process, $He^+ + 2He \rightarrow He_2^+ + He$. Substitution of the interaction constants of Massey and Mohr¹¹ in the Thomson formula gives that the mean lifetime of a He⁺ ion in helium at 25 mm Hg is only about 10^{-5} sec.¹² Since the age of the ions studied by Biondi and Brown ranged from 5×10^{-3} to 1.1×10^{-2} sec., it would seem probable that they were indeed $He₂⁺$. In view of the importance of being certain of the nature of the recombination mechanism, it would be useful if this could be verified by means of a mass spectrograph.

The ambipolar diffusion measurements were conducted at lower pressures but the conditions were still such that He_{2}^{+} might well predominate over He+. Unfortunately the discrepancy between the results of Biondi and Brown and those of Tyndall and Powell¹³ cannot be attributed to this, for Meyeratt¹⁴ claims these latter probably also worked with molecular ions. It is difficult to predict the mobility of $He₂$ ⁺ as certain collision reactions may introduce complications.

Finally I would like to thank Professor H. S. W. Massey for several helpful discussions.

¹ M. A. Biondi and S. C. Brown, Phys. Rev. **75**, 1700 (1949).
² L. Goldberg, Astrophys. J. **90, 4**14 (1939).
^{8 Su-Shu Huang, Astrophys. J. 108, 354 (1948).
<u>4 B</u>ates, Buckingham, Unwin, and Massey, Proc. Roy. Soc. **A1}**

(1939).

⁶ D. R. Bates and H. S. W. Massey. Proc. Roy. Soc. **A187**, 261 (1947).

⁶ R. H. Healey and J. W. Reed, *The Behaviour of Electrons in Gases* (Amalgamated Wireless. Ltd., Australasia, 1941).

⁷ J. J. Thomson

-
-

1938).

⁹ D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. **A192**, 1 (1947).

¹⁰ F. L. Arnot and M. B. M'Ewen, Proc. Roy. Soc. **A191**, 106 (1939).

¹¹ *Note*.—The corresponding mean lifetime of Li⁺ in the inert ga

Microwave Spectra and Molecular Constants of Trifluorosilane Derivatives. Si F_3H , Si F_3CH_3 , $SiF₃Cl$, and $SiF₃Br[*]$

JOHN SHERIDAN[†] AND WALTER GORDY

Department of Physics, Duke University, Durham, North Carolina January 12, 1950

Si²⁸F₃H and Si²⁹F₃H. The rotational transitions $J=1\rightarrow 2$ and $J=2\rightarrow 3$ have been observed for Si²⁸F₃H. Precise measurements on the $J=1\rightarrow 2$ transition yield: $\nu=28,831.90\pm0.10$ mc, $B_0=7207.98$ mc, and $I_B = 116.39_4 \times 10^{-40}$ g cm² (with Planck's constant $=6.624_2\times10^{-27}$ erg sec.). With the assumptions, $d_{\text{SiH}}=1.55$ ± 0.05 A and \angle FSiF = 110° \pm 1°, the silicon-fluorine distance, $d_{\text{SiF}} = 1.555 \pm 0.005$ A, is obtained.

The $J=2\rightarrow3$ transition has been observed for Si²⁹F₃H. Failure to detect a hyperfine structure is evidence, but not proof,¹ that the nuclear spin of Si²⁹ is $\frac{1}{2}$. Precision measurements are being made on the rotational frequency of this and other transitions. Also, it is expected that measurements can be made on $Si^{30}F_3H$, with Si³⁰ in naturally occurring concentrations.

Si²⁸F₃C¹²H₃. Observations of the $J=3\rightarrow 4$ and $J=5\rightarrow 6$ transitions² have been made for Si²⁸F₃C¹²H₃. Precise measurements yield: $v = 29,724.91 \pm 0.18$ mc for the $J=3\rightarrow 4$ transition, $B_0 = 3715.62$ mc, and $I_B = 225.79_4 \times 10^{-40}$ g cm² (with $h = 6.624_2$) $\times10^{-27}$ erg sec.). Assuming all angles to be tetrahedral and assuming $d_{\text{SiF}} = 1.555 \text{A}$ and $d_{\text{CH}} = 1.10 \text{A}$, the SiC distance obtained is 1.88A.

 $Si^{28}F_3Cl^{35}$ and $Si^{28}F_3Cl^{37}$. The pure rotational transitions, $J=6\rightarrow 7, 7\rightarrow 8,$ and $8\rightarrow 9$, have been observed for Si²⁸F₃Cl³⁵ and the $J=7\rightarrow 8$ for Si²⁸F₃Cl³⁷. A hyperfine structure, which has not yet been completely analyzed, was observed for each transition. The moments of inertia (I_B) are 338.6×10^{-40} g cm² and 347.6 \times 10⁻⁴⁰ g cm² for Si²⁸F₃Cl³⁵ and Si²⁸F₃Cl³⁷, respectively. If \angle FSiCl is taken as $110^{\circ}30'$, as indicated by electron diffraction,³ the preliminary values, $d_{\text{SiF}} = 1.55_0 \text{A}$ and $d_{\text{SiCl}} = 1.99_8 \text{A}$, are obtained. The SiCl distance thus appears to be shorter than that⁴ in $SiH₃Cl$ by about 0.05A.

 $Si^{28}F_3Br^{79}$ and $Si^{28}F_3Br^{81}$. The pure rotational transitions $J=15\rightarrow 16$ and $16\rightarrow 17$ have been observed for Si²⁸F₃Br⁸¹ and the $J=16\rightarrow 17$ for Si²⁸F₃Br⁷⁹. The hyperfine structure has not been completely analyzed. The moments of inertia are 541.4×10^{-40} g cm² and 547.3×10^{-40} g cm² for Si²⁸F₃Br⁷⁹ and Si²⁸F₃Br⁸ spectively. If \angle FSiBr is taken as 110°30', as is \angle FSiCl in SiF₃Cl, preliminary 6gures for the bond distances are obtained as follows: $d_{\text{SiF}}=1.55_0\text{A}, d_{\text{SiBi}}=2.15_9\text{A}$. The SiBr distance is thus probably some 0.05A shorter than that⁵ (2.20₉A) in SiH₃Br.

Further work on these molecules is planned to complete the structure determinations and to determine the nuclear couplings and molecular dipole moments.

* The research reported in this document has been made possible through port and sponsorship extended by the Geophysical Research Directorate of the Air Force Cambridge Research Laboratories under Contract No. W(19-122)ac

¹ From the relation between nuclear quadrupole moment and nuclear shell structure found by Gordy [Phys. Rev. 76, 139 (1949)) one would not expect a large quadrupole moment for Si²⁹. Because of the symmetry of the tetr

Multiple Meson Processes and Nucleon Recoil

ALEX E. S. GREEN University of Cincinnati, Cincinnati, Ohio January 11, 1950

N investigation of the effects of multiple meson processes and functional formalism of Fock.¹ An iterative method was employe nucleon recoil has been carried out with an adaptation of the to deduce from the set of integro-differential equations the explicit interaction $U= {}^{2}U+{}^{4}U+{}^{6}U+ \cdots$, where

$$
{}^{2}U = -\int \{G_{0}^{*}(\mathbf{k})G_{0}(\mathbf{k})/\hbar\omega\}d\mathbf{k},
$$
\n(1)

$$
U = + \int \{ G_0^*(\mathbf{k}) [H_p, G_0(\mathbf{k})] / (\hbar \omega)^2 \} d\mathbf{k}, \tag{2}
$$

$$
{}^6U = -\int \{G_0^*(\mathbf{k})[H_p,[H_p,G_0(\mathbf{k})\]]/(\hbar\omega)^3\}d\mathbf{k},\qquad \quad (3)
$$

$$
G_0(\mathbf{k}) = \sum_{u} g(2\pi)^{-1} \beta_u c(\hbar/2\omega)^{\frac{1}{2}} \exp(-i\mathbf{k} \cdot \mathbf{x}_u).
$$
 (4)

 H_p is the Hamiltonian for free nucleons and $\omega = c(\mathbf{k} \cdot \mathbf{k} + \kappa^2)^{\frac{1}{2}}$.

Equation (4) is for a neutral one-mass scalar field with scalar coupling. It may be modified for other types of fields and couplings. vU is the usual second-order interaction. Using this very same formalism but neglecting nucleon recoil, Tomonaga² obtained only ^{2}U . In contrast with previous results by others ^{4}U , ^{6}U , ^{8}U , etc. here are quadratic in the coupling constant. In deriving U and U certain questions as to the order of the operators involved in self-energy terms arose which we resolved in view of the symmetry requirements for bosons by assuming that expressions like $[G_{0u}(\mathbf{k}_2),[H_{pu}, G_{0u}(\mathbf{k}_1)]]\psi_0$ may be ignored. Apart from this unsettled point the work was straightforward. We believe it reasonable to anticipate that an indefinite extension of our method or a valid alternative perturbation method will lead to the following conclusions.

(a) The exact interaction is quadratic in the coupling constant. (b) The results of any development employing power series in the coupling constant must be regarded with very great suspicion. The fact that in electrodynamics such a perturbation method