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An Approximate Theory of Order in Alloys* **
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Short-range order parameters a; are dehned to express the interaction of a given atom in an alloy with
the atoms of the ith shell of atoms surrounding it. From simple thermodynamic reasoning, involving a
certain degree of approximation, equations relating the n; with energy terms and the temperature are
derived. Equations for the long-range order parameter, S, are obtained by considering the limiting case of i
very large. The values of the long- and short-range order parameters obtained by solving these equations
are in good agreement with experimental values recently found by x-ray di8raction methods. The theory is
extended to the calculation of conhgurational energy and speci6c heat, and to the determination of order
parameters for alloys of arbitrary composition in such binary systems as that of the copper-gold alloys. In
these cases qualitative agreement with experimental observations is obtained.

INTRO DUCTIO N

1
~lF the many theoretical approaches to the phe-

nomena of ordering in alloys, those which are
mathematically rigorous have been applied only to
simple cases, such as the two-dimensiona1 square net, '
and have not to date given results directly comparable
with experiment. Various approximate theories have
given predictions of long-range order and nearest-
neighbor order for some special cases. Bragg and Wil-
liams' introduced the long-range order parameter, 5,
and devised a simple theory giving S as a function of
temperature. Bethe' considered nearest-neighbor order,
measured by the parameter o., and determined long-
range order and nearest-neighbor order for the case of
.48 alloys. Peierls' extended this theory to the case of
the face-centered cubic 338 alloys such as Cu3Au.
Similarly other approximate theories, such as that of
Kirkwood' have given results for nearest-neighbor
order and long-range order for a few special cases.

Recent advances in x-ray diGraction techniques have
made possible the quantitative determination of the
long-range order parameter, S, and short-range order
parameters for several shells of neighbors. Thus, for the
alloy Cu3Au, Wilchinsky' measured S and the short-
range order parameters for the 6rst three shells, using
powder diGraction methods. The present author has
measured the short-range order parameters for the first
ten shells of neighbors, using single-crystal techniques. '
The x-ray diGraction methods involved may be applied
equally well to a wide range of compositions in a
number of alloy systems. For most of the results so
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obtainable, no theoretical results are available for com-
paI Ison.

With this situation in mind, it seems worth while to
present the following theory which, although admittedly
of a very approximate nature, has shown good agree-
ment with the available experimental data, and may be
extended to the consideration of a wide range of struc-
tures and compositions without undue mathematical

difhculty.

DEFINITION OF SHORT-RANGE ORDER
PARAMETERS

For an alloy consisting of A and 8 atoms, present in
the proportions m.~ and m~, we define the short-range
order parameter for the atomic site with coordinates
1, m, n with respect to a given 8 atom as O. t „——1
—p~~~/mA where p~„, is the probability that the
atomic site is occupied by an 2 atom. Then

pi „=mg(i —n, .).
If an 3 atom is taken as origin, pt „——m~+m~ o,1,„„.

Alternatively, if the atom with coordinates l, m, n is
considered to belong to the ith shell of neighbors sur-
rounding a 8 atom, we may write a;=i n, /m~—c;, ,

where n; is the number of A atoms among the c, atoms
of the ith shell.

The short-range order parameters were initially
defined in this way for convenience in considerations of
the x-ray difI'raction effects for alloys above the critical
temperature of ordering, since the a1 „are the coef-
ficients of the three-dimensional Fourier series ex-
pressing the "scattering power" caused by short-range
order as a function of the reciprocal-lattice coordinates.
However, they were found to be very convenient for
thermodynamic considerations also, and have been
used in preference to parameters defined in analogy to
Bethe's 0. They have the conventional properties of
order parameters in that they are zero for the com-
pletely random state, and have a maximum (absolute)
value for perfect order. The value for perfect order,
0,;0, is unity, however, only for even-numbered shells;
for odd-numbered shells it is negative and fractional
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except in the case of some AB alloys. Thus, for Cu3Au,
a,0=1 for i even, and —1/3 for i odd. For the case of
AB alloys, the 0.~ „are equivalent to the parameters
r~I, ~ defined by Zernike' and used by him in theoretical
considerations of ordering at this composition. For
P-brass, CuZn, at the 50:50 composition, —n~= —n~~~

=rq»= 0(= 1 for perfect order).
Long-range order may be said to exist in an alloy if

the value of the parameter a; does not tend to zero, but
approaches a finite limiting value as ~ becomes very
large. The relation between the limiting value of the
short-range order parameter and the long-range order
parameter depends on the nature of the ordered struc-
ture and the composition of the alloy. As an example,
the derivation of the relation will be indicated for an
alloy of arbitrary composition forming a face-centered
cubic lattice such as that of Cu3Au.

The long-range order parameter S for the face-
centered cubic lattice may be defined as the average
of the values of S for the four simple-cubic lattices of
which the face-centered lattice is composed. If three of
the simple-cubic lattices are considered to be o,-sites,
properly occupied by A atoms, and the other one is
considered to consist of P-sites, properly occupied by
8 atoms,

3 (r —mg) 1 (rp ms)—
I+-I

4'L1 —m~) 4&1—mg)

where r and rp are the fractions of n and P-sites rightly
occupied. By summing the total number of A or 8
atoms, one derives the relation, rp ——3r +4m~ —3, from
which it follows that r = (4/3)m~msS+mg and
rtt= 4mgm~S+m g

In order to establish the relationship between the
imiting value of the n-coefficients and S, we consider a
lattice with long-range order S. If we pick an atom at
random as origin, there is a relative probability
r~/4 that it is a 8 atom on a P-site, in which case
u;, ,„—-4m~5. The probability that the origin is a 8

PLi er(s——Brag@w Hi l(i uws——-Present ~~eor&
gg „« ~ Experi eenf'aC

dg

eN

FIG. 1.Variation of long-range order with temperature for Cu3Au,
theoretical and experimental.

s F. Zernike, Physica 7, 565 (1940).

atom on an n-site is ~~(1—r ), and for this case
a, ,„—&—4m&S/3. Similarly, if the origin chosen is an
A atom. Taking the weighted average of the limiting
values of e,„ for the various cases, we get, for the
whole lattice, *

~918+m ga3 ~

The limiting value for n, ,qq is equal to —n, . /3.
In the same way it can be shown that, if the numbers

of n and P-sites are equal, n„,„-+4m&m&S'.

THEORY FOR SHORT-RANGE ORDER

In a crystal having zero long-range order, the atomic
sites are occupied at random in that each site is occupied
by an A atom with probability mz, and by a B atom
with probability mg. To investigate the inhuence of one
atom on its neighbors, we choose a particular atom as
origin —that is, increase the probability of a particular
site being occupied by an A, or a 8, to unity, and con-
sider the associated change in free-energy. The free-
energy change is given by F Fo= (U —Uo) —T($ Sp), —
where U is the configurational energy of the lattice, and
S is the entropy of configuration.

The configurational energy is made up of the energies
of interaction between pairs of atoms. %e denote by
V~~, ~, ~ „„the energy of interaction between an A
atom with coordinates l, m, n and a 8 atom with
coordinates /', m', n'. For convenience, we substitute
the symbol I for the coordinates l, m, n in the sub-
script, so that the symbol I represents the atom with
coordinates l, m, n, which is considered to be a par-
ticular atom of the ith shell of atoms about the origin.
Similarly we replaced l', m', n' by the symbol J, and
the atom with these coordinates is considered to be a
particular atom of the jth shell. Similarly we define

Vgg, g J and Vgggg, TJ as the energies of interaction of
pairs of A and 8 atoms at these particular sites. For
considerations of ordering, it is necessary to deal with
only the linear combination,

VTJ s (l AA, rZ+ l BBrJ) l A,B,Ijr

which represents the average change of energy when a
pair of like atoms is replaced by two unlike atoms at the
same positions.

* B atom on a P-site, relative probability rp/4.
With respect to this position shells with i=even represent

P-sites.
P& „(1—r&)

as even~i = 1 =4mgSe
mg

B atom on an a-site, relative probability 3/4(1 —r ).
%ith respect to this position shells with i=even represent a

sites.
~fmn ~a 4mBSi even~i
mQ mg 3

Weighted average of a;, , for all 8 atoms as origin

(rp/4) 4mgS ——,'(1—r )(4mgS/3) 16
rp/4+)(1 —r~) 3
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If the atom in the position denoted by J is in the kth
shell of atoms with respect to the atom I, we write
~rJ= ~a.

The change in con6gurational energy involved in the
fixing of an A or 8 atom as origin may be found by
summing the average values of the energy changes for
all possible pairs of atoms. With respect to the origin,
the probabilities of the atoms I and J being A or 8
atoms are given in terms of nr and nJ, and the average
change in the energy of interaction between these
atoms may be found in terms of nr, eJ, and t/'r J. The
total configurational energy change for the whole
lattice when one atom is axed as origin is then found
to be, on the average,

o8-

0.4-

—-—Bragg——Beth
Prese

t/0 mAmBQ Q ar'aJ'VrJ)
I J

where a summation with respect to I or J is a summa-
tion over every atom in the lattice, that is, over all
possible values of the coordinates l, m, n or l', m', n'.

The change of entropy involved in 6xing an A or 8
atom as origin may be expressed as S—So=k lnW
—klnWo, where k is Boltzman's constant, W is the
number of ways of arranging the atoms so that the
short-range order parameters will have the values a;,
and Wo is a constant. In the ith shell about a 8 atom
at the origin, on the average , c~m(1 —a;) of the c;
atoms will be A atoms.

This arrangement may be obtained in

Cs.-t

5'gg, ,= —ways.
[c;mg(1 a;)]!—[c,(mg+mza, )]!

This term is multiplied by similar terms for a11. values
of i to give W~, the total number of arrangements when
the origin is a B. Analagous expressions are obtained
considering an A at the origin. The entropy-change
may thus be found. The simple method of its calculation
involves the approximation that only the average dis-
tributions have been considered, and Quctuations in the
distribution of atoms have been ignored.

For equilibrium, the values of the variables nr will
be such as to make the free-energy a minimum, so that
bp = 8U —T85=0.

Substituting the expressions obtained for the energy
and entropy in this equation gives

mgms Q Sar 2 Q Vrgag

FIG. 2. Variatian of long-range order with temperature for CuZn,
theoretical and experimental.

must be zero, so that

2 Q Vrgag
J

Lmg/mg)+ a~][(ms/mg)+ a,]
+kT ln =0. (1)

(1—a )'

The assumption that the nr are independent is not
strictly valid, and must be regarded as a rough ap-
proximation only. It is justi6ed in the present case only
in that it leads directly to the Kqs. (1) which appear to
represent the relations between the order coefficients
and energy terms with fair accuracy.

There is an equation of the type (1) for every value
of i, and the summation over J is the summation over
all atoms of the lattice of the product of the o.-coefficient
of each atom and its interaction energy with a par-
ticular atom of the ith shell.

For Cu3Au the equations are:

('+a') (3+a')
1,—kT ln

(1—ag)'

= 2Vg(1+4ag+2a2+4aa+ a4)

+2V2(2al+ 2ag+ 2ag)+ ' '

t(-:+-.)(3+-.)1—kT ln
(1—,)

= 2 Vg(4ag+4ag+4ag)+ 2 V2(1+4a4+ ag)+

(mg+mga;) (my+ mrna, )
+kT ln

mgmg(1 —a;)'
=0

(s+a~)(3+ a~)—kT ln
(1—as)'

where the atom I is taken as a particular atom of the
ith shell, so that ar ——n;, and Stirling s approximation
has been used to simplify the entropy terms.

If it is assumed that all the ar are independent vari-
ables, it follows that all the terms in the square brackets

=2V)(2ag+ a2+2ag+2a4+2as+a6+2a7)

+2V, (a,+2a,+2a7+ as)+

On the right-hand side of the erst equation, V& is
multiplied by the e-coefficients of all the atoms which
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are nearest neig ors o a'
hb f a particular atom of the rst

shell, V2 is multiplied by the o.'s of all atoms w ic are
second-nearest neighbors of an atom in the first shell,
and so on.

F an temperature T, this infinite se o qset of e uations
could be solved to give short-range or er pder arameters
for given va ues o1 f the energy terms. Conversely, the

be calculated from expenmen aenergy terms may e
values of the short-range order coeKcients. is as
been done for Cu3Au using the values for the hrst ten
order coemcients ounm f d from x-ray diR'raction measure-

S b titutin for the energy terms in he
tion we have an equation giving S in terms o e
T/T, only, thus,

P+5')(3+S') 16 T,
"1 (1S) 3 T

F' . 1 the values of S from this equation areIn ig.
plotted against temperature, assuming
compare wi ed th the values predicted by the theories of

,4 '
ntalBragg an i iams, na W'll' ' and Peierls, 4 and experimen

'
ed b the present author. ~ The presen

theory appears to agree with experiment wi in
limits of experimental error.

as that ofFor a body-centered cubic structure such as that o
P-brass, the analogous equation is

1+S' T,
ln =2.—.5

1—S' T

The values o ounf S f d from this equation are plotted
thea ainst the ratio T/T, in Fig. 2. It is seen that t e

b tter agreement with the experi-

and VVilliams theory or Bethe's second approximation
for this case.

0.5-

for the 6rst three shells ofFio. 3. Short-range order parameters or
A s functions of temperature.neighbors, or u3Au, as un

(-'+ )(3+ )
f(n;) =in

(1—a;)'
This set of equations was solved by tnal-and-error

methods through a series of successive approximations

' Warren and Chipman, Phys. Rev. 75, 1629 (1949).

QO tL$'

CALCULATION OF SHORT-RANGE ORDER
COEFFICIENTS

Th hort-range order parameters n; m yma be found
for an temperature by solving the qs. , i

es or-r
E s. 1 if the

nown. The values of the erst threeV were a pre- energy terms are known. e v
for

men s, assum't ' suming that only V&, V2, an 3 p
V2= —34& order parameters or u~f Cu Au have been calculated or

~ ~

cia e. e
'

bl Th values obtained, V~=3
z t res with the use of certain sim-

lif in assumptions. It was assumed that for tem-
LONG-RANGE ORDER FOR PARTICULAR

n;=0 for i greater than 5 and for temperatures ess'
ar a11o two kinds of sites than the critical temperature a a;

ki dailable in exactly the same ratio as the two kin s value o orare avai a e in exac
n -ran e order P ™ assumed zero for i greater t an, ano af atoms an equation for the ong-range o

limitin case o V&/10, as oun yf d b calculation from experimentat S is obtained by considering the
' '

g
B th V and V2 couM then be ex-

eer, )1
am le for Cu3Au the order coeflicients. oE . (1) for i very large. For examp e,

of the critical temperature by use ofre S' if i is even and ressed in terms o e cri
'

p
n -ran e order parameter is the relation given in e pmg»» T the e uations to be solved were thendefined by consi eringd b 'd ing the correlation of atoms in a than T„ t e equa ions

f( )=1.160T,/T (1+3.8 +2
+3 8ag+n4 0 2.ng), — .

same simple-cubic sub-lattice as the origin are
contained in she s wi ~ eve . He ce& sg' e by the

11@)T/T ( 0
+ +18 + +

n2 =
~ climiting form o t e equa ion

f(a4) = 1.160T—,/T (ni —0.2a2+4n3+2ns),
ng) = 1.160T./T. (0 1ng+am+. 2aa+a4+1 9ns), .

(1—5')' kT

Th' tion predicts a "critical temperature, " T,is equa
zero. B con-at which the long-range order drops to zero. y

sidering S—A one Ands

3
T.= (Vg 3/2Vg+ ).— —

2k
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leading to a consistent set of parameters. Three equa-
tions of the same sort, but involving the values of S',
were solved for T less than T,.

The curves so obtained, giving the order parameters
as functions of temperature, are shown in Fig. 3. For
convenience the values of a,/a, ' rather than n, have
been plotted, nP being the value of 0,; for the case of
perfect order. Thus all variables plotted vary from zero
for zero order to unity for perfect order. The experi-
mental values obtained by x-ray diBraction methods
for temperatures of 405, 460, and 550'C, ' are added for
comparison. The agreement is within the limits of
experimental error. In particular, the theory agrees
with experiment in giving a negative value for ap/np',
that is, a positive value for n3, for T greater than T,.
From the experimental observations of this, and other,
reversals of sign it was deduced' that there was a
"liquid-like" distribution of atoms about a given atom,
with the tendency for defect or excess of one kind of
atom being more dependent on the radial distance from
the origin than on the lattice coordinates. It appears
that such a distribution is predicted directly by the
theory, and may be regarded as a natural consequence
of the structure and energy relations within the crystal
lattice. This prediction, and the general magnitudes
found for the order parameters are not a6'ected by any
reasonable change in the value assumed for the ratio
of V2 to Vg.

In the same way, values of the order parameters have
been calculated for AB alloys with structures that are
simple-cubic, body-centered cubic, and face-centered
cubic. No experimental results are available for com-
parison. For the hypothetical case of an AB alloy with
simple-cubic structure, values of n; were calculated on
the assumption that all 0,; with i greater than 3 had the
limiting values of zero for T greater than T„or &5' for
T less than T„and V, =O for ~ greater than i. The
values found for —Of~ are compared with the values of
a.(= —o.i) given by Bethe's second approximation for
this structure, in Fig. 4. The present theory gives a
much sharper drop in the value of —0.~ for temperatures
just below the critical temperature.

CONFIGURATIONAL ENERGY AND
SPECIFIC HEAT

The average energy of ordering associated with a
particular pair of atoms, one of which is one of the ith-
nearest neighbors of the other, is given by 2m~m~V, O,
There are Xc;/2 such pairs of atoms in the system.
Hence the total configurational energy for the whole
system, referred to the state zero order, is given by

E' 1Vmgma =Q, c;n;V;.

If, as is usual, the energy is referred to the perfectly
ordered state, we may write

E=E'+Ep 1Vmzms Q; c;V,(a; aP)—— —
Since the energy terms V; decrease rapidly with i,

the summation contains very few terms of appreciable

magnitude, and both the configurational energy and the
con6gurational specific heat, given by dE/dT, may be
calculated readily from the values found for the order
phrameters.

In Table I the values, obtained from such calcula-
tions, for various energies and relevant ratios are com-
pared with the values obtained from other theories and
experimentally, as reported by Nix and Shockley. "

A failing common to most theories of order is that the
value of the specific heat predicted by them for alloys
such as CuZn is much too low for temperatures just
below the critical temperature. Thus the table shows
that the values given by Bethe and Kirkwood are less
than half the experimental value for CuZn. The present
theory gives a much sharper decrease in the order coef-
ficients in this temperature range, and so gives a higher
value for the specific heat. It can be shown, in fact, that
the order coeKcients given by the Eqs. (l) decrease
infinitely fast just at T„so that the specific heat in-
creases without limit, although there is no discontinuity
in energy, and so no latent heat. Such an infinity in the
specific heat could not be observed in practice. In any
measurement the value of the specific heat obtained is
an average taken over the range of Quctuation in tem-
perature and composition in the specimen. Hence the
maximum observable specific heat will be finite. For
example, for an effective temperature fiuctuation of
0.01T„the maximum specific heat observable for CuZn
would be 7E.

1.0

FIG. 4. Nearest neighbor order parameter for simple-cubic lattice.

VARIATION OF ORDER WITH COMPOSITION

For temperatures above the critical. temperature, the
general Eqs. (1) are valid for all compositions, and may
be solved for various values of the ratio m~/ms to give
the order parameters as functions of composition for
given values of the energy terms and temperature.
This has been done for the Cu —Au system assuming
the value of V~ found for Cu3Au, and disregarding other
energy terms.

If the same value of V~ is assumed for all composi-
tions, the values of n; are symmatrical about the 50:50

' Nix and Shockley, Rev. Mod. Phys. 10, 1 (1938).
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composition. However, it seems probable that Vt varies
rapidly with the average distance between neighboring
atoms, and in the Cu —Au system the unit-cell dimen-
sion varies approximately linearly from 3.61k& for pure
copper to 4.07 kX for pure gold. For the calculation of
order parameters it was assumed that V~ was propor-
tional to the inverse sixth power of the unit cell dimen-
sion, and so of the average distance between atoms. The
results for nj and n2 for T= 770'C are shown in Fig. 5.
The maximum values occur at about 45 percent gold.
The experimental values plotted are values of n~ calcu-
lated by Professor B.Averbach from the emf data given

by Weibke and Quadtu for the same temperature.
The case of long-range order in an alloy of arbitrary

composition has been treated by Easthope" and by
Shockley. " Both treatments lead to the prediction of
only one maximum in the value of the critical tem-
perature for Cu —Au alloys; that at the 50:50 com-
position. No indication of the experimentally observed
maximum at the 3:1 composition was obtained.

0 zS so rS lN
FH:. 5. Variation of short-range order parameters with composition

in Cu-Au system for T=770'C.

If a direct substitution of the limiting values of 0.;,
as worked out above, is made in the general Eq. (1), the
resulting equations for S give a critical temperature
varying parabolically with ns& or m&, with a maximum
at the CuAu composition, as found by Shockley.
However, this direct substitution involves the assump-
tion that for any composition a super-lattice exists for
which two kinds of atomic sites are present in exactly
the same ratio as the two kinds of atoms. For the face-
centered cubic structure of the Cu —Au alloys, the
available sites can be divided only in the ratios 1:1or
3:1 unless a super-structure "unit-cell" consisting of
two or more face-centered cubic cell is considered. The
formation of such a multiple "unit-cell, " however,
would involve, in effect, an ordering of atoms separated
by distances greater than the nearest-neighbor distance
in the lattice. Hence the ordering energies involved
would be small, and the formation of a multiple unit-
cell super-lattice would not take place except at tem-
peratures too low for the rate of formation to be ob-
servable. Hence it may be assumed that the available
atomic sites may be divided only in the ratios 1:1 or
3:1. For an arbitrary composition, then, limitations are
imposed on the values of the order parameters by the
conditions that r and rp, the fractions of 0.- and P-sites
rightly occupied, cannot exceed unity. The relation
between the limiting value of n; and 5 then varies with
the amount of long-range order present.

For example, for an alloy near the 3:1 composition,
but with an excess of 2 atoms, the restriction that r is
less than unity leads to the conditions, S(3/4m&, and
the limiting value of a; fori even, a,„,„(3m'/mz. When
the amount of long-range order present is very small
the restriction is inefI'ective, and we may write as before,
n,„, = (16/3)m~mcS'. For the maximum value of long-

range order, S=3/4m~, the second term of Eq. (1)

TABLE I. Comparison of the values for various energies and relevant ratios as obtained from various theories and by experiment.

Structure Source
RTc
Eo

E(Tc—)
Ey

E(Tc+)
Eo E (e)

RT, C(T.—) C(T.+)
E(T +) R R

AB alloy
Simple cubic

AB alloy
Body-centered

cubic

AgB alloy
Face-centered

cubic

B+W'

Bethe no. 1
Bethe no. 2
Kirkwood
Present

Bethe no. 1
Kirk wood
Present
Experiment

8+8'
Peierls
Present
Experiment

&Vo/8
3%V/2
3%V/2
3XV/2
3%V/2

2cVV
2EV
2%V

3EVg/32
3EV/4
3XV/4

2.0
1.65
1.581
1.577
2.0

1.738
1.707
2.00

2.19
1.33
2.00

1.0
0.80
0.754
0.789
0.780

0.857
0.854
0.823

0.792
0.18
0.308

66
78
84
63

1.0
0.800
0.754
0.789
0.780

0.857
0.854
0.823

1.00
0.54
0.748

0
0.200
0.246
0.211
0.220

0.143
0.146
0.172

0
0.46
0.44

2.0
2.06
2.10
2.00
2.56

2.03
2.00
2.42

2.19
2.38
2.68
2.60

1.50
1.90
2.14
4.23

1.78
2.21

5.1

2.36

0.43

0
0.119
0.203
0.134
0.17

0.081
0.086
0.12

0
0.16
0.17

*E(Tc —) =configurational energy just beloved T,. E(Tc+) =configurational energy just above Tc. 0 =latent heat of ordering at the critical temperature.
Ec() =energy retained by short-range order just above Tc. C(Tc-) =configurational specific heat just belovr Tc. C(Tc+) =configurational specific heat
just above Tc. Eo energy difference between perfect order and complete randomness for K atoms.

"%eibke and Quadt, Zeits. f. Klektrochemie 45, 715 (1935).
'~ C. E. Easthope, Proc. Camb. Phil. Soc. 33, 502 (1937)."%.Shockley, J. Chem. Phys. 6, 130 (1938).
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must be written

t
(3+~,)[(3m,2ym, 2)+~,j

kT ln
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in order to give the correct values of n; for T—4. The
change is equivalent to the substitution in this term of
(m~/3m')a, for n;, so that we put

16 mg
+even ~A~BSS2.

3

100

I'or intermediate states of long-range order, it is
reasonable to assume that the restriction on r intro-
duces a correction to the value of a, ,„which varies
with S, or, more probably, S'. Hence we substitute in
the second term of Eq. (1), the relation

16 (4m~'t f mg )
&3) & 3m, )

For considerations of. the critical temperature, the
correction to be applied will involve S„ the value of
the long-range order immediately below the critical
temperature. This will be zero for the 1:1 composition,
but finite for all other compositions. For the case under
consideration, we find

8 p 3
T,=- m, m~l 1',—~~+

k E 2 )
(4m~) ( mg $

E3) E 3ms&

Similar expressions may be obtained for other com-
position ranges.

From such expressions the values of T, were obtained
by a series of approximations. The values of S,6rst used
were those calculated from the simple theory giving a
parabolic variation of T,. The values of T, so obtained
were then used to recalculate S„and second approxi-
mations for T, were found. These second approxima-
tions were used to give the plot of T, against com-
position shown in Fig. 6. For comparison, the experi-
mental phase-diagram determined by Haughton and
Payne" from electrical resistance measurements is added.

It is seen that the main features of the phase-diagram
have been correctly predicted. The theory gives a
broad maximum at the 1:1 composition, and a sharper
maximum at the 3:1 composition. In the theoretical
calculation, the value of T, for Cu3Au was assumed, and
the assumption that V~ varies with the inverse sixth
power of the average distance between atoms was again
employed. This latter assumption rendered the curve

"Haughton and Payne, J. Inst. Metals 46, 457 (1931).
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FIG. 6. Theoretical variation of T, with composition in Cu-Au
system, compared with experimental phase-diagram.

unsymmetrical, and depressed the maximum at the 1:3
composition to about 190'C. At temperatures as low as
this, the rate of ordering is very low, so that the failure
of experimental measurements to reveal a maximum
in T, at the CuAu3 composition is accounted for. The
assumption of a more rapid variation of V~ with inter-
atomic distance would depress this maximum still
further.

No account has been taken of the change in structure
from face-centered cubic to tetragonal near the CuAu
composition. However, the critical temperature pre-
dicted for CuAu is 460'C, in reasonable agreement with
the experimental value of 425'C.

It thus appears that the present theory is capable
of predicting short-range order parameters with fair
accuracy, and long-range order and critical temperature
rather more approximately for alloys of arbitrary com-
position in such a system that of Cu —Au. Similarly it
could be applied to a wide range of other alloy systems,
showing ordering, and couM be extended to the con-
sideration of various related problems without undue
difticulty. Where experimental data have been available
for comparison, the agreement has in most cases been
within the limits of experimental error.

In conclusion I wish to thank Professor B.E. Warren
for the interest he has shown in this work, and the
Commonwealth Scientific and Industrial Research
Organization for a research studentship,


