted in Fig. 2.

The third type of term is the exchange-exchange
term which from Eq. (26) is

Z (En"Eo)fon:'

n exch

2M
BT de [ yvrpan 61

The square well potential gives

Y (Ea—Eo)fon=(NZ/A)(b/r.)*x*s(x2/10) V.

n exch

(38)

For the Yukawa potential V=—V,exp(—pur)/r we
have

NZa22M [ b
2 (En=Eo)fon= —————(

3
—) V.2 (39)
n exch -1 4 h2

2127,

These equations for the contribution of the cross-
product and exchange-exchange terms are evaluated
assuming the nuclear constants given in Eq. (22).

241

Squ:au Well

Yukawa Well

.04

1 1
2 3

o 0
kb
F16. 2. Interference functions fa(kb) and fy(kb). See Egs. (35)
and (36) of the text. % is the maximum nucleon wave number; and
b is the effective range of the neutron-proton potential. The

arrows show the values of %b used, using the nuclear constants of
Eq. (22).
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Combining the ordinary, the cross-product and the
exchange terms we find the mean energy for photon
absorption W=3_,(E,—E,)fon/Y nfon for square well
and 7,=1.50X10"12 cm (curve B)

1643021012
=—————— Mev;
14-0.80x

=

(40)

for square well and 7,=1.37X10713 cm (curve A)
19+4-42x+132x2
© 14091x

&3]

Mev;

(41)

for Yukawa well and 7,=1.50)X 10713 cm (curve D)
16+ 28x+ 3642
©140.69x

=

(42)

Mev;

and for Yukawa well and 7,=1.37X 1013 cm (curve C)
19+ 36x+48x2
C140.71x

&3]

Mev. (43)

These four equations are plotted in Fig. 3.

In these four equations, the denominator is the value
for 3_.fon given in Table I, considering interference. The
first term in the numerator is the ordinary term which
was evaluated as 4/3 of the expectation value of the
kinetic energy of an average nucleon. This term is
sensitive to the assumed value for the parameter 7, in
the nuclear radius 7,4}; and does not depend on the well
shape or character of the force between the nucleons.
The second term in the numerator is the contribution

in Mev)
2 8

for photon 8ubsmpﬁan

>
(=]

W(Megn energy
(<]

0 10

2 4 6 8
X(Fraction of attractive exchange force)

F16. 3. Mean energy for photon absorption. The 4 curves are:
A: square well, 7,=1.37X 1071 cm, see Eq. (41); B: square well,
7o=1.50X 10718 cm, see Eq. (40); C: Yukawa well, r,=1.37X 10713
cm, see Eq. (43); D: Yukawa well, r,=1,50X 10" cm, see Eq.
(42).
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from the ordinary-exchange cross-product terms of Egs.
(35) or (36) ; and is therefore proportional to the fraction
x of exchange force. The value of this term is sensitive
to the ratio b/7,, but it not sensitive to the well-shape.
The third term in the numerator is the exchange-
exchange term of Egs. (38) or (39), and is therefore
proportional to 2. It is sensitive to the value of 8/7,;
and also sensitive to the well-shape; being almost three
times as large for the square well as for the Yukawa
well. (The Gaussian and exponential wells, for the
same effective range, give intermediate values between
those for square and Yukawa wells.) With our model,
which neglects surface effects at the boundary of the
nucleus, W does not depend on 4.

We would also like to calculate the harmonic mean
energy for photon absorption

WH=an¢m/[anon/(En—Eo)]-
From Eq. (1) for the oscillator strength we have for a
single proton

Zn on/(En_Eo)=Zﬂ(2M/h2) lzonl :

=@M /1) (50  (44)

If we take z; as the component of displacement of the
ith proton from the center of mass of the nucleus, and
neglect all correlation terms:

2

i M N Z
Zn on/(hn""Eo ='—Zn —Zi(zi)on__Zf(zJ')vﬂ
h? A A

oM
= _h;<z2>,,,,(ﬁvz/,4). (45)

Here (z%),, is the expectation value of the squared z
component of displacement for the average nucleon in
the nucleus. This result is independent of whether the
force between nucleons is ordinary or exchange in
character. Combining this result with that of Table I
for 3" nfon we have

2

2M (2240

IVH'__ anon/anon/(En_ Eo)g (1+08x) (46)

If we evaluate (2%),, from our assumed values for the
nuclear radius we find that Wy is only about 5 Mev
for Cu®8 and varies as A3, reaching a value of less than
1 Mev for uranium. This large nuclear absorption of
comparatively low energy photons has not been ob-
served. Let us instead determine (32),, from experiment.

Using Eq. (45) and the relation between oscillator
strength and cross section we have

I 272k
f —dW= anon/(En_Eo)
w

Mc
e2\4r* NZ
=(—)————(r2>oa. (47)
e/ 3 A
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Using the experimental measurements discussed in the
last section, we have (r?),,=5.8%X10"26 cm? for the
nucleus Ge’. This compares with 2(r,4%)2=20X 102
cm? or 24X 10~% cm?, depending on which value for 7,
we assume.

These comparisons suggest that we should have a
model where the mean square displacement in the
ground state (r%),, does not vary greatly with 4, and is
much smaller than the value found where 7 is measured
from the center of the nucleus. We can obtain better
agreement with experiment by considering as a tenta-
tive model a nucleus made up of sub-units, such as
alpha-particles. For dipole transitions in a nucleus
made of alpha-particles the distance 7; for the ith
proton should be measured from the center of the alpha-
particle of which the sth proton is a member.!®* Then
{r*),o will not vary with 4, and will be much smaller
than calculated above. We might assume that the
alpha-particle in a heavy nucleus is a sphere of uniform
density occupying four times the volume allotted to a
single nucleon. Then (r?),, would equal 2(r,4})?=2.9
X1072 cm? or 3.5X107% cm? depending on which
value for 7, we, use. This is of the same order of mag-
nitude as the experimental results.

One might wonder whether the alpha-particle model
would give very different results for 3_,fo, and W from
those calculated on the plane-wave model. The result
> nfom=NZ/A for ordinary forces is independent of
correlation among the nucleons. The increase due to
attractive exchange forces came mainly from neutron-
proton distances of order 27'2210~'% cm, due to inter-
ference effects and the short-range potential. For these
small distances the plane-wave model should not be too
bad. The result W= (4/3)T,, for ordinary forces would
be changed somewhat, due to the different calculation
of the average kinetic energy 7T'... The contributions to
W from the cross-product and exchange terms will not
be greatly changed, since again the main contributions
come from small neutron-proton distances.

IV. QUADRUPOLE TRANSITIONS
The electric moment for pure ordinary forces is?
D= (eh/Mw)[exp(ik- 1)V ], (48)

For the quadrupole moment we take the second term,
ik- 1, in the expansion of the exponential. This gives ky,
where y is the component of r along the direction of
propagation. The gradient is in the direction of polariza-
tion of the photon. Defining the oscillator strength as?

gon=(2Mw/€h)(Don)’, (49)
we have the quadrupole oscillator strength as
gon=(28*/Mhw)| (yP:)on|*

=[2(En—Eo)/*Mc*]| (9P2)en|?.  (50)

16 We can get this same result by considering the correlations
among the particles in deriving Eq. (45).

LEVINGER AND H. A. BETHE

Then

anm/(En-Eo) = (2/h2MC2)Zn(sz)on(sz)no
= (2/*Mc*)(yP*Y)oo.

The integrated cross section for quadrupole transi-
tions becomes, according to (2)

(S1)

f o dW/W =4r*(e*/ he)(1/ M) (1/ M) (yP:?y)oo.  (52)

Assuming no correlation between y and p, we write this
as

f " o dW W= A2 (e h) BT M, (53)

This result should be multiplied by the number of
protons in the nucleus, if we assume no correlations
among the protons, and the average kinetic energy 7,
should be used. For Ge’ we have the numerical result
of 6 mb; or only about six percent of the experimental
result for this quantity of over 100 mb as discussed in
the last section. Thus quadrupole transitions represent
only a small fraction of the nuclear photo-effect.

There is, however, good evidence that quadrupole
transitions are as important as dipole transitions for low
excitation energy. The measurements of internal con-
version of gamma-radiation following beta- or alpha-
decay indicate that dipole transitions, at an excitation
energy of roughly 1 Mev, are very weak.? The small
gamma-ray widths observed in most (»—+) reactions
indicate that the oscillator strength for radiative transi-
tions to the ground state are very small,® indicating
that at 8 Mev excitation dipole transitions are not
important. Earlier measurements? indicated that (p—1v)
reactions for light nuclei had gamma-ray width cor-
responding to quadrupole rather than dipole transi-
tions. However recent measurements'”!® give a much
larger gamma-ray width, indicating dipole transitions.
This is true, e.g., of the well-known reaction Li’(p,v)Be®.
The most striking, however, is the He3(p,y) reaction,®
where the gamma-ray width of about 1 kev corre-
sponds to an oscillator strength of about one-half for
the transition from the excited state of He* at 22 Mev
down to the ground state. The sum of all dipole transi-
tions from the ground state, for ordinary forces, is only
NZ/A=1 for He%, so this represents a very strong
dipole transition. Further the angular distribution
observed for the photons from this reaction proves that
it is a dipole transition.

We have shown above that photo-nuclear reactions,
which appear to occur principally at an excitation
energy? of 20 to 30 Mev are predominantly dipole
transitions.

Thus a model is needed which will suppress dipole
transitions at excitation energies of, say, less than 10

u F)owler, Lauritsen, and Lauritsen, Rev. Mod. Phys. 20, 236
(1948).
18 R. F. Taschék e al. (private communication).
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Mev, but allow them at higher energies. Strong corre-
lation between neutrons and protons, as, for example, in
the alpha-particle model, will suppress dipole transitions
at low energies. In a nucleus composed entirely of alpha-
particles there will be no dipole transitions® due to
vibration of the alpha-particles in the nucleus, as in the
dipole approximation all the alpha-particles experience
the same electric field and vibrate together. (We should
put N=0 in our sum rule > .fm=NZ/A, giving no
dipole transitions.) But at higher photon energies the
photon can disrupt a particular alpha-particle by a
dipole transition, thus transferring energy to the
nucleus. That is, correlations will not prevent dipole
transitions for photon energies great enough to excite
the first excited state of the alpha-particle, or about 20
Mev. At very high photon energies, where the value of
A for the photon is comparable to the size of the alpha-
particle, higher multipole transitions will again be of
importance.

We must make clear that correlations among the
nucleons can never prevent dipole transitions alto-
gether. Correlations can only prevent dipole transitions
in some given energy range, but this decrease must be
compensated for by stronger dipole transitions in some
other energy range. The sum rule for ordinary forces
> nfon=NZ/A is not altered by correlations among the
nucleons.

Thus the alpha-particle model gives qualitatively
correct predictions for the integrated cross section
JSadW /W, and for the energy dependence of ratio of
quadrupole to dipole transitions. It is, of course, only a
tentative model, and should not be taken too literally.

V. APPLICATION TO THE DEUTERON

Calculations of the photoelectric cross section for the
deuteron for various photon energies have been per-
formed on various assumptions as to size and shape of
well, and the exchange character of the neutron-proton
force. By comparison with these results we are able to
check our calculations using sum rules. Also discussion
of this simplest case of the photoelectric effect helps us
to obtain some physical understanding of the change in
the sum rule due to exchange forces.

For the deuteron, we shall use z as the component
along the polarization of the displacement of the proton
from the neutron, which is twice the proton displace-
ment from the center of mass. We use the reduced mass
M /2 for the proton; and the dipole oscillator strength is

2(M)2)

on=

(En_Eo)%(zon)z. (54)

hZ

Using Eq. (9) for (E.— E,)z,.» we find the summed oscil-
lator strength

anon=%[1—%xMﬁ“zfzﬁo*Vr”P,-,«J/odr]. (55)

Pure ordinary forces (x=0) give Y_fn=1% and give the
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integrated cross section
f W 21r"’e"’h2 p eth) (56)
lof = nfon=Tm"€ MC. 56
(M/2)c

This well-known result is in agreement with the result
found by integration of the Bethe-Peierls formula,
which holds for zero range of nuclear forces; and is also
in agreement with the result for ordinary forces given
by Breit and Condon® for a square well of finite range.

We have evaluated the contribution to the summed
oscillator strength due to exchange forces for a square
well and also for a Yukawa well using the nuclear
constants given in Eq. (22). For the square well using
the complete wave function and the constants of Eq.
(22) we have

> nfon=%40.10x. s7)

For the Yukawa well we use Hulthen’s approximate
wave function for the ground state?® and obtain

3 fon=1+0.083x. (58)

Thus for x=1 (pure attractive exchange force) there is
a 40 percent increase or a 33 percent increase in the
summed oscillator strength for the square and Yukawa
wells, respectively.

This increase for a square well is in qualitative agree-
ment with Breit and Condon’s® results for exchange
forces. The result for the Yukawa well can be compared
with the dipole cross section found for a Yukawa poten-
tial half exchange and half ordinary in character:®

o=204[1—7*/(294+v)"P(y— D}y mb. (59)

Here v is the ratio of photon energy to deuteron binding
energy. Numerical integration gives

fadW=35.8Mev—mb=(1r2e2h/Mc)-(1.2). (60)
0

This 20 percent increase due to half exchange force is in
fair agreement with 17 percent as found from the sum
rule calculation (Eq. 58). [Both Egs. (58) and (59) are
based on an approximate wave function for the ground
state of the Yukawa potential. Jf

The calculation of ¥ .(E.—E,)fon and W involves
three terms as for the similar calculation for heavy
nuclei:

3 (Eue E)fon=13T o0t 22 f

e*

Vaydr
09z

(MR f VMV iudr. (61)

19 G, Breit and E. U. Condon, Phys. Rev. 49, 904 (1936).

20 J, S, Levinger, Phys. Rev. 76, 699 (1949).

1 E. Guth has called to our attention similar work on sum rules
for the deuteron photoelectric effect by K. Way, Phys. Rev. 51,
552 (1937). K. Way found that the summed oscillator strength
was increased for complete exchange force by a relative fraction
about equal to ab, for a square well, a Gaussian well, or a velocity
dependent potential. The work in this section for a square well
and a Yukawa well is in good agreement with her result.
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This is evaluated for square and Yukawa wells with the
constants of Eq. (22), and the mean energy for photon
absorption is found.

17.24-27.5x4- 362
14-0.40x

&3]
Il

Mev (square well),

(62)
16.4+21.6x+12.62>

14-0.33x

&S]
Il

Mev (Yukawa well).

Equation (62) for the Yukawa well with x=3 gives a
mean absorption energy of 26 Mev, in approximate
agreement with W=29.7 Mev found by numerical
integration of Eq. (59).

The harmonic mean energy Wy is calculated from
Eq. (46). This gives Wy=6€=13.2 Mev for zéro range
of nuclear forces; 3.90¢(1+0.40x) for the square well
chosen; and 3.57¢(140.33x) for the Yukawa well
chosen. The first number agrees with the result from
integration of the Bethe-Peierls formula; while the
third result using x=% agrees with that found from
integration of Eq. (59).

We have found that the summed oscillator strength
is increased by an attractive exchange force; and the
mean energy for photon absorption is greatly increased
by such a force. This can be understood qualitatively
since an attractive exchange force for the ground (S)
state means a repulsive exchange force for the final (P)
state. This repulsive exchange force decreases the P
wave function at small distances and thus the matrix
element for small E,. For large E,, it shifts the first
node of the radial wave function to larger values of r
which reduces destructive interference and thus in-
creases the matrix element. Since Y. .fon/(En—E,) is
independent of whether the force is ordinary or ex-
change, Y .fon will be increased by an attractive ex-
change force, and higher moments will be increased
even more.

This reference to S and P states is just a special case
for the general case of parity change due to dipole
photoelectric transitions in any nuclei; the same inter-
pretation holds for the more general case. This physical
argument implies that the presence of exchange forces
will not affect cross sections for quadrupole transitions.

VI. ASYMPTOTIC EXPRESSION FOR
PHOTOELECTRIC CROSS SECTION

For the deuteron we are able to calculate still higher
moments such as > nfon(E,—E,)%. This is of interest in
finding the asymptotic behavior of the dipole term in
the photoelectric cross section for high photon energies.
If for a particular potential we find that 3, fon(En— E,)*
is finite, but that 3 .fa(E.—E,)** is infinite, this
shows that the asymptotic form of the dipole term in
the photoelectric cross section decreases as W—¢, where
W is the photon energy and s+1 <t¢=s-+2. We shall
calculate the higher moments for the deuteron photo-
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electric cross section for the case of a pure ordinary
force, and for several well shapes.

The first moment Y_.fon(En— Eo)=3T,, is finite for
wells of finite size. The mean kinetic energy for a
square well is approximately

h?
Too=—— fwo*v2‘l/od7
M

[ f k? sin%krdr— f 2e""""dr]. (63)
M 1+ab

For negligible range of nuclear forces kb=w/2, and the
average of sin®kr=2} so the first integral in the bracket
gives a result proportional to 1/b. Since the first
moment diverges for zero range of nuclear forces, the
exponent ¢ for the asymptotic form for this case has the
limits 1 <¢=2. This agrees with =% given for this
potential by the Bethe-Peierls formula.
We shall use the matrix relations:®

(En— EO)ZonNih (Z) o™ (’h/ M ) (P z) ony
(En - Eo) (Pz) onNih(p.z) on~7fh (a V/ Gz) on

in determining the higher moments. The second moment
gives:

M
anon(En—'Ea)2= _h;_Zn(En—'Eo)s(ZDR)z

(64)

av
NZn(En_En)’ (Pz)onl 2NZn(Pz)on(g;')

no

( ) (2:) ~(V2V )00 (65)

For the Yukawa potential we have

V2V =4mp+u?V. (66)

Here p is the density of the source of the meson field,
and will be taken as a §-function around the origin.
Both terms on the right of Eq. (66) give finite results
in Eq. (65) for the second moment.

For the square well potential of depth V, and range b

VIV =V,8' (r—b)+ (2/r)V,6(r—b). (67)

Both terms on the right of this equation give finite
results in Eq. (65).
The third moment:

anan(En"' EO) 3NZ,,[(E"— EO) (PZ) 0"]2
Nzn[(a V/az)an]2~[(a V/a")2]vo-

For the Yukawa potential, the leading term in the
third moment calculation is (1/7%),, which diverges at
the origin. Then the asymptotic form for the Yukawa
potential is W—* where 3 <¢t=4. This agrees with the
calculation for the Yukawa potential (half exchange and
half ordinary)® which gives t=7/2.

(68)
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For the square well potential, the third moment is
proportional to [8(r—5)3(r—b)],, which diverges at
r=>. The square well, also, has an asymptotic form
with 3 </=4. However, this divergence is caused by
the artificial singularity of the infinitely steep walls of
the well. If the walls are made to have a high but not
infinite slope the third moment converges.

Equation (68) shows that the third moment con-
verges for any potential that has a finite derivative at
each point. A smooth potential, such as the Gaussian,
will have a smooth wave function, with very small high
Fourier components, and will therefore have very small
probability of dipole transitions with photons of very
short wave-length.

It is of interest to note that the electronic photo-
electric effect has just the same W~7/? asymptotic
dependence as that for the nuclear photo-effect for the
Yukawa potential. The asymptotic dependence is set by
the singularities in the potential, and the Yukawa
singularity at the origin of exp(—pur)/r is the same as
1/r for the Coulomb potential.*

In general the asymptotic dependence of the cross
section at high energies depends just on the nature of
the singularities of the nuclear potential. The results
for singularities at the origin apply to heavy nuclei as
well as to the deuteron: it is only necessary that there
be a finite probability for two nucleons to come very
close, then [(8V/ar)*],, will be infinite whenever V has
a singularity as r~% or stronger at small distances.

For comparison with experimental results, we must
know in what region, if any, the asymptotic form for
dipole transitions holds. The photon energy must be
large enough that the de Broglie wave-length X of the
emitted nucleon is small compared to the effective
range of the potential. But if the photon wave-length
becomes comparable to the size of the nuclear system,
the dipole transition cross section will not correspond
to the experimentally determined photoelectric cross
section: we must consider retardation effects, quadrupole
and higher moments, and perhaps mesonic effects. If the
effective range of nuclear forces and the size of the
nuclear system are about the same (as for the alpha-
particle) there is a region of photon energies satisfying
these criteria, since the depth of the nuclear potential
well is much less than Mc?.

For the deuteron case, the range of the neutron-
proton potential is much less than the size of the
deuteron (ab<1). For wave-lengths of the emitted
proton X,>>b, Eq. (59) for dipole transitions for a
Yukawa well gives results in approximate agreement
with the Bethe-Peierls formula, which takes range 6=0.
(In this energy region nearly all the contribution is from
the region outside the potential.) For X,<¥, the inter-
ference term in Eq. (59) changes the W—%? energy
dependence of the Bethe-Peierls formula to a W-72
dependence. The inequality X,<&b gives A?/2MEK®b?,

* Note added in proof: Similar conclusions have been reached by
L. I. Schiff, Bull. Am. Phys. Soc. 25, No. 1, Abstract E2 (1950).
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where E is the proton energy; or proton energy
E>R/2Mb*=2V,, the depth of the neutron-proton
potential for a square well. Dipole transitions are the
principal term in the deuteron photo-disintegration
provided X,a>>1, or (hc/W)(Me)?}/h>>1, where W is the
photon energy and we have used the definition of a.
This relation gives W< (eMc?)}=45 Mev. Since the
depth of the neutron-proton potential is comparable to
45 Mev, we find that for the deuteron there is actually
no range of photon energies where the total cross section
for photo-disintegration follows the asymptotic W=7/
form.2t

VII. EXPERIMENTAL DATA

The G.E. experiments provide information con-
cerning the integrated cross section for photo-nuclear
reactions, the energy dependence of the photo-nuclear
cross section, and set an upper limit on elastic nuclear
scattering of photons.

Lawson and Perlman! measured the CU! activity
produced by the C2(y,n) reaction. The photons were
produced as bremsstrahlung in the betatron, and the
photon intensity measured by reference to a pair spec-
trometer. They expressed the photon intensity as
number of quanta/Mev-min., at a photon energy of 30
Mev. The ratio of (y,n) processes/min.-atom, to the
number of quanta/Mev. min., is given as 1.5X10~%
Mev-cm?4-20 percent. This result was obtained both
with electron energy of 100 Mev and 50 Mev.

Lawson and Perlman interpret their result assuming
a sharply peaked curve of cross section vs. photon
energy. We shall here express their result in a more
general manner. Let y(W) be the photon spectrum from
the betatron, normalized to 1 photon/Mev at W =30
Mev. Then their result can be written

me
[ owmmmman
’ =0.15 Mev-barn+20 percent (69)

for Wax=100 Mev, or 50 Mev. A rough approximation
to y(W) is the normalized bremsstrahlung spectrum
v(W)=30/W. The upper limit for the integral can be
infinity, since Lawson and Perlman found no difference
for upper limit 50 or 100 Mev. Then the integrated
(v,m) cross section for C2 can be rewritten as

f 0 (v, n@W /W =0.005 barn +20 percent. (70)
0

Measurements of the relative yields of many photo-
nuclear reactions, using the method of induced ac-
tivities, were made with the same photon spectrum by
Perlman and Friedlander.? Combining their relative

21 We should also note that Eq. (59) holds exactly only for the
special case of half ordinary and half exchange forces, with wells
of the same shape. Further, Siegert’s theorem, reference 7, has
been extrapolated to high photon energies, where it may not hold.

2 M. L. Perlman and G. Friedlander, Phys. Rev. 74, 442 (1948)
and Phys. Rev. 75, 988 (1949).
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yields with the absolute determination by Lawson and
Perlman, we now have experimental data for /"o ,dW /W
for many different nuclei, where ¢, refers to the partial
cross sections for specific nuclear disintegrations studied
by the method of induced activities. There are always
some nuclear reactions that are missed by this method
since they result in stable isotopes. To obtain informa-
tion on SedW/W we therefore look for the nucleus
which gives the largest experimental result for
(1/A4) S0 ,dW/W, since for that nucleus the partial
cross section o, is probably most nearly equal to the
photon absorption cross section ¢.2 This integrated
cross section is largest for Ge™(y,n), for which
S 0,dW/W=0.126 barn. This result is used in Section
IIT in estimating the mean square displacement (#?),,,
and in Section IV to show that quadrupole transitions
can account for only a small fraction of the experi-
mentally determined cross section.

We want to obtain an experimental value for
JadW, since our sum rules for that quantity are not
greatly affected by the nuclear model used. SodW
=Wy S odW /W, where Wy is the harmonic mean
energy for photon absorption. Wy can be obtained
from Baldwin and Klaiber’s measurements? of the
energy dependence of the Cu®¥(y,n) cross section.
Using their value Wg=21 Mev, the relative yield
Cu®(y,n)/C®2(v,n) and Lawson and Perlman’s measure-
ments on C2(y,n) we have for Cu®

f 0, mdW = (33/2.3)(21)0.005= 1.5 Mev-barns

+30 percent. (71)

This result should be increased by 10 percent, since
the Cu®(y,2n) and Cu®(y,2p) yields together represent
10 percent of the Cu®(y,n) yield®? Further, the
Cu®(v,p) and Cu®(y,np) reactions that lead to stable
isotopes are probably appreciable.?

We conclude that for Cu®, S'edW =1.5 Mev-barns
+30 percent. This result agrees with that given by
Lawson and Perlman, and is derived in detail here only
to show that we did not need any assumption as to the
shape of the ¢(W) curve, but only the harmonic mean
energy Wy. Since Wy for photon absorption is not
known reliably for any other nuclei (see below) this is
at present the only experimental result for /odW.

This experimental result is in good agreement with
our Eq. (24) for dipole transitions. For Cu® our cal-
culation gives SodW =0.95(1+0.8x) Mev-barn. For no
exchange forces we have 0.95 Mev-barn, which is the
same result as given by Goldhaber and Teller,’ and is
not too far outside the experimental error. Solving for
the fraction of exchange force we have x=0.84-0.7. The

# We divide by A since from the theory of this paper the
integrated cross section is roughly proportional to 4.

% However use of the better approximation ~(W)=(4/3)
X (1 =W /Wmax)/W to the bremsstrahlung spectrum reduces by
a.bgu(t7 %;) percent the integrated cross sections given in Egs. (70)
an .
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value #=0.55+0.05 from the Berkeley neutron-proton
scattering experiments® gives a result well within the
experimental error. We conclude that the experimental
value of f'gdW for Cu® is strong evidence for dipole
transitions, and weak evidence for exchange forces.

The energy dependence of photonuclear reactions
has been measured by Baldwin and Klaiber? for
C¥2(y,n), Cu®®(y,n) and photo-fission, and by McEI-
hinney and others? for Cu®(y,n) and Ta'®(y,n). These
measurements were made by differentiating the curve
of yield of induced activity vs. maximum energy of the
bremsstrahlung spectrum. Bothe and Gentner? have
measured the relative yields for several (y,n) reactions
at 11- and 17-Mev photon energies.

All these measurements have large uncertainties in the
curve of ¢ (4, vs. photon energy. (For example, the two
measurements on Cu® disagree.) Further, the curve
a(v,n) v5. W gives an accurate picture of the curve of
photon absorption cross section o vs. W only if the
(y,m) reaction is the predominant photonuclear reac-
tion. We can determine this by comparing the experi-
mental value of fo(y,ndW with the value [SodW
given by our sum rules. The comparison for Cu®(y,n)
given shows that for this nucleus the (v,%) reaction is
predominant. For C®(y,n) and Ta®(vy,n) the integrated
(v,m) cross section is only about one-third of the ex-
pected value of /"edW, and, as shown by Goldhaber and
Teller, the photo-fission cross section is much less than
this fraction.

Evidence for the difference between measurements of
the (y,n) cross section and other measurements of
nuclear photon absorption was found in recent pre-
liminary results by McDaniel and Walker.® They
measured the yield of neutrons from photo-disintegra-
tion of various nuclei for photons of 17.5 Mev, and
obtained a smooth curve for relative neutron yield vs. 4.
In contrast, Wiffler e/ al.?® found that the relative
yield for induced activity produced by the (v,%) reaction
at this photon energy showed large deviations from a
smooth curve. We believe that neutron production is a
better measure of nuclear photon absorption than is
the production of radioactivity in some particular
photo-nuclear reaction because at least one neutron is
emitted in any absorption process, except (v,p), (v,2p)
etc. reactions which are probably relatively rare.
Measurements of integrated cross sections, and of
cross sections us. photon energy, by this method of
measuring neutron production would be of great
interest.

Thus, to date, only the measurements on Cu®(y,n)
reaction give a value of mean energy for photon ab-

% Hadley, Kelly, Leith, Segré, Wiegand, and York, Phys. Rev.
75, 351 (1949); and R. Serber (private communication).

26 McElhinney, Hanson, Becker, Duffield, and Diven, Phys.
Rev. 75, 542 (1949).

27 W. Bothe and Gentner, Zeits. f. Physik 112, 45 (1939).

28 McDaniel and Walker (private communication).

29 Huber, Lienhard, Scherrer, and Wiffler, Helv. Phys. Acta 17,
195 (1945) and 16, 33 (1943).
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sorption which can be compared with our calculations
of Section III. Baldwin and Klaiber? give W =22 Mev
for the (v,n) reaction. Since other photo-nuclear reac-
tions of Cu®?® generally occur at higher photon energies
than does the (y,n), we can write W=22 Mev. Our
calculated value for W is sensitive to the value of #, to
the shape of the neutron-proton potential, and to the
nuclear density. Figure 3 shows that 22 Mev corre-
sponds to values of the fraction of exchange force
varying from 0.1 to 0.3 depending on the shape of well
and nuclear density assumed. The value x=0.554-0.05
gives a very high value of W for a square well, but not
too unreasonable a value for a Yukawa well; 38 Mev
for a dense nucleus (r,=1.37X107!% cm), and 31 Mev
for a less dense nucleus (r,=1.50)X 1072 c¢cm). In prin-
ciple better experimental measurements of W and less
approximate calculations would provide good evidence
on some combination of well shape, nuclear density,
and the fraction of exchange force.

Similarly only the Cu%(y,n) measurements give
evidence as to the shape of the curve of the cross section
for photon absorption vs. photon energy; and even in
this case it has not been proved that competition
between the (v,%) and other photo-nuclear reactions is
not appreciable. The sharply peaked curve of oy, ny(W)
found by Baldwin and Klaiber for this reaction can be
taken as evidence for the Goldhaber-Teller theory® of
dipole vibration of the entire nucleus. Goldhaber and
Teller assume that only one excited nuclear level is of
importance (the first excited level for the simple
harmonic dipole vibration of the entire nucleus) so the
width of the (W) curve would be due entirely to the
energy-spread of that excited level due to its short life.
Goldhaber and Teller believe that the gamma-ray
width of this level should be appreciable compared to
the neutron width, so that there should be appreciable
elastic scattering of gamma-rays in this narrow energy
band. Gaertner and Yeater®® have recently looked for
gamma-rays of the resonance energy scattered at 90°
from C2 or Cu®. They set the upper limit for elastic
nuclear scattering of photons as one percent of the
(v,m) cross section for C'2) and three percent for Cu®.

The ratio of elastically scattered photons to nuclear
disintegrations is I'y/(I'n+I'4)=T',/Tn, where T'y is the
gamma-ray width, and I', the neutron width. 'y can
be found from the oscillator strength.? Assuming that
there is a single level having the summed oscillator
strength of (VZ/A)(1+0.8x)=20 for Cu®, and that
the resonance energy is about 22 Mev, then I', = 50 kev.
Gaertner and Yeater’s upper limit for scattered photons
then gives I', > 1.7 Mev for the neutron width for Cu%3.
This neutron width is not inconsistent with the measure-
ments of Baldwin and Klaiber, which give a “resonance
width” the order of magnitude of 3 Mev. However, we
could rule out the assumption that Baldwin and
Klaiber’s width is mostly instrumental.

% E. R. Gaertner and M. L. Yeater, Phys. Rev. 76, 363 (1949).
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A many-level picture of photon absorption, which is
consistent with our calculations in this paper, would
not give very different results from those on the
Goldhaber-Teller single level theory.! Consider L
levels, with average spacing D, so that LD =the width
of the (W) curve observed by Baldwin and Klaiber.
At high neutron energies the neutron width from state
nto the ground state, I',,=2DE/2w=2D/ 2, since sticking
probability £==1 at high neutron energies. The total
neutron width from a level excited by photon absorption
is

.=, IWMT,N,(W—B)=~(D/2x)N.(W—B). (72)

The summation goes over neutron energies between
zero and (W—B), where B is the neutron binding
energy, and W is the photon energy. N,(W— B) is the
number of levels of the nucleus in this energy range
that can be reached by neutron emission.

The gamma-width T',, for photon emission to the
ground state from a single level is about 1/L that for
the gamma-width T', for a single level theory. The
excited state can decay by photon emission to many
levels above the ground state, and if the final level is
less than, say, 5 Mev above ground then the emitted
photon will be hard to distinguish experimentally from
a photon of the resonance energy. The effective gamma-
width

5 Mev

F1 eff — Z F'yrgr-yoN-y(s MCV)

r=0

~(T,/L)N,(5 Mev). (73)

The ratio of scattered photons to neutron emission is
7 _(Ty/L)Ny(5 Mev) Ty Ny(S Mev)

= =—2r———, (74)
oe,n) (D/2x)N,W—B) T N,(W—B)

where we have used the relation LD=T=observed
width of “resonance curve.” The ratio T',/T is the
ratio used for the Goldhaber-Teller theory. For Cu%
the energy W—B=222—11=11 Mev; so the ratio of
levels reached by photon emission to those reached by
neutron emission N,(5 Mev)/N,(W—B) will be less
than unity, and perhaps of order of magnitude 0.01; so
this calculation gives a result that the ratio (scattered
photons/emitted neutrons) would be roughly one-tenth
that predicted from the Goldhaber-Teller theory.
Several reports have appeared very recently which
confirm the experimental work discussed in this section.
Strauch® has measured the transition curves in lead for
photons from the Berkeley synchrotron causing the
(v,n) reaction in C2 or Cu®®. He finds the mean energy
for photons causing these reactions to be 30 and 20 Mev,
respectively, in agreement with Baldwin and Klaiber’s
measurements by a different method. Helmholz and
3t This calculation of (photon emission/neutron emission) was
done by H. A. Bethe and H. Hurwitz, of the Knolls Atomic Power

Laboratory, General Electric Company, Schenectady, New York.
2 K, Strauch, Phys. Rev. 78, 84 (1950).
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Strauch® have measured the yields for several photo-
nuclear reactions with the Berkeley synchrotron, and
find a preliminary value of 1 Mev-barn for the inte-
grated Cu®(y,n) cross section, in agreement with the
work of Lawson and Perlman. Dressel, Goldhaber, and
Hanson,** have measured resonance scattering of
photons, using the 22-Mev Illinois betatron. They used
the activation of Pr'# by the (vy,n) reaction to detect
scattered photons of high energy. The cross section for
resonance scattering of photons for lead nuclei is
roughly 1 mb per steradian, and is considerably less
than this for copper and antimony nuclei. Their upper
limit for scattering by copper nuclei is about one-tenth
that found by Gaertner and Yeater. The result for lead
is consistent with the Goldhaber-Teller theory for a
resonance width of 4 Mev, and is also consistent with
the theory of this paper.*

Our calculations from sum rules do not give a
definite prediction as to the shape of the (W) curve;
but only the integrated cross section and the mean
energy for photon absorption. The curve could be
broad, or could have a sharp resonance. If we take the
alpha-particle model of the nucleus as a first approxima-
tion, we might expect a strong resonance at a photon
energy of roughly 20 Mev, as photons of this energy are
emitted with a high probability in the T3(p,v)He*
reaction.”® However, “alpha-particles” in the nucleus
will certainly behave differently from free alpha-par-
ticles, and the resonance might be greatly broadened.

The alpha-particle model gives qualitatively satis-
factory results concerning the ratio o(y,p)/0(v,n) for
heavy nuclei. Hirzel and Wiffler?s found this ratio for
a photon energy of 17 Mev to be many times greater
than that predicted by the statistical theory of nuclei.
Perlman and Friedlander?® find even larger (v,p) yields
[roughly 10 percent of (v,%) yields] using the G.E. beta-
tron at 100 Mev, or 50 Mev electron energy. The only
two isotopes which were measured by both groups are
Si** and Mo*. The (v,p) yield, relative to Cu®(y,n) was
increased 14 times for the former, and three times for

% A. C. Helmholz and K. Strauch, Phys. Rev. 78, 86 (1950).

# Dressel, Goldhaber, and Hanson, Phys. Rev. 77, 754 (1950).

* Note added in proof: Gaerttner and Yeater, Phys. Rev. 77, 714
(1950) have recently measured the cross sections for photo-nuclear
reactions in nitrogen and oxygen. Cloud-chamber observations of
reactions produced by x-rays from the G.E. betatron showed
“flags,” singles, and stars. The flags are interpreted as (v, pn)
reactions, and the singles as (v, ) processes. Gaerttner and Yeater
found that flag production was the predominant process, for both
oxygen and nitrogen. They calculate the total integrated photo-
nuclear cross section as about 0.6 Mev-barn, for both nuclei. These
measurements confirm the increase of the integrated photo-nuclear
cross section due to exchange forces. Using this data, together with
our Eq. (24), we find that the fraction of exchange force x=2%1,
where we have assumed a 30 percent uncertainty in their experi-
mental result. (Equation (24) was calculated for heavy nuclei;
surface effects might change the numbers for light nuclei such as
oxygen and nitrogen.) Gaerttner and Yeater’s measurements also
show the importance of competition among different photo-
nuclear reactions.

% Hirzel and Wiffler, Helv. Phys. Acta 20, 373 (1947).
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the latter, by use of the higher energy photons from the
betatron rather than the 17-Mev gammas.

Courant3® assumed a surface photoelectric effect for
the whole nucleus for proton emission and found too
low a proton yield to account for Hirzel and Wiffler’s
results. Schiff¥” assumed that only nuclear levels of
special properties could be excited by photons, and
obtained rough agreement with Hirzel and Wiffler’s
results. However neither author found that the (v,p)
yield should increase rapidly with increasing photon
energy.

We propose the following tentative picture which is
similar to that suggested in a letter by Courant: The
main process of nuclear absorption is by absorption of
energy by a single proton in a nuclear alpha-particle.
Usually this proton interacts with other nucleons before
getting out of the nucleus; the excitation energy then
becomes shared among many nucleons, and a neutron
of energy corresponding to the nuclear temperature
will in general be emitted, in accord with the statistical
theory. Occasionally the proton escapes without making
any collisions. (This will occur for a proton emitted
from a surface alpha-particle in the right direction.)
Since the mean free path for protons in a nucleus
increases with increasing proton energy, the probability
of proton escape increases with proton energy.

We want to make clear that these calculations from
the alpha-particle model are tentative, and of a pre-
liminary nature only.

In conclusion, we have shown by sum rules that
there are dipole transitions, and that quadrupole transi-
tions can account for only a small fraction of the ob-
served integrated photonuclear cross sections. Gold-
haber and Teller assume a specific model for dipole
transitions; i.e., that there is a dipole vibration of the
entire nucleus. From this model they obtain the in-
tegrated cross section, predict a sharp resonance curve
for photon absorption, estimate the resonance energy
and predict elastic nuclear scattering of photons.
Making no ad hoc assumption of dipole vibration of the
entire nucleus, we have found an integrated cross
section somewhat larger than that of Goldhaber and
Teller, due to exchange forces. Either integrated cross
section agrees with present experiments. We find a
reasonable mean energy for photon absorption, if a
Yukawa well is used with not too high a fraction of
exchange force. Experimental evidence on the shape of
the o(W) curve is not yet decisive; we could obtain
qualitative agreement with a resonance peak by con-
sideration of the alpha-particle model. We predict a
somewhat lower elastic scattering of photons than do
Goldhaber and Teller. Either result is in agreement with
present experiments. We can qualitatively understand
the ratio of proton to neutron emission, using the alpha-

3 E. D. Courant, Phys. Rev. 74, 1226(A) (1948) and private
communication.
37 L. I. Schiff, Phys. Rev. 73, 1311 (1948).
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particle model, while Goldhaber and Teller’s theory
does not consider this question. We believe that many
of the features of the nuclear photo-effect can be
understood merely from the fact that there are dipole
transitions, without a special model.
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A mass spectrometer investigation of the xenon isotopes formed from U2 fission has been made and the
fission yield and half-life of Xe® determined. The fission gases were extracted, purified, and the mass spec-
trometer abundance data obtained within two weeks of the end of the irradiation period. The fission yield
of Xe® was found to be 6.294-0.01 percent, which is 20 percent higher than that expected from the mass
yield curve. This is further evidence of fine structure in the mass fission yield curve. The half-life value of

Xe!® was found to be 5.27040.002 days.

HODE and Graham! first determined mass
spectrometrically the relative abundances of
stable isotopes of Xe and Kr resulting from the decay of
fission product chains in U?3 fission. In this way the
relative fission yields of eight mass chains—83, 84, 85,
86, 131, 132, 134 and 136, were determined with con-
siderable accuracy. When these yields are normalized
to the mass-yield curve at a value of 2.8 percent for
mass 131, the values fit the curve nicely with the
exception of Xe!* which is about 35 percent above the
normal fission yield curve. Glendenin? has pointed out
that the value obtained by Thode and Graham! of Kr?*
is also above the experimental mass yield curve by
about 35 percent. These results indicated for the first
time “fine structures” in the mass yield curve. Recently,
Inghram, Hess, and Reynolds® reported isotope abun-
dance data for fission product cesium, which also indi-
cate anomalies in the mass yield curve.

If it is assumed that the yields should fall on a smooth
curve, then the abnormal yields of Xe!'3* and Kr®
might be explained by delayed or prompt neutron
emission. If this fission chain branching does occur, then
the fission yield of adjacent chains will be affected. It
seemed important, therefore, to determine accurately
the fission yields of the 133 and 135 mass chains. In
the original mass spectrometer investigations of the
fission gases, Xe!¥® and Xe!®® did not occur because of
their short half-lives, and because it was not possible to
get samples immediately after irradiation. However,
with the Chalk River facilities of the National Research
Council available, it has now been possible to extract
Xe gas from irradiated uranium disks without a long

1H. G. Thode and R. L. Graham, Can. J. Research, A25, 1-14
(1947). Technical Report No. 35.

2 G. L. Glendenin, Ph.D. thesis, Department of Chemistry,
M.LT. (August 1949).

3 Inghram, Hess, and Reynolds, Phys. Rev. 76, 1717 (1949).

“cooling” period and thus permit the investigation of
5.3-day Xe'%. In order to calculate the fission yield of
Xe'®® from abundance data, (after a definite irradiation
and cooling time), it is necessary to know its half-life
with considerable accuracy. Since the previous values
obtained by radio-chemical methods,**2 were only
good to 1 or 2 percent, a new and more accurate value
was determined mass spectrometrically. This deter-
mination of the half-life of Xe!* and the determination
of the fission yield for the 133 mass chain are reported
in this paper.

THEORY
Half-Life Determination

By comparing the abundance of a radio-active isotope
with that of a stable one with a mass spectrometer over
a period of time, it is possible to follow its decay rate
and thereby determine its half-life. By this method,
very accurate half-life determinations are possible for
isotopes with half-lives ranging from about one day to
ten years. The fundamental decay equation is

n/no=eM=exp(—0.69324/1;),

where 7 is the concentration at time ¢ and #n, is the
concentration at zero time.

By substituting for example the 133/1314-132 ratio
obtained with the mass spectrometer at different time

4 A. Langsdorf, Jr., Phys. Rev. 56, 205 (1939).

5 R, W. Dodson and R. D. Fowler, Phys. Rev. 57, 967 (1940).
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