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assignment classi6cation of J3.' An attempt was made
to produce the reported activity by a deuteron bom-
bardment of Cr203 in which the isotope of mass number
54 was enriched from 2.38 percent to 83.j. percent
abundance. %ith this enrichment factor of 36 times,
the conditions for producing any Cr" activity were
most favorable.

No activities with half-lives in the neighborhood of
the periods mentioned above were found that could be
attributed to Cr". From the activities measured any
(d,p) reaction cross section for the production of a two-
hour Cr" activity must be at least 2000 times smaller
than the Cr"(d,a)V" reaction cross section. This ratio
suggests that neither this activity nor any activity with
a half-life of this order of magnitude is due to Cr". The
3.9-minute V' activity is produced in great intensity
by the (d,n) reaction.

Sugimoto, Phys. Rev. 57, 751 (1940).I . Seren, H. N. Friedlander,
and S.H. Turkel, reported in Plutonium Project Reports CP-1592
(May 1944) and CP-2376 (Dec. 1944).

As an additional check. on the possible existence of ao
activity in Cr" fast neutron bombardments of equal
intensity and duration were made on two enriched**
Fe203 samples in which the percent abundances of
isotopes of mass number 56, 57, and 58 were:

Sample A: 50.4, 6.9 and 42.0,
Sample B:21.7, 77.6 and 0.2.

The 2.6-hour Mn" activity was produced in each
sample by the Fe"(n,p) reaction. The ratio of the
observed intensities was the same as that of the abun-
dances of the Fe" isotopes in the two samples; namely
50.4/21. 7. This indicates that the activity in each
sample was due only to Mn". Even though the enrich-
ment ratio for the Fe" isotope in sample A was 210
times greater than that in sample 8, no additional
activity was observed which could be attributed to Cr"
produced by an Fe"(n,o) reaction.

The assistance received from the Ohio State Uni-
versity Development Fund is gratefully acknowledged.
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If a system of tensor (or spinor) equations may also be written in the matrix form PP=P' where the
column matrices P and P' undergo the same transformation under a change of coordinates, then the square
matrix P is termed a vectrix. General considerations indicate that P should obey invariant matrix identities.
Of course, the matrix P merely images an operation implicitly defined in the original system of equations in
terms of a set of tensor parameters p. A natural method to seek identities is to iterate this operation in the
original system with diferent values ascribed to the parameters. Of especial interest are the vectrices defined
by wave equation systems such as those of Dirac and Proca. Here P is to be interpreted as the four-vector of
momentum and energy. By carrying out the iteration process, various identities are found. In particular,
formulas are obtained for the spur of the product of an arbitrary number of Proca vectrices.

CCORDING to several familiar theories of par-
ticles, the wave function f of a free particle

satisfies a matrix wave equation of the form

A still more compact notation is obtained by writing
P=P P„P„.Then (1) becomes

z p.pA'=&&.

P~p+P P.=24' (2)

Here p~, p2, p3 are the momentum components of the
particle and —icp4 is the energy of the particle. The
constant k=imoc where mo is the rest mass of the par-
ticle. (This assumes, of course, a momentum-energy
representation of the wave function. If the wave
function were represented in space-time coordinates p„
is given the interpretation AB/iBx„; however, this
representation shall not be employed here. ) The p„
are matrices of constants which satisfy certain com-
mutation identities. For instance, in the Dirac theory

Since p„ is a relativistic four-vector, it is appropriate
to term 8 a vector-matrix or eectrix for short. If q„ is
another four-vector, let Q=g q„P„. It is easy to see
from (2) that for two Dirac vectrices P and Q,

PQ+QP=2(p q) (4)

Here p q=P p„q„, the scalar product.
Three methods of performing the algebraic manipu-

lations of a calculation in these particle theories may be
distinguished: First, Eq. (1) could be expressed in
terms of its components. Second, Eq. (1) could be
manipulated directly by matrix methods. This requires
a knowledge of the algebraic properties of the P„. In
particular it happens that the spurs of the multiple
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products of the P» play an important role. Third, the
calculations could be carried out in terms of vectrices.
This method bears the same relation to the second
method that vector analysis bears to coordinate
analysis. This method is the least familiar, so it may be
well to give an example. Consider a particle with charge
e in a field with vector potential vj, e2, v3 and scalar
potential —iv4 considered as functions of space and
time. Let a„be the fourfold Fourier transform of the
vector ev»/c. Then if A signifies the vectrix P u»P», the
wave equation is

PP kvP= A +—P.

Here the g indicates the Fourier faltung, for instance
in the case of functions of one variable

f(x) gg(x) =, f(x r)g(r)dr—.
J „

Thus P= (P—k) 'A + tP. To solve this integral equation
one might try successive approximations, i.e., substi-
tution of a erst approximation on the right side gives a
second approximation on the left side, etc. Note that
in the case of a Dirac vectrix, (P—k) '=(p' —jP) '

X(P+k) It is clea.r that the formula resulting would
contain the products of several vectrices. In a forth-
coming article on the space-time approach to quantum
electrodynamics, R. P. Feynman arrives at expressions
of the same general nature. Actually his calculations are
carried out for a Dirac particle; however, he points out
that his formalism could be carried over to other par-
ticles which satisfy an equation of the form (1), in
particular to the Proca particle. He notes that for a
Proca vectrix

(P—k) '=(kp' —fr') '(P'+kP+k' —p').

The Proca wave equation, when written in terms of
components, is the system

pA" p4»= &1 »
—p»t'». = &4 ' (6)

Here @„ is a four-vector and g„„ is an antisymmetric
tensor. Then f is a column matrix consisting of the
four components of @„and the six independent com-
ponents of f„„.The following commutation relations
were found to hold'

P»Pvt p+PpPvP» 8»vPp+8»vt »' (I)

These were found by "cut and try, " i.e., by actually
carrying out various multiplications of the ten-row
matrices when (6) is put in the form of (1).In this note
it is shown how to obtain (7) and other properties of
these matrices directly from (6). The method is to
regard the left sides of (6) as a linear operation on the
set {Q», t'»„} and to ignore the right sides. By iterating
this operation with difterent values of the parameters

' R. J. Dugan, Phys. Rev. 54, 1114 (1938); N. Kemmer, Proc.
Roy. Soc. A173, 91 (1939).

PQR+RQP=(p q)R+(r q)P. (9)

Take the vector p to have a unit p component and no
other components; then P becomes P„. Likewise let Q
and R become P„and P„respectively. In this case (9)
becomes (7). In general

PQR .XYZ+ Z YX RQP
=(p q) "(*y)Z+('y) "('q)P

for odd products and

PQR ~ XYZ+ZPQR XY
=(q r) (x y)PZ+(p. q) (v x)ZY

for even products. These identities are derived by the
same method as that used in obtaining (9). However,
these identities are not consequences of (9).

Let A signify the space of 0 and B the space of p.
Then P may be aptly termed a cross transformation
between these spaces. More precisely, let P~ be the
operation taking {o, p} into {p p, 0},and let Pri be the
operation giving {0,po }. Then P=Pg+ Ps and
PriQ=PQg. Hence, for an even product

v

PQ YZ=PgQ FZ+PQ . .YZg.

Let Sp stand for the operation of taking the sum of the
diagonal elements of a matrix, the spur. By the defini-
tion of matrix multiplication, it follows that SpXY
=SpFX. Hence,

SpPQ YZg = SpZgPQ Y =SpgZPQ Y.

Here Sp~ signi6es the part of the spur in A. This proves
the following lemma for the product of an even number
of cross transformations

SpPQ FZ= Spp PQ. YZ+ SpgZPQ Y. (10)

An odd product of cross transformations is a cross
transformation; hence there are no diagonal matrix
elements, and the spur vanishes. It follows immediately
from (10) that

SpPQ "YZ=(p q) "(r s)+('p)" (* r) (»)

p„, it turns out to be relatively easy to find identities.
The matrix E is, of course, the matrix representation of
this operation and must satisfy the same identities. The
power of this method depends on the fact that it does
not lose track of the manifest relativistic invariance of
(6) as would be the case if Eq. (6) were immediately
written in matrix form. But this invariance must some-
how govern the character of the identities obtained.

Consider 6rst the so-called scalar wave equation

P1r4fs= ~0
&

Pro'= ~4 V.

Here P„ is a vector and o is a scalar. Define the operation
P as taking the set {a,@} into the set {p p, po }.(The
omission of indices here should cause no confusion. )
ThusQP gives {q po, qp @}.andRQP gives {(r q)(p @),
p(q P)0}. On the other hand, PQR gives {(P q)(r tt),
p(q r)&r}; hence,
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This formula was derived by Feynman and Slotnick

by making use of expression for the spurs of the
P„-matrices given by Kemmer, ' together with sym-
metry arguments, They were unable to obtain a spur
formula for the more complicated vectrices of the Proca
equation by their method. Dr. Feynman asked the
writer to investigate this question, and this note
resulted.

Turning now to the Proca Eq. (6), let p l signify

P„f„„and let PP —1t1P signify P„$, P„P—„Dea.ne the
operation P as taking the set {1t,f} into the set

{p f, pp pp}—Thus. the operation QP gives

{(q p)4 —
(q 4)p qp f p fq—}

and RQP gives

{(» q)P f (P f—)»q, (q. P)»4 (q 4)»P—

(q p)4—»+(q 4)pr}

Here p f r= p„f„„r„,so because of the antisymmetry,

p f r= rf p. It is—clear, therefore, that PQR+RQP
gives

{(p q)r f+(r q)p l, (q r)py (q r)yp-
+(q p)r4 (q p)4»}—

Hence (9) is again satisaed. Let A now denote the
space of 1t. Let P1Q1P2Q2 . P Q be an even product
of 2m operations; then in the space A this operation
may be expressed in a convenient notation as

(q1'P1 q P1')(q2 P2 q2P2')
x(q. .p —

q p )y. (»)
This formula was seen to hold above for two factors
QP, so it must hold in general. It is easy to see from

(12) that for four operations, say SRQP, in the space A

the following reduction formula holds

SRQP=(s r)QP+(q p)SR—(s.p)QR
+(s p)(q r) —(s r)(q p). (13)

It is clear that P is again a cross transformation, so (13)
may be used to reduce a product containing six or more
factors in the space 8, such as XSRQPF.

To evaluate SpgP1Q1P2Q2 P Q, formula (12) is

expanded in ascending powers of the operator terms

q,P; appearing. Let [i, j, , tj stand for

(p' q1)(p "q2) "(p q-).

The zero power term is (q1 P1) (q2 P2) ~ ~ (q„P )P, so
the spur of this term is nL1, 2, . . . , 2nj where n is the
dimensionality of coordinate space; of course, n=4 for
space-time. The 6rst power terms are of the form
—(q2. p2) . .(q p )q1(p1 @). The spur of this term is
—L1, 2, , ntj. Hence the spur of zero and tirst power.
terms add to (n —n2)L1, 2, , n2]. The spurs of the

remaining terms are distinct and are of the form
&Li,j, , t) where disregarding the symbols which
are in natural order the others shift to the right one
place (the last one coming around to the front). If an
even number shift, the positive sign is taken. Adding the
same expression for Q P1Q2. P gives, by virtue of
the lemma (10), a formula for SpP1Q1P2Q2 P~Q~.

From the spinor form of Dirac s equation it is mani-
fest that the Dirac vectrix is also a cross transformation;
hence, the spur of an odd product vanishes. For an
even product

SpP,P, P,„=4/+(ij)(kl). (st).

Here (ij )= (P; P;), and the term (12)(34) (2n2 —1,2n2)

occurs with a positive sign. The other terms are ob-
tained by successive transpositions of consecutive
integers between parentheses until no new terms arise.
Each transposition is accompanied by a change of sign.
By induction this formula may be shown to follow from
the commutation identity (4).

%'hat sort of identities and formulas are to be ex-
pected in such theories u priori? The following general
considerations are of some help concerning this dif-
6cult question. A square matrix P whose matrix ele-
ments are functions of a set p of tensors and spinors
shall be termed a eectrix if each transformation of coor-
dinates defines at least one matrix S such that P
transforms to SPS '. Obvious consequences of this
de6nition may be noted: If P has an inverse, the inverse
is a vectrix. The secular equation, det(P —XI)=0, is
invariant. In particular the spur and determinant are
coefficients of the secular equation, so they are scalars.
If q is a set of the same type as p, let Q be the corre-
sponding vectrix. Then PQ and P&Q are vectrices, so
vectrices of the same type generate a vectrix ring. A
matrix satisfies its own secular equation, so a vectrix
satis6es an invariant identity. Then because of the ring
property, commutation identities between P, Q, are
not surprising.

The concept of a vectrix is not limited to cartesian
coordinates or euclidean spaces. In general the set p
might contain the metric tensor g„,. However, by a
well-known principle of tensor analysis, it is sufhcient
to consider a locally cartesian coordinate system in

order to 6nd identities.
Considering a vectrix to be a linear operation on a

column matrix 1P, say P1P=1P', then this relation is of
invariant form if 1P and 1P' are taken to transform as
S1P and S1P' under a transformation of coordinates.
Conversely, if a set of tensor or spinor equations may
be written in the form P1P= 1P' where 1P and 1P' undergo
the same transformation under a transformation of
coordinates, then P is a vectrix.


