Gamma-Scintillations in Diphenylacetylene

C. F. RAVILIOUS, J. O. ELLIOT, AND S. H. LIEBSON Electricity Division, Naval Research Laboratory, Washington, D. C. January 25, 1950

K OSKI and Thomas¹ have recently reported the observation of scintillations in diphenylacetylene and have estimated the signal-to-noise ratio of diphenylacetylene to be six times better than that of stilbene. Measurements at this laboratory also show diphenylacetylene to be a more efficient phosphor and indicate its luminescence decay constant at room temperature to be 8×10^{-9} sec., assuming a pulse whose amplitude decays as $e^{-t/7}$. This time measurement was made by a shorted coaxial line technique in which the output pulse generated by the photomultiplier tube is partially canceled by its own out-of-phase reflection from the variable-length shorted line. The decay constant determined by this method has not been corrected for the inherent spread in transit time of the photo-multiplier tube.

The experiment was carried out with a 931-A photo-multiplier operating at 200 v per stage which was cooled by liquid nitrogen. A radium gamma-ray source was used for excitation.

The crystals were in flake form and were made by the Bios Laboratories, Inc., of New York City.

¹W. C. Koski and C. O. Thomas, Phys. Rev. 76, 308 (1949).

On the Isomerism of Kr⁸³

I. BERGSTRÖM AND S. THULIN Nobel Institute for Physics, Stockholm, Sweden

AND

G. ANDERSSON Gustaf Werner Institute for Nuclear Chemistry, Uppsala, Sweden January 25, 1950

I N an investigation of D-bombarded Se, Langsdorf and Segrè¹ discovered the isomerism of Kr^{83} and estimated the energy of the conversion electrons to be about 35 kev. Measurements with the β -spectrometer by Helmholtz² indicated two soft γ -rays of energies 29 and 46 kev (Se+D sample).

FIG. 1. Conversion lines of Kr^{83} (not corrected for absorption in the G-M tube window). Solid curve: Kr^{83} deposited on 0.15 mg Al/cm². Broken curve: Kr^{83m} deposited on 2.5 mg Al/cm².

FIG. 2. Decay curves for the K- and L-lines measured in the β -spectrometer.

By separating the gaseous fission products of uranium (after cyclotron bombardment) in the electromagnetic isotope separator of the Nobel Institute,³ it has been possible to obtain Kr^{83} with an activity sufficient for β -spectrometer investigations. This is an excellent way of preparing β -spectrometer samples. The active ions reach the collector foil with an energy of 30–60 kev and will in our case penetrate into the foil to a depth less than a hundred atomic layers⁴ corresponding to an absorption thickness of the order of 1 μ g/cm² in Al for the electrons from the deepest situated active atoms. It has proved possible to use 0.15 mg Al/cm² as

TABLE I. Conversion lines of Kr⁸³.

Conver- sion lines	Ηρ gauss- cm	hν kev	Half-life (min.)	N_K/N_L line ratio	NK/NL surface ratio
K	446	31.5	103 ± 10	0.44 ± 0.06	0.39
L	598	32.5	108 ± 5		

collector foils. Thus, in most cases we obtain a mass-determined, carrier-free activity deposited on a very thin foil without any covering substance.

The foil covered sample holder was fixed behind a circular slit (r=5 mm) in the collector arrangement of the separator and exposed to the "spot focused"⁵ Kr³³ line for about one hour. For mass number control the fission gases were mixed with stable Kr. A current of about 2 μ amp. of Kr³³ at 30 kev could be allowed during the separation without destroying the thin Al foil. The β -spectrometer data are summarized in Table I and Figs. 1 and 2.

Broken and solid lines refer to two different measurements with collector foils 2.5 and 0.15 mg Al/cm², respectively. The back-scattering effect of the thicker foil was too large to obtain an accurate value for N_K/N_L .

The absorption effect of the G-M tube window was calculated from measurements of the Co⁶⁰ spectrum. The correction factor for N_K/N_L was 1.55 giving $N_K/N_L=0.44$, when comparing the ratio of the line heights and 0.39 for the line surfaces. The measurements were repeated in another lens spectrometer with a somewhat thinner G-M foil and $N_K/N_L=0.40$ was obtained for the ratio of the line heights. The H_P -values in this case were 453 and 603 corresponding to lw=32.0 and 32.9 kev. Four measurements in two β -spectrometers gave the values 32.5, 32.5, 32.7, and 32.9 kev (mean value 32.7 \pm 0.5 kev) for the γ -energy from the *L*-line, which is much more accurately determined than the *K*-line.

Our γ -energy value of 32.7 kev probably corresponds to that of 29 kev reported by Helmholtz. It was not possible, however, to find the other converted γ -ray of 46 kev and, if it at all belongs to Kr^{sam}, the intensity of the conversion lines must be less than 1/20 of the *L*-line found by us. It is therefore possible that the 46-kev line belongs to Br^{sa}.

The formula for the half-life given by Bethe and corrected for the theoretically calculated conversion coefficients (Hebb and Nelson) gives the half-life 2×10^{-1} sec. for l=3 and 3×10^{5} sec. for l=4 (experimental value 6.5×10^3 sec.). According to the curves of Flügge,⁶ $N_K/N_L \approx 0.1$ for l=4 and $N_K/N_L \approx 0.4$ for l=3(electric radiation). The recently published curves of Tralli and Lowen⁷ give $N_K/N_L \approx 3$ for l=3 and magnetic radiation. For electric octupole radiation the agreement between the experimental value 0.44 of N_K/N_L and the theoretical one is very good. The half-life and internal conversion coefficients, however, indicate a mixture of ≈ 70 percent electric 2⁴-pole and ≈ 30 percent magnetic 2³-pole radiation. This would then still be an example of a parity forbidden isomeric transition.8

A. Langsdorf, Jr. and E. Segrè, Phys. Rev. 57, 105 (1940). A. C. Helmholz, Phys. Rev. 60, 415 (1941). Bergström, Thulin, Svartholm, and Siegbahn, Arkiv f. Fys. 1:11, 281 ⁸ Bergström, Annue, J. 1949).
(1949).
⁹ I. Bergström and S. Thulin, Phys. Rev. 76, 1718 (1949).
⁹ S. Flügge, Physik, Zeits. 42, 227 (1941).
⁹ N. Tralli and I. S. Lowen, Phys. Rev. 76, 1541 (1949).
⁸ P. Axel and S. M. Dancoff, Phys. Rev. 76, 892 (1949).

The Effect of Electronic Paramagnetism on Nuclear **Magnetic Resonance Frequencies in Metals**

C. H. Townes* Columbia University, New York, New York CONYERS HERRING

Bell Telephone Laboratories, Murray Hill, New Jersey

AND

W. D. Knight* Trinity College, Hartford, Connecticut January 23, 1950

HE nuclear paramagnetic resonance frequency for an atom in the metallic state usually is appreciably greater than the resonance frequency when the atom is in a non-metallic compound.¹ These frequency shifts are of the order of a few tenths of one percent, and are hence much too large to be accounted for by a simple difference in magnetic susceptibility of the materials or by differences in diamagnetic correction for the metallic and non-metallic atoms. It is proposed that such shifts are primarily due to orientation by the magnetic field of the spins of conduction electrons near the top of the Fermi distribution, and the interaction of these electrons with the nuclei. Since the conduction electrons usually have a very large probability density near the nucleus, this may be understood as an enormous concentration of the local magnetic susceptibility of the metal in the vicinity of the nuclei. It may also be compared with and calculated from the magnetic hyperfine structure interactions in an isolated atom. Diamagnetic effects of the same type appear to be very much smaller since the electronic currents responsible for the diamagnetism of the conduction electrons are appreciable only in the outer regions of the atom.

The fractional shift in nuclear resonance frequency between metal and non-metal is simply the fractional amount by which the presence of the conduction electrons increases the mean magnetic field strength H at the nucleus. Neglecting the small diamagnetic effect, we consider only the field ΔH due to the electron spins, which is $8\pi/3$ times the mean density of spin moment at the nucleus, assuming cubic symmetry. If the electron distribution is not cubically symmetric about the nucleus, then electron density at points other than at the nucleus contributes to ΔH , and ΔH will depend to some extent on orientation of the crystal with respect to H. In terms of wave functions of individual electrons in the metal the spin moment density at the nucleus can be written $\chi_p MH \langle |\psi_F(0)|^2 \rangle_{Av}$, where χ_p is the spin contribution to the macroscopic susceptibility per unit mass, M is the mass of one atom, and $\langle |\psi_F(0)|^2 \rangle_{AV}$ is the average probability density at the nucleus for all electronic states on the Fermi surface. Now the hyperfine structure splitting Δv for an s electron in the

TABLE I. Observed shifts of nuclear resonances in metals due to free electron paramagnetism, and comparison with theory.

Nu	H.f.s. splitting $\Delta \nu$, in cm ⁻¹ for	Observed shift	Yn Def	$\chi_p \langle \psi_F(0) ^2 angle_{AV} / \psi_a(0) ^2 imes 10^6$	
cleus	s electron	(percent)	gram X106	theory	from (1)
Li ⁷	0.027	0.04	3.0ª	~2.3	2.6
Na ²³	0.060	0.10	0.98 ^b	0.80	0.63
Cu 63	0.39	0.23	~0.110		0.078
Be ⁹	0.040	< 0.002	~0.30d	~ 0.15	<0.025 ^e
Ph207	2.11	1.2	~0.10°		0.0091
A127	0.351	0.16	~0.47°		0.21
Ca ⁶⁹	0.581	0.44	~0.20℃		0.083

 Measured value with diamagnetic corrections, S. R. Rao and K. Sarithri, Proc. Ind. Acad. 6, 207 (1942).
 ^b Average of measured values with diamagnetic corrections, F. Bitter, Phys. Rev. 36, 978 (1930).
 ^c Calculated value assuming free valence electrons.
 ^d Theoretical value (reference 3).
 ^e The small diamagnetic contribution to the shift may increase this limit by a factor of 2 or so.
 ^f Estimated from Goudsmit's formula and measured values for ionized atoms. atoms.

free atom is proportional to $|\psi_a(0)|^2$, where ψ_a is the wave function of the s electron in the free atom. Dividing the above expression for ΔH by the familiar Fermi expression for $\Delta \nu$ gives the fractional frequency shift in terms of a ratio of metallic and atomic wave functions:

$$\frac{\Delta H}{H} = \frac{hc\Delta\nu I\chi_p M}{\mu_1\mu_e(2I+1)} \frac{\langle |\psi_P(0)|^2 \rangle_{\mathsf{Av}}}{|\psi_a(0)|^2} \tag{1}$$

where $hc\Delta\nu$ is the hyperfine splitting in energy units, μ_e is the Bohr magnetron, μ_I is the nuclear moment, and I the nuclear spin.

We have attempted to calculate the theoretical value of the last factor in (1) for the cases (Na, Li, Be) for which adequate calculations of metallic wave functions are at present available. This factor may be written $(|\psi_0(0)|^2/|\psi_a(0)|^2)\hat{s}_K$, where ψ_0 is the wave function of an electron at the bottom of the conduction band and \bar{s}_K is the mean over the Fermi surface of

$$\psi_k = (|\psi_k(0)|^2) / (|\psi_0(0)|^2).$$

Calculations by the Wigner-Seitz method² give ψ_0 ; \bar{s}_k can be determined in either of two ways. The first, suitable only for monovalent metals, is to assume that s_k is adequately represented by the first two terms of its development in powers of the square of the electronic wave vector k:

$$s_k = 1 + k^2 ds_k / d(k^2) + \cdots,$$
 (2)

and to use the expression given by Herring and Hill³ for $ds_k/d(k^2)$ (Appendix III of this reference; a factor 6 should be inserted before α in Eq. (M).) This method was applied to the case of Na with the aid of wave functions kindly supplied by Dr. Bardeen. and gave $\bar{s}_k = 0.70$. Similar calculations were made for Li, but no results will be quoted because it was found that the available wave functions were based on an incorrect potential field for the Li ion. Comparison with the case of Be, to be discussed next, suggests that \hat{s}_k for Li may be of the order of 0.4. For Be, which is divalent, the first two terms of (2) do not give at all a good approximation, and a second procedure was therefore adopted. This consisted in dividing up the Fermi surface into six portions, estimating an average s_k for each portion from the values of s_k directly calculated for states near the Fermi surface (Table VII of reference 3), and combining with suitable weights. This gave $s_k = 0.32$, and this value did not seem to be particularly sensitive to changes in the technique of averaging.

The quantity $|\psi_0(0)|^2/|\psi_a(0)|^2$ has approximately the values 1.16, 1.9, and 1.6, for Na, Li, and Be, respectively. For other metals its behavior can be inferred qualitatively by noting how much of the charge of the outermost s electrons of the free atom lies outside a sphere whose volume equals the atomic volume of the metal; it appears from this that $|\psi_0(0)|^2/|\psi_a(0)|^2$ should be appreciably smaller for such multivalent metals as Al, Ga, and Pb than for the mono- and divalent ones.