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The formula for the half-life given by Bethe and corrected for
the theoretically calculated conversion coefficients (Hebb and
¹Ison)gives the half-life 2X10 ' sec. for l =3 and 3)(10~sec. for
l=4 (experimental value 6.5X10' sec.). According to the curves
of Flugge, s EI/:/EI, =0.1 for l=4 and E~/XI, =0.4 for l=3
(electric radiation). The recently published curves of Tralli and
Lowen7 give Eg/X1. =3 for /=3 and magnetic radiation. For
electric octupole radiation the agreement between the experi-
mental value 0.44 of X~/El, and the theoretical one is very good.
The half-life and internal conversion coefficients, however, indicate
a mixture of =70 percent electric 24-pole and =30 percent
magnetic 2'-pole radiation. This would then still be an example
of a parity forbidden isomeric transition. s
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TAM.E I. Observed shifts of nuclear resonances in metals due to free
electron paramagnetism, and comparison with theory.
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n Measured value with diamagnetic corrections, S. R. Rao and K.
Sarithri, Proc. Ind. Acad. 6, 207 (1942}.

b Average of measured values with diamagnetic corrections, F. Bitter,
Phys. Rev. 36, 978 (1930).' Calculated value assuming free valence electrons.

~ Theoretical value (reference 3).' The small diamagnetic contribution to the shift may increase this
limit by a factor of 2 or so

I Estimated from Goudsmit's formula and measured values for ionized
atoms.
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'HE nuclear paramagnetic resonance frequency for an atom
in the metallic state usually is appreciably greater than the

resonance frequency when the atom is in a non-metallic com-
pound. ' These frequency shifts are of the order of a few tenths
of one percent, and are hence much too large to be accounted for
by a simple difference in magnetic susceptibility of the materials
or by differences in diamagnetic correction for the metallic and
non-metallic atoms. It is proposed that such shifts are primarily
due to orientation by the magnetic field of the spins of conduction
electrons near the top of the Fermi distribution, and the inter-
action of these electrons with the nuclei. Since the conduction
electrons usually have a very large probability density near the
nucleus, this may be understood as an enormous concentration
of the local magnetic susceptibility of the metal in the vicinity of
the nuclei. It may also be compared with and calculated from the
magnetic hyperfine structure interactions in an isolated atom.
Diamagnetic effects of the same type appear to be very much
smaller since the electronic currents responsible for the dia-
magnetism of the conduction electrons are appreciable only in
the outer regions of the atom.

The fractional shift in nuclear resonance frequency between
metal and non-metal is simply the fractional amount by which
the presence of the conduction electrons increases the mean
magnetic field strength P at the nucleus. Neglecting the small
diamagnetic effect, we consider only the field b,P due to the
electron spins, which is 8n./3 times the mean density of spin
moment at the nucleus, assuming cubic symmetry. If the electron
distribution is not cubically symmetric about the nucleus, then
electron density at points other than at the nucleus contributes
to hP, and dP will depend to some extent on orientation of the
crystal with respect to P. In terms of wave functions of individual
electrons in the metal the spin moment density at the nucleus
can be written xvMP( ~ Pp (0) j )A„where gv is the spin contribution
to the macroscopic susceptibility per unit mass, M is the mass
of one atom, and (~ps(0) [s)A, is the average probability density
at the nucleus for all electronic states on the Fermi surface.
Now the hyperfine structure splitting hv for an s electron in the

free atom is proportional to tg, (0) ~
s, where P, is the wave function

of the s electron in the free atom, Dividing the above expression
for AP by the familiar Fermi expression for Av gives the fractional
frequency shift in terms of a ratio of metallic and atomic wave
functions:
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where bc', v is the hyperfine splitting in energy units, p& is the
Bohr magnetron, pt is the nuclear moment, and I the nuclear spin.

We have attempted to calculate the theoretical value of the
last factor in (1) for the cases (Na, Li, Be) for which adequate
calculations of metallic wave functions are at present available.
This factor may be written ( ~ps(0) ~ /(p, (0)

~

s)sx, where f, is the
wave function of an electron at the bottom of the conduction
band and 8~ is the mean over the Fermi surface of

sa= (IA(0) I')/(l do(0) I').

Calculations by the Wigner-Seitz method' give p0, 8A, can be
determined in either of two ways. The first, suitable only for
monovalent metals, is to assume that s& is adequately represented

by the first two terms of its development in powers of the square
of the electronic wave vector k:

sI,= 1+edsI,/d(e) + ~ ~, (2)

and to use the expression given by Herring and Hill' for dsI, /d(k )
(Appendix III of this reference; a factor 6 shouM be inserted
before o( in Kq. (M).) This method was applied to the case of
Na with the aid of wave functions kindly supplied by Dr. Bardeen,
and gave 81,=0.70. Similar calculations were made for Li, but no
results will be quoted because it was found that the available
wave functions were based on an incorrect potential field for the
Li ion. Comparison with the case of Be, to be discussed next,
suggests that 8I, for Li may be of the order of 0.4. For Be, which

is divalent, the first two terms of (2) do not give at all a good
approximation, and a second procedure was therefore adopted.
This consisted in dividing up the Fermi surface into six portions,
estimating an average sg for each portion frorTI the values of s)h

directly calculated for states near the Fermi surface (Table.VII
of reference 3), and combining with suitable weights. This gave
8)h ——0.32, and this value did not seem to be particularly sensitive
to changes in the technique of averaging.

The quantity )t/0(0) (s/(P, (0) )' has approximately the values
1,16, 1.9, and 1.6, for Na, Li, and Be, respectively. For other
metals its behavior can be inferred qualitatively by noting how

much of the charge of the outermost s electrons of the free atom
lies outside a sphere whose volume equals the atomic volume of
the metal; it appears from this that [&0(0) ['/)g, (0) ~' should be
appreciably smaller for such multivalent metals as Al, Ga, and
Pb than for the mono- and divalent ones.
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Table I gives some experimental values of the relative frequency
shift, values of xv(lpr(0) lv)A~/Irido(0) ls computed from these shifts
by use of (1), and, for Li, Na, and Be, the results of theoretical
attempts to calculate this product by the methods outlined above.
In almost all cases the most uncertain factor is probably the value
of x„.Though no quantitative comparisons of theory and experi-
ment can be made at present for other metals than these three,
it will be noted that the figures in the table are consistent with
reasonable values for xv, Ifv(0) Ir/Id, (0) Iv, and ss. The case of
Be is interesting in that the shift is too small to measure, indi-
cating values of iq and /or g„still smaller than those calculated.
The shift in Pb illustrates the considerable size which this para-
magnetic eKect may have in heavy metals.

*Work of these authors was largely performed at Brookhaven National
Laboratory under contract with the AEC.
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INCE experiments on neutron-proton scattering were ex-
tended to very high voltages at Berkeley, ' theoretical calcu-

lations' 4 have been made to obtain the relativistic correction to
nuclear forces. One of the most remarkable alterations of the
nuclear force brought out by the calculations is that the 1jr3
singularity of the tensor force disappears in the relativistically
corrected forms. This change eliminates the essential difhculty of
the calculation of the deuteron ground state. However, it must
be mentioned that none of these theoretical attacks has fully
taken into account the retardation effect of the mesonic potential.
The calculation developed in this paper starts with the explicit
expression of the retarded potential and will examine additional
non-negligible terms which have hitherto been overlooked. One
of these terms corresponds to Breit's expression for the Mgller
force in the case of two electrons.

%'e shall take the pseudoscalar meson field with only pseudo-
scalar coupling, so that we have

(a —a 2 —2}V=&,

where the natural units h= c= 1 are used, and ~ is the rest mass
of the meson field U. The source function fp is given by the
transition matrix elements of the first nucleon between two states
(E1, u1)~(E1', u1'), i.e.,

q (ri, t) =fu1'*(r1)p2 ')Q 'ui{r1) exp(i(E1' —E1)t), (2)

where f, p2(') and Q(') are respectively the coupling constant, a
Dirac matrix and an isotopic spin operator of the first particle, in
the usual sense of these symbols, u1(r1) is the Dirac spinor wave
function.

Now it is clear that (j.) has the following special solution:

U(r, t)=f p('(E' —E)t) J '*( )IQ"' "'

XexpL —lr2 —«I (r' —(K'—E~)')tl/lr2 —«I I«(ri)dv~ (3)

Since we are interested in the correction due to the retardation
eBect, we shall expand the exponential function in the above
integrand in power series in (E1'—E1):

exp( —
I rv r& I

(r' —(E—~' —E&)')t)/I r& —r& I

=exp( —lrv rilr)/lrv —r~l

+exp( —
I rs —ri I r) (Ei'—Ei)'/2 r+

~~'a+&1+ . .
~ (4)

The first term, 5'o, is the usual static Yukawa potential, and the
second term, IV1, is the first correction term arising from the
retardation.

H; = —in; grad;+P;p,

Equation (6) can be written also as

(i= I, 2}. (7)
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The first term in this last expression (8) is the counterpart of
Breit's force for the case of nuclear interaction. The second
term is worth particular attention since its effect decreases with
r less rapidly than the other terms. The effect of this term may,
therefore, become predominant in the calculation of the quadru-
pole moment of the deuteron. The third and fourth terms, which
contain ip1, unfortunately cannot be reduced to simpler forms,
even in Pauli s approximation. Indeed, p3 is of the order of
unity, while ip1 is of the same order as p2 in this approximation.
Therefore, we cannot neglect these terms.

On the ot+r hand, the last three terms in (8}are non-diagonal
in the r representation, and express the dependence on the relative
velocity of the two nucleons. When the de Broglie wave-length
of an incident neutron approaches the force range 1/ft:, these non-
diagonal parts will become of the same order as the other terms.

If we take a scalar instead of a pseudoscalar interaction, the
retardation eGect gives only corrections of higher order. The
pseudoscalar type of interaction resembles that of the vector
type in the sense that they both contain the effect of the nucleonic
current. The detailed estimation of the above mentioned addi-
tional terms will be discussed in a full report.

The author should like to express his sincere gratitude to
Professor Yamanouchi for his valuable suggestions.
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The succeeding calculation can be performed in an analogous
fashion to 4;hat of the Mgller force between two electrons. ~ The
transition matrix element (E1, u1., E2, u2)~{E1', u1', E2', u2') is
given as follows, provided the first nucleon is a proton and the
second a neutron:

V J=U(rrt) v(rg, t)dv
s

= —f' exp(i(E1'+E2 E1 E2) t) ' u2'*(r } u1'*(r1)p2 p2

X lexp( —Ir.—rgl (r' —(Eg' —Et)')&)/

lrv —rql }u.(rm)tt~(r~)dv~ dv.

OQ2 ttl (—/ pr np2+Wp —f p ~~pv~nWq —~ ~ )uv tt~dv~ ~ dvv. (S)

The operator expression in the parentheses in (5) is usually called
the nuclear force between two particles, although the first and
the second terms in the parentheses, as will be shown later,
represent quantities of the same order. Attention has hitherto
been limited to the discussion of the first term. The second
term, in which we are particularly interested, can be re-written
in a commutator form:

f pv@~p—2'~Wi= —/ Lff2, p~@~LHi& pr~o exp( —Irr —rqlr))g/2r (6)

where P; is the Dirac Hamiltonian of a free nucleon, i.e.,


