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Short-range order parameters o; are defined to express the interaction of a given atom in an alloy with
the atoms of the sth shell of atoms surrounding it. From simple thermodynamic reasoning, involving a
certain degree of approximation, equations relating the «; with energy terms and the temperature are
derived. Equations for the long-range order parameter, S, are obtained by considering the limiting case of ¢
very large. The values of the long- and short-range order parameters obtained by solving these equations
are in good agreement with experimental values recently found by x-ray diffraction methods. The theory is
extended to the calculation of configurational energy and specific heat, and to the determination of order
parameters for alloys of arbitrary composition in such binary systems as that of the copper-gold alloys. In
these cases qualitative agreement with experimental observations is obtained.

INTRODUCTION

F the many theoretical approaches to the phe-
nomena of ordering in alloys, those which are
mathematically rigorous have been applied only to
simple cases, such as the two-dimensional square net,!
and have not to date given results directly comparable
with experiment. Various approximate theories have
given predictions of long-range order and nearest-
neighbor order for some special cases. Bragg and Wil-
liams? introduced the long-range order parameter, .S,
and devised a simple theory giving S as a function of
temperature. Bethe?® considered nearest-neighbor order,
measured by the parameter o, and determined long-
range order and nearest-neighbor order for the case of
AB alloys. Peierls* extended this theory to the case of
the face-centered cubic A3;B alloys such as CujzAu.
Similarly other approximate theories, such as that of
Kirkwood® have given results for nearest-neighbor
order and long-range order for a few special cases.
Recent advances in x-ray diffraction techniques have
made possible the quantitative determination of the
long-range order parameter, S, and short-range order
parameters for several shells of neighbors. Thus, for the
alloy CusAu, Wilchinsky® measured S and the short-
range order parameters for the first three shells, using
powder diffraction methods. The present author has
measured the short-range order parameters for the first
ten shells of neighbors, using single-crystal techniques.’
The x-ray diffraction methods involved may be applied
equally well to a wide range of compositions in a
number of alloy systems. For most of the results so
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obtainable, no theoretical results are available for com-
parison.

With this situation in mind, it seems worth while to
present the following theory which, although admittedly
of a very approximate nature, has shown good agree-
ment with the available experimental data, and may be
extended to the consideration of a wide range of struc-
tures and compositions without undue mathematical
difficulty.

DEFINITION OF SHORT-RANGE ORDER
PARAMETERS

For an alloy consisting of 4 and B atoms, present in
the proportions m4 and mp, we define the short-range
order parameter for the atomic site with coordinates
l,m,n with respect to a given B atom as amn,=1
— pimn/ma where pim. is the probability that the
atomic site is occupied by an 4 atom. Then

lenzmA(l— almn)n

If an A atom is taken as origin, pima=ms+mz- ctimn.

Alternatively, if the atom with coordinates /, m, n is
considered to belong to the 7th shell of neighbors sur-
rounding a B atom, we may write a;=1—n;/mac;
where #; is the number of 4 atoms among the ¢; atoms
of the ith shell.

The short-range order parameters were initially
defined in this way for convenience in considerations of
the x-ray diffraction effects for alloys above the critical
temperature of ordering, since the a;., are the coef-
ficients of the three-dimensional Fourier series ex-
pressing the “‘scattering power’”” caused by short-range
order as a function of the reciprocal-lattice coordinates.
However, they were found to be very convenient for
thermodynamic considerations also, and have been
used in preference to parameters defined in analogy to
Bethe’s 0. They have the conventional properties of
order parameters in that they are zero for the com-
pletely random state, and have a maximum (absolute)
value for perfect order. The value for perfect order,
af, is unity, however, only for even-numbered shells;
for odd-numbered shells it is negative and fractional
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except in the case of some 4B alloys. Thus, for CusAu,
a®=1 for 7 even, and —1/3 for ¢ odd. For the case of
AB alloys, the aim. are equivalent to the parameters
rui1 defined by Zernike® and used by him in theoretical
considerations of ordering at this composition. For
B-brass, CuZn, at the 50:50 composition, —ay= —oau11
=rimn=o0(=1 for perfect order).

Long-range order may be said to exist in an alloy if
the value of the parameter a; does not tend to zero, but
approaches a finite limiting value as 7 becomes very
large. The relation between the limiting value of the
short-range order parameter and the long-range order
parameter depends on the nature of the ordered struc-
ture and the composition of the alloy. As an example,
the derivation of the relation will be indicated for an
alloy of arbitrary composition forming a face-centered
cubic lattice such as that of CusAu.

The long-range order parameter S for the face-
centered cubic lattice may be defined as the average
of the values of .S for the four simple-cubic lattices of
which the face-centered lattice is composed. If three of
the simple-cubic lattices are considered to be a-sites,
properly occupied by A4 atoms, and the other one is
considered to consist of B-sites, properly occupied by

B atoms,

3/ra—my 1/rg—mp

),

4\1—my/ 4\1—mp
where 7, and 7z are the fractions of « and S-sites rightly
occupied. By summing the total number of 4 or B
atoms, one derives the relation, rg=3r,+4mp— 3, from
which it follows that 7,=(4/3)msmpS+m4 and
ra=4mAmBS+mB.

In order to establish the relationship between the
imiting value of the a-coefficients and .S, we consider a
lattice with long-range order S. If we pick an atom at
random as origin, there is a relative probability
rg/4 that it is a B atom on a B-site, in which case
a; even—4mpS. The probability that the origin is a B
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Fi1G. 1. Variation of long-range order with temperature for Cu;zAu,
theoretical and experimental.

* F. Zernike, Physica 7, 565 (1940).
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atom on an a-site is $(1—7,), and for this case
Qeven—>—4mpS/3. Similarly, if the origin chosen is an
A atom. Taking the weighted average of the limiting
values of aeven for the various cases, we get, for the
whole lattice,*

16
aeven'_)?m ampS 2

The limiting value for a; oaq is equal to — deven/3.
In the same way it can be shown that, if the numbers
of o and B-sites are equal, aeven—4mampS?.

THEORY FOR SHORT-RANGE ORDER

In a crystal having zero long-range order, the atomic
sites are occupied at random in that each site is occupied
by an A atom with probability m4, and by a B atom
with probability mg. To investigate the influence of one
atom on its neighbors, we choose a particular atom as
origin—that is, increase the probability of a particular
site being occupied by an 4, or a B, to unity, and con-
sider the associated change in free-energy. The free-
energy change is given by F—Fo=(U—U,)—T(S—.S0),
where U is the configurational energy of the lattice, and
S is the entropy of configuration.

The configurational energy is made up of the energies
of interaction between pairs of atoms. We denote by
V 4B, tmn, vm'n the energy of interaction between an A
atom with coordinates /,m,n and a B atom with
coordinates I, m’, n’. For convenience, we substitute
the symbol I for the coordinates I, m,n in the sub-
script, so that the symbol I represents the atom with
coordinates /, m, n, which is considered to be a par-
ticular atom of the 7th shell of atoms about the origin.
Similarly we replaced /, m/, n’ by the symbol J, and
the atom with these coordinates is considered to be a
particular atom of the jth shell. Similarly we define
Vaa1s and Vpp s as the energies of interaction of
pairs of A and B atoms at these particular sites. For
considerations of ordering, it is necessary to deal with
only the linear combination,

Vie=3(Vaa,10+ Vs 15)—Vas 1,

which represents the average change of energy when a
pair of like atoms is replaced by two unlike atoms at the
same positions.

* B atom on a B-site, relative probability rg/4.

With respect to this position shells with i=even represent

B-sites.
(273 even'—)l - len =1- ——‘( 1= ’B) = 4’”183.
ma ma

B atom on an a-site, relative probability 3/4(1—74).

With respect to this position shells with s=even represent
sites.

o aven“’l_@ —1_ta__4msS
ma ma 3
Weighted average of a;even for all B atoms as origin
 (r8/94mpS—(1—14)(4msS/3) _16
ay even' 75/4+%(1_’a) —?’mAMBSz.




THEORY OF ORDER

If the atom in the position denoted by J is in the kth
shell of atoms with respect to the atom I, we write
VIJ = Vk.

The change in configurational energy involved in the
fixing of an 4 or B atom as origin may be found by
summing the average values of the energy changes for
all possible pairs of atoms. With respect to the origin,
the probabilities of the atoms 7 and J being A or B
atoms are given in terms of ar and ay, and the average
change in the energy of interaction between these
atoms may be found in terms of ar, o, and Vrs. The
total configurational energy change for the whole
lattice when one atom is fixed as origin is then found
to be, on the average,

U—U0=mAmBZ Z ar-og-. VIJ,
1 J

where a summation with respect to I or J is a summa-
tion over every atom in the lattice, that is, over all
possible values of the coordinates I, m,n or U/, m’, n’.

The change of entropy involved in fixing an 4 or B
atom as origin may be expressed as S—So=Fk InW
—k InW,, where k is Boltzman’s constant, W is the
number of ways of arranging the atoms so that the
short-range order parameters will have the values a;,
and W is a constant. In the ith shell about a B atom
at the origin, on the average coma(l—a;) of the c;
atoms will be 4 atoms.

This arrangement may be obtained in

X
B,i= ‘ W
Leama(l—a) ] [cimpt+macs)]!

This term is multiplied by similar terms for all values
of 7 to give Wp, the total number of arrangements when
the origin is a B. Analagous expressions are obtained
considering an A at the origin. The entropy-change
may thus be found. The simple method of its calculation
involves the approximation that only the average dis-
tributions have been considered, and fluctuations in the
distribution of atoms have been ignored.

For equilibrium, the values of the variables oy will
be such as to make the free-energy a minimum, so that
8F=6U—T8S=0.

Substituting the expressions obtained for the energy
and entropy in this equation gives

ays.

mamp Y 6a1[2 > Visays
T 7

)

(mat+mpas)(mp+mac;)
+ kT In{ } ]

mAmB(l— a,-)z

where the atom 7 is taken as a particular atom of the
ith shell, so that a;=a;, and Stirling’s approximation
has been used to simplify the entropy terms.

If it is assumed that all the o; are independent vari-
ables, it follows that all the terms in the square brackets
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F16. 2. Variation of long-range order with temperature for CuZn,
theoretical and experimental.

must be zero, so that
2 Z VIJaJ
7
Cma/mp)+ ][ (mp/ma)+e]

+%T In =0. (1)
(1— a,-)2

The assumption that the o«; are independent is not
strictly valid, and must be regarded as a rough ap-
proximation only. It is justified in the present case only
in that it leads directly to the Eqgs. (1) which appear to
represent the relations between the order coefficients
and energy terms with fair accuracy.

There is an equation of the type (1) for every value
of 7, and the summation over J is the summation over
all atoms of the lattice of the product of the a-coefficient
of each atom and its interaction energy with a par-
ticular atom of the ith shell.

For CusAu the equations are:

Gta)@+a)
(1—ay)? ]

=2V (1+4a1+ 2+ 4ozt )

+2V2(20t 25+ 2a5)+ - - -,

—kTIn

G+ a2)(3+as)
T -
=2V1(4a1+4ast4a5)+2V(14+ 4oyt o)+ - - -,
(3t @) (3+as)
()
=2V1(2a1+ oot 205+ 24+ 205+ st 200)

+2Vs(eut 2as+ 2+ ag)+ - - -.

On the right-hand side of the first equation, V, is
multiplied by the a-coefficients of all the atoms which

—kT lnl
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are nearest neighbors of a particular atom of the first
shell, V, is multiplied by the ¢’s of all atoms which are
second-nearest neighbors of an atom in the first shell,
and so on.

For any temperature 7', this infinite set of equations
could be solved to give short-range order parameters
for given values of the energy terms. Conversely, the
energy terms may be calculated from experimental
values of the short-range order coefficients. This has
been done for CusAu using the values for the first ten
order coefficients found from x-ray diffraction measure-
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‘F16. 3. Short-range order parameters for the first three shells of
neighbors, for CusAu, as functions of temperature.

ments,” assuming that only Vi, Vs, and V3 were appre-
ciable. The values obtained, V,=358k, V.= —34%,
V3= —19%, are of the right order of magnitude.

LONG-RANGE ORDER FOR PARTICULAR
COMPOSITIONS

If, in the lattice of a binary alloy, two kinds of sites
are available in exactly the same ratio as the two kinds
of atoms, an equation for the long-range order param-
eter, .S, is obtained by considering the limiting case of
Eq. (1) for ¢ very large. For example, for CuzAu the
limiting values of «; for 7 large are S? if 7 is even and
—S8?2/3 for ¢ odd. The long-range order parameter is
defined by considering the correlation of atoms in a
given simple-cubic sub-lattice and the atoms on the
same simple-cubic sub-lattice as the origin are those
contained in shells with 7 even. Hence S is given by the
limiting form of the equations for a; with ¢ even. This
limiting form is

[ (5+5%)(3+S?) }
In{——
(1—522

This equation predicts a “critical temperature,” T,
at which the long-range order drops to zero. By con-
sidering S—0 one finds

85?
=+ —(V1—3/2VaF- - ).
ET

3
T.,=EI;(V1—3/2V2+' ).
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Substituting for the energy terms in the first equa-
tion, we have an equation giving .S in terms of the ratio
T/T. only, thus,

G+S)@+SY)) 16 T,
nf
(1—52)?

In Fig. 1 the values of S from this equation are
plotted against temperature, assuming T.=390°C, and
compared with the values predicted by the theories of
Bragg and Williams? and Peierls, and experimental
values obtained by the present author.” The present
theory appears to agree with experiment within the
limits of experimental error.

For a body-centered cubic structure such as that of
B-brass, the analogous equation is
1482 T,

}=2-—-52.
182 T

The values of S found from this equation are plotted
against the ratio 7/T. in Fig. 2. It is seen that the
present theory is in better agreement with the experi-
mental values of Warren and Chipman® than the Bragg
and Williams theory or Bethe’s second approximation
for this case.

CALCULATION OF SHORT-RANGE ORDER
COEFFICIENTS

The short-range order parameters a; may be found
for any temperature by solving the Egs. (1), if the
energy terms are known. The values of the first three
order parameters for CusAu have been calculated for
a number of temperatures with the use of certain sim-
plifying assumptions. It was assumed that for tem-
peratures greater than the critical temperature all
a;=0 for 7 greater than 5, and for temperatures less
than the critical temperature all o; had the limiting
value of 5% or —S? for 7 greater than 3. All V; were
assumed zero for ¢ greater than 2, and V, was taken as
—V1/10, as found by calculation from experimental
order coefficients. Both V; and V, could then be ex-
pressed in terms of the critical temperature by use of
the relation given in the previous section. For T greater
than T, the equations to be solved were then

—fla1)=1.160T/T- (14 3.8+ 2cxs

+3.8a3+ a4—-0.2a5),
—f(a)=1.160T ./ T- (— 0.1+ 40+ 43— 0.4 s+ 4ars),
—f(ag) = 1.160T¢/T' (1.9a1—|— az+ 1.8a3—|—2a4+ 2(!5),
—flag)=1.160T,/T - (a1—0.2c5+ 403+ 2ax5),
——f(aa) = 1160TC/T (01a1+ a2+ 2a3+ a4+1.9a5),

where

In

G+e)3+ af)}
(1 b a,-)2 '

This set of equations was solved by trial-and-error
methods through a series of successive approximations

9 Warren and Chipman, Phys. Rev. 75, 1629 (1949).

f(ai)=1nl
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leading to a consistent set of parameters. Three equa-
tions of the same sort, but involving the values of S?
were solved for T less than T..

The curves so obtained, giving the order parameters
as functions of temperature, are shown in Fig. 3. For
convenience the values of a;/a rather than a; have
been plotted, . being the value of a; for the case of
perfect order. Thus all variables plotted vary from zero
for zero order to unity for perfect order. The experi-
mental values obtained by x-ray diffraction methods
for temperatures of 405, 460, and 550°C,” are added for
comparison. The agreement is within the limits of
experimental error. In particular, the theory agrees
with experiment in giving a negative value for a;/as?,
that is, a positive value for as, for T greater than T..
From the experimental observations of this, and other,
reversals of sign it was deduced” that there was a
“liquid-like” distribution of atoms about a given atom,
with the tendency for defect or excess of one kind of
atom being more dependent on the radial distance from
the origin than on the lattice coordinates. It appears
that such a distribution is predicted directly by the
theory, and may be regarded as a natural consequence
of the structure and energy relations within the crystal
lattice. This prediction, and the general magnitudes
found for the order parameters are not affected by any
reasonable change in the value assumed for the ratio
of Voto V.

In the same way, values of the order parameters have
been calculated for AB alloys with structures that are
simple-cubic, body-centered cubic, and face-centered
cubic. No experimental results are available for com-
parison. For the hypothetical case of an 4B alloy with
simple-cubic structure, values of «; were calculated on
the assumption that all a; with 7 greater than 3 had the
limiting values of zero for T greater than T, or &5 for
T less than T, and V,=0 for ¢ greater than 1. The
values found for —a; are compared with the values of
o(=—o1) given by Bethe’s second approximation for
this structure, in Fig. 4. The present theory gives a
much sharper drop in the value of — «; for temperatures
just below the critical temperature.

CONFIGURATIONAL ENERGY AND
SPECIFIC HEAT

The average energy of ordering associated with a
particular pair of atoms, one of which is one of the ith—
nearest neighbors of the other, is given by 2mampV ;c..
There are N¢;/2 such pairs of atoms in the system.
Hence the total configurational energy for the whole
system, referred to the state zero order, is given by

E'=Nmamgp 3_icioiV s
If, as is usual, the energy is referred to the perfectly
ordered state, we may write
E= E,+E0= Nmamp Zi ciV,-(oq— ai").
Since the energy terms V; decrease rapidly with i,
the summation contains very few terms of appreciable
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magnitude, and both the configurational energy and the
configurational specific heat, given by dE/dT, may be
calculated readily from the values found for the order
parameters.

In Table I the values, obtained from such calcula-
tions, for various energies and relevant ratios are com-
pared with the values obtained from other theories and
experimentally, as reported by Nix and Shockley.!?

A failing common to most theories of order is that the
value of the specific heat predicted by them for alloys
such as CuZn is much too low for temperatures just
below the critical temperature. Thus the table shows
that the values given by Bethe and Kirkwood are less
than half the experimental value for CuZn. The present
theory gives a much sharper decrease in the order coef-
ficients in this temperature range, and so gives a higher
value for the specific heat. It can be shown, in fact, that
the order coefficients given by the Egs. (1) decrease
infinitely fast just at T, so that the specific heat in-
creases without limit, although there is no discontinuity
in energy, and so no latent heat. Such an infinity in the
specific heat could not be observed in practice. In any
measurement the value of the specific heat obtained is
an average taken over the range of fluctuation in tem-
perature and composition in the specimen. Hence the
maximum observable specific heat will be finite. For
example, for an effective temperature fluctuation of
0.017, the maximum specific heat observable for CuZn
would be 7R.

Il 1
as 20 14

F16. 4. Nearest neighbor order parameter for simple-cubic lattice.

VARIATION OF ORDER WITH COMPOSITION

For temperatures above the critical temperature, the
general Eqgs. (1) are valid for all compositions, and may
be solved for various values of the ratio m4/mp to give
the order parameters as functions of composition for
given values of the energy terms and temperature.
This has been done for the Cu—Au system assuming
the value of V; found for CuzAu, and disregarding other
energy terms.

If the same value of V, is assumed for all composi-
tions, the values of «; are symmatrical about the 50:50

10 Nix and Shockley, Rev. Mod. Phys. 10, 1 (1938).
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composition. However, it seems probable that V', varies
rapidly with the average distance between neighboring
atoms, and in the Cu—Au system the unit-cell dimen-
sion varies approximately linearly from 3.61%2X for pure
copper to 4.07 kX for pure gold. For the calculation of
order parameters it was assumed that V; was propor-
tional to the inverse sixth power of the unit cell dimen-
sion, and so of the average distance between atoms. The
results for a; and a; for T=770°C are shown in Fig. 5.
The maximum values occur at about 45 percent gold.
The experimental values plotted are values of «; calcu-
lated by Professor B. Averbach from the emf data given
by Weibke and Quadt! for the same temperature.
The case of long-range order in an alloy of arbitrary
composition has been treated by Easthope? and by
Shockley.® Both treatments lead to the prediction of
only one maximum in the value of the critical tem-
perature for Cu—Au alloys; that at the 50:50 com-
position. No indication of the experimentally observed
maximum at the 3:1 composition was obtained.

olr °
-ty
+06
, At.% Au
/] a5 S50 75 100

F1G. 5. Variation of short-range order parameters with composition
in Cu-Au system for T'=770°C.

COWLEY

If a direct substitution of the limiting values of «;,
as worked out above, is made in the general Eq. (1), the
resulting equations for .S give a critical temperature
varying parabolically with m4 or mp, with a maximum
at the CuAu composition, as found by Shockley.
However, this direct substitution involves the assump-
tion that for any composition a super-lattice exists for
which two kinds of atomic sites are present in exactly
the same ratio as the two kinds of atoms. For the face-
centered cubic structure of the Cu—Au alloys, the
available sites can be divided only in the ratios 1:1 or
3:1 unless a super-structure ‘“‘unit-cell” consisting of
two or more face-centered cubic cell is considered. The
formation of such a multiple “unit-cell,” however,
would involve, in effect, an ordering of atoms separated
by distances greater than the nearest-neighbor distance
in the lattice. Hence the ordering energies involved
would be small, and the formation of a multiple unit-
cell super-lattice would not take place except at tem-
peratures too low for the rate of formation to be ob-
servable. Hence it may be assumed that the available
atomic sites may be divided only in the ratios 1:1 or
3:1. For an arbitrary composition, then, limitations are
imposed on the values of the order parameters by the
conditions that 7, and 7, the fractions of a- and B-sites
rightly occupied, cannot exceed unity. The relation
between the limiting value of @; and S then varies with
the amount of long-range order present.

For example, for an alloy near the 3:1 composition,
but with an excess of 4 atoms, the restriction that 7. is
less than unity leads to the conditions, .S<3/4m4, and
the limiting value of «; for 7 even, deven<3mp/ma. When
the amount of long-range order present is very small
the restriction is ineffective, and we may write as before,
Qeven= (16/3)mmpS?. For the maximum value of long-
range order, S=23/4m4, the second term of Eq. (1)

TasLE I. Comparison of the values for various energies and relevant ratios as obtained from various theories and by experiment.*

RT. E(Te—) E(T:+) RT. C(Te—) C(Te+)
Structure Source Eo Eo Eo Q/R E, Ee(o) E(T:+) R R
B+W NVo/8 2.0 1.0 0 1.0 0 2.0 1.50 0
AB all Bethe no. 1 3NV/2 1.65 0.80 0 0.800 0.200 2.06 1.90 0.119
Si e b Bethe no. 2 3NV/2 1.581 0.754 0 0.754 0.246 2.10 2.14 0.203
mpie cublc Kirkwood 3NV/2 1.577 0.789 0 0.789 0.211 2.00 4.23 0.134
Present 3NV/2 2.0 0.780 0 0.780 0.220 2.56 ® 0.17
4B all Bethe no. 1 2NV 1.738 0.857 0 0.857 0.143 2.03 1.78 0.081
Bodo-oontered  Kirkwood 2NV 1707 0.854 0 084 0146 200 221 0086
i ere Present 2NV 2.00 0.823 0 0.823 0.172 2.42 ) 0.12
cubie Experiment 51
4,8 all B+W 3NV,/32 2.19 0.792 66 1.00 0 2.19 2.36 0
F rered Peierls 3NV/4 1.33 0.18 78 0.54 0.46 2.38 — 0.16
ATk Present 3NV/4 2.00 0.308 84 0.748 0.44 2.68 0.43 0.17
cublc Experiment 63 2.60
* E(T.—) =configurational energy just below Te. E(Tc+) =configurational energy just above T.. Q =latent heat of ordering at the critical temperature.

Ec(s) =energy retained by short-range order just above Te. C(Te—) =configurational specific heat just below Te. C(Tc+) =configurational specific heat
just above Te. Eo=energy difference between perfect order and complete randomness for N atoms.

1 Weibke and Quadt, Zeits. f. Elektrochemie 45, 715 (1935).
2 C, E. Easthope, Proc. Camb. Phil. Soc. 33, 502 (1937).
13 W. Shockley, J. Chem. Phys. 6, 130 (1938).
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must be written
(34 ) [(3m s>/ ma®)+ i)

(3mB/mA— ai)z

kT In

in order to give the correct values of a; for 7—0. The
change is equivalent to the substitution in this term of
(ma/3mp)a; for a;, so that we put

16 MA
Qleven =—M aM pS% - ——.
3 mp

For intermediate states of long-range order, it is
reasonable to assume that the restriction on r, intro-
duces a correction to the value of aeven Which varies
with S, or, more probably, S% Hence we substitute in
the second term of Eq. (1), the relation

16 dma\? my
aevcnz_‘mAmBsz'[l_(—) (1_—)32}
3 3 3mp

For considerations of the critical temperature, the
correction to be applied will involve S, the value of
the long-range order immediately below the critical
temperature. This will be zero for the 1:1 composition,
but finite for all other compositions. For the case under
consideration, we find

8 3
c=—-mAmB(V1——V2+---)
k 2

4mA 2 ma 1
[1_(__) (-2 s] ‘
3 3mp
Similar expressions may be obtained for other com-
position ranges.

From such expressions the values of T, were obtained
by a series of approximations. The values of .S, first used
were those calculated from the simple theory giving a
parabolic variation of T',. The values of T, so obtained
were then used to recalculate S., and second approxi-
mations for T, were found. These second approxima-
tions were used to give the plot of T, against com-
position shown in Fig. 6. For comparison, the experi-
mental phase-diagram determined by Haughton and
Payne'*from electrical resistance measurementsisadded.

It is seen that the main features of the phase-diagram
have been correctly predicted. The theory gives a
broad maximum at the 1:1 composition, and a sharper
maximum at the 3:1 composition. In the theoretical
calculation, the value of T, for CuzAu was assumed, and
the assumption that V; varies with the inverse sixth
power of the average distance between atoms was again
employed. This latter assumption rendered the curve

1 Haughton and Payne, J. Inst. Metals 46, 457 (1931).
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F16. 6. Theoretical variation of 7, with composition in Cu-Au
system, compared with experimental phase-diagram.

unsymmetrical, and depressed the maximum at the 1:3
composition to about 190°C. At temperatures as low as
this, the rate of ordering is very low, so that the failure
of experimental measurements to reveal a maximum
in T, at the CuAu; composition is accounted for. The
assumption of a more rapid variation of V; with inter-
atomic distance would depress this maximum still
further.

No account has been taken of the change in structure
from face-centered cubic to tetragonal near the CuAu
composition. However, the critical temperature pre-
dicted for CuAu is 460°C, in reasonable agreement with
the experimental value of 425°C.

It thus appears that the present theory is capable
of predicting short-range order parameters with fair
accuracy, and long-range order and critical temperature
rather more approximately for alloys of arbitrary com-
position in such a system that of Cu— Au. Similarly it
could be applied to a wide range of other alloy systems,
showing ordering, and could be extended to the con-
sideration of various related problems without undue
difficulty. Where experimental data have been available
for comparison, the agreement has in most cases been
within the limits of experimental error.

In conclusion I wish to thank Professor B. E. Warren
for the interest he has shown in this work, and the
Commonwealth Scientific and Industrial Research
Organization for a research studentship.



