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allowed to circulate continuously through the purifier
during the experiment, all impurities other than inert
gases should have been removed. It is possible that
impurities were present in the gas used. by Nielsen' or
by Herreng' since continuous purification was not used
in these experiments.

In contrast to the results for argon the curves shown
in Fig. 2 indicate that, in the case of nitrogen, there is
a close agreement between the drift velocity data of
the present method and those of Nielsen. ' Apparently,
the drift velocity in this gas is less sensitive to the
purity of the gas than in the case of argon.
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A new theory of nuclear forces is based on the result established in an earlier paper that if the matrix
o.' in the Geld equations (a p&+x)/=0 satis6es the minimal equation I (a )2—1I'(n )'=0, any integer, then
every component of the 6eld f satis6es the iterated generalized wave equation ( +x')+=0 of the fourth
order. The static potential between two nucleons is then a sum of the interaction (29} between two point
charges and the dipole-dipole interaction (30) multiplied by numerical coefficients and isotopic spin factors.
This interaction, unlike the usual one based on the Yukawa theory, allo@ s an exact solution of the deuteron
problem. The potentials based on more complicated fields satisfying the n times iterated generalized wave
equation are also given.

l. INTRODUCTION

HE present theories of nuclear forces are all
essentially based on Yukawa's original idea that

the force between two nucleons results from the inter-
action of the nucleons with a field which satisfies the
generalized second-order wave equation. For brevity
we call this the meson field. All such theories lead in
essence to a static potential between two point charges
at a distance r of the form*~

x&/r

and a static potential between two dipoles of the form

fx
r—x~

~
+ )

((r(1) . (r(2&)

& r~ r~)

p is the constant associated with the field and equal to

~ The main ideas and results of this paper were contained in
my lectures to the Canadian Mathematical Seminar, August 15—
September 3, 1949, but they have not been published before.

~~x~, k=0, 1, 2, 3, are the four coordinates, and the metric
tensor is taken in the form goo= —gii= —g+= —g+=1, g ~=0 for
k+/. A summation from 0 to 3 is understood over every index
occurring both above and below. A letter in heavy type, for
example r, denotes a space-vector with three components ri, r~,

and r&, and absolute length r=+ I g (rI,}~I&. Ke use the vector
k 1

product notation {a.b) = ~ aqbI, . The four coordinates of a
k 1

nucleon are denoted by z~ and the suffices (1) and {2) in brackets
are used to identify variables belonging to the two nucleons.
r, =z&(»-g, &», for X=1, 2, 3,

the meson mass in suitable units. Here c('& and e("
stand for two three component vectors representing
the directions of the moments of the two dipoles. The
potentials (1) and (2) may be multiplied by isotopic
spin factors depending on whether the meson field is
neutral or charged or both. The potential between two
nucleons is essentially a sum of these two potentials
multiplied by numerical factors, the sign and magnitude
of the factors depending on the spin of the meson field
and the type of coupling assumed between the nucleons
and the meson field. All such theories have proved
unsatisfactory, not only because of the inability of any
of them to describe the properties of the deuteron and
the scattering of nucleons correctly, but because of the
fundamental difficulty that the potential (2) between
two nucleons becomes so singular as their mutual
distance r diminishes, that no rigorous quantum
mechanical solution of the deuteron problem exists.

Both the classical and quantum theories agree in
giving the same potentials (1) and (2) between two
nucleons, with the typical r ' singularity in the inter-
action of two dipoles. This singularity is the same as
that for the potential between two dipoles interacting
through the electromagnetic field, and is unaffected by
letting x~ in (2). Since this very singular potential
means that the kinetic energy of the two nucleons must
become very large at close distances, one might for a
moment suppose that a relativistic calculation of the
potential taking into account the reaction of the emitted
mesons might diminish the order of the singularity.
This is however extremely unlikely, in my opinion,
since every component of the meson field satisfies the
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generalized second-order wave equation

Cl+x') f/= j, (3)

where j is the corresponding source function, and
stands for the d'Alembertian 8'/rjx"BxQ N. ow the exact
solution of (3) for arbitrary relativistic movements of
the sources is known' and we know from this that
although the Geld of a point charge then no longer has
its non-relativistic form (1), nevertheless, the order of
the singularity is in no way changed. The non-relativ-
istic dipole-dipole interaction (2) is simply obtained
from (1) by operating on it with the operator

~{1). ~(2) .
Bz&'&j E c&z&Q&)

(4)

and is the non-relativistic limit of the exact interaction
derivable from the corresponding exact solution of
Eq. (3) for arbitrary relativistic movements of the
dipole point sources. ' As long as one works within the
framework of the present theory of elementary parti-
cles, ' and the field responsible for the force obeys the
generalized second-order wave Eq. (3), there is no

possibility of avoiding the r ' singularity in the dipole-
dipole interaction which robs even the two nucleon
problem of all meaning. The reaction of radiation is no
more likely to change the order of the r ' singularity
than it changes the order of the r ' singularity between
two point changes.

2. GENERAL THEORY AND THE FUNDAMENTAL
EQUATIONS OF THE FIELD

In a recent paper' the following results have been
established. On the basis of six quite general postulates
it can be shown that all quadratic terms in the I.agrange
function must be of the form jtt(yQPQ+yg)&P, where the
y' and y are five hermitian matrices and PQ= iB/cjx"—
From this it can be deduced that every elementary
particle 6eld whose rest mass is not zero must satisfy a
linear equation of the type

(~"PQ+x)4'= o (5)

are the non-zero real eigenvalues of a', each of which

may occur more than once without changing the mini-
mal Eq. (7). The special case of iterated roots in the
minimal equation of n' is covered by permitting two or
more of the numbers a~, a2, a„ to be equal to each
other.

I.emma 10 of the paper quoted above states that if
the particle described by Eq. (5) is to have only one
real mass value then n' must have one and only one
pair of real eigenvalues &a (which may occur several
times). Without loss of generality the minimal equation
of n' is then

j (~Q)2 1 }n(~Q)s 0

where n~&1, s&~0 are non-negative integers. Every
component of the wave function then satishes the
generalized wave equation of order 2n

( +x')9=0.
The effect of the cubic and higher degree interaction

terms is to add a non-zero source function to the right-
hand side of (5), and therefore to replace (6) and (9) by

( +xi"-)( +xQ') ( +x.')4 =j(x") (1o)
and

( +X')V=j(x')

respectively, where the source function j has the same
transformation properties as jp.

The general solution of equations of the type (10) of
order 2n in m space dimensions has been given recently
by Surya Prakash. ' It consists in ending the elementary
solution of Eq. (10), which plays the same part in the
theory of hyperbolic equations as the Greens function
in the theory of elliptic equations. The elementary
solution is defined as the solution of (10) when

j(xQ) = h(xQ —x")5(x&—x'i) 8(xQ —x'-) b(x —x'Q), (12)

8 being Dirac's delta-function. I give here Prakash's
result for the special case of four-dimensional space
time in which we are interested. The elementary solu-
tion which vanishes on any space-like surface in the
past of the point x'~ is

in the absence of interaction, the o.k being four square
matrices. It was proved next that as a consequence of
(5) every component of the wave function jp must
satisfy a generalized wave equation of the type

( +pi')( +yQ') ~ ( + y.')jp=0, (6)

where

G(u) = (—1)"

tps

JQ(&t,u) for u' & u„
F(&j.u) =

F(&t,u)
(13a)

4m. B u~u= pi(y, Q —
&t jQ)

where zi'=&j'/a' yQQ=z'/a '-
y '=&j'/a ' if the

minimal equation of o.o is

{(~Q)2 o 2} {(~Q)2 ii 2}.. . {(~Q)2 ii Q} (~Q)s —0 (7)

where s is any non-negative integer, and a~, a2, a„
' H. J. Bhabha, Proc. Roy. Soc. A, 1?2, 384 (1939).See formulas

(4) and (9).
~ H. J. Bhabha and H. C. Corben, Proc. Roy. Soc. A 178, 273

{1941).See formulas (23) and (114). H. J. Bhabha, Proc. Roy.
Soc. A 178, 314 (1941).See formulas (29) to {35).' H. J. Bhabha, Rev. Mod. Phys. 21, 4S1 (1949).

I'& n„,

Jo being the zero order Bessel function, and

I'= x —x'~

u=+ (u'uQ) &

3

u, =+ P (x' —x'")'

(14)

' S. Prakash, Proc. Ind. Acad. Sci. A (in course of publication).
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The general solution of (10) when j(x ) is an arbitrary
function of x is then

derivatives vanish on account of (20). We can now
proceed to the limit of letting every y,—+x, and obtain

f
G(u)j (x'")dx" dx".

J J al

G(u) = ((—1)"/4 o)r(8/ u8u„) $1/(u —1)!]
(15) X I I:~" '/~(x')" ']IF(xu) (22)

a.=I II(x.' —x')I '. (16)

Consider the matrix

This is the solution corresponding to the usual retarded
potentials. Another solution corresponding to the usual
advanced potentials is obtained by replacing N„by —u„
and reversing the inequality signs in (13b). All the
above results can be given a rigorous mathematical
formation through the theory of distributions developed
by Laurent Schwartz. The Dirac delta-function and
the elementary solution (13) are not strictly functions
but distributions.

The elementary solution of Eq. (11) is obtained by
confluence from that of (10). Since the denominator of
every term in (13a) vanishes when all the x's are put
equal, some care has to be exercised in approaching the
limit. Denote the coefficient of the sth term in curly
brackets in (13a) by

on account of (20) and the fact that the coeKcients of
the uth and higher order derivative in (13a) vanish in
the limit all x,~x. On account of the property u "J„(u)
= L

—(8/ uB u)]"J o( u), where I (u) is the Bessel function
of order u, (22) can also be written

1
G(u) = —— F (xu)

4+ N„BQ„
(23)

where

I 1/(n —1)!](u/2x)" 'J i(xu) for uo) u
F„(xu)= (24)

0 for u'&I„

(22) with F(xu) again defined by (13b) or (23) and (24)
give the exact elementary solution of Eq. (11). The
general solution of (11) is obtained by inserting (23) in
(15). Putting n=1 we just get the well-known ele-
mentary solution corresponding to the retarded po-
tentials of the generalized second-order wave equation.

,

X
2n—2

X2'

X
2n—2

Xn

(17)

3. THE TWO-NUCLEON POTENTIAL

To obtain the field of an arbitrarily moving point
charge one has simply to put in (15)

Its determinant has the well-known value

I
3f

I
= II (x,' —x ')

s, les

M„,a, =
s=l if r=m.

This is equivalent to

while the determinant of the matrix obtained from (17)
by omitting the last row and sth column is just the
right-hand side of (18) with all the factors containing

X, omitted. a, is therefore just the minor of g," ' in M.
Hence, denoting the elements of M by M„„

0 if r+u

f
xo) &(r)g(xo x o)6(xi —x'")

X b(x' —x")b(x' —x")dr, (25)

where r is the proper time and z~ the coordinates of the
arbitrarily moving nucleon. The resulting expression
can be calculated without much difficulty, and one
obtains a generalization of the well-known expression
for the field of a relativistically moving point charge.
For the moment we are only interested in the expression
when the nucleon is moving with non-relativistic
velocities. One then obtains, for the field of a point
charge, if the field satisfies Eq. (10), the expression

Z(x.')'~. =
s=1

0 if r(n —1

1 if r=n —1.
(20)

Xsrn 1
( 1)n+i

(x'—x ') r
tps

(26)

We now expand F(x,u) which is a. continuous and
differentiable function of X,2 in terms of its Taylor
series about the point X,=X, thus

The expression (26) then also gives the simplest type of
interaction between two point sources through this
field. As a particular case, one gets for n= 2

- (x.'—x')'
F(x,u)= P

o=o pl
F(xu).

~(x')"
(21) (o x&"—o x&~)/r

(xo' —xi')
(27)

On inserting (21) into the expression in curly brackets One could have obtained a potential of the type (27)
in (13a) the coeKcients of F(xu) and its first p —2 by taking two separate fieids each satisfying the general-
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(1/2)r)e x (29)

(28) and (29) would then be the corresponding po-
tentials between two point sources in the two cases.
The corresponding dipole-dipole interaction is obtained
by operating on (28) and (29) with the operator (4).
One gets in the case (29)

(30) lacks the singular r ' term which made any
sensible calculation on the Yukawa theory impossible.
YVe thus arrive at the central result of this paper,
namely:

~ C. Mgller and L. Rosenfeld, Nature 143, 241 (1939).

ized second-order wave Eq. (3) and suitably adjusting
the interaction constants, as has been done by M!)!11er
and RosenfeM. ' The main difference in the present case
is that when the field satisfies a fourth-order equation
of the type (10), the two exponentials appear with
predetermined factors such that as r—+0 the field (27)
does not tend to infinity as r ', but tends to a constant
value.

One gets something essentially new, however, if the
field )p satisfies the iterated generalized wave Eq. (11)
of order 2n instead of Eq (1.0). The field of a slowly
moving point charge is then

[(—1)"/(n —1)!][8"—'/c)()&')" '](e "'/2x). (28)

In particular, for n= 2 we get the potential

If the field responsible for nuclear forces satisfies a
war)e Eq. (5) in which the o& ma-trices hase a minimal
equation of type (S) urith n=Z, then the interaction
between two nucleons is a sum of (ZP) and (30) multipHed

by numerical factors depending on the magnitude of the

interaction constants and the spin of the fiel', and isotopic
spin factors depending on whether the field is neutral or

charged or both.

Just as there are several elementary fields with
different spins satisfying the second-order generalized
wave equation, and the particular mixture of the inter-
actions (1) and (2) depends on whether the pseudo-
scalar or vector meson theory is taken, or a mixture of
both, so here, the relative sign and magnitude of the
numerical factors multiplying (29) and (30) depend on
the spin properties of the field chosen, that is on the form
of the &x-matrices in (5). An equation of the type (5)
having the required property (8) will be published
elsewhere.

It is interesting to note that in the limit x—4 the
potentials (28) and (29) become infinite and of inhnite
extension, as indeed follows generally from (24). Thus,
if the field is of zero rest mass, it could have an inter-
action with point charges only if it satisfied a wave
equation of the second order, but not of higher order.
In my opinion, it is a satisfactory feature of this theory
that the field responsible for nuclear forces does not
differ from the Maxwell field in a rather simple way,
but that the differences are much deeper. For one
would ultimately expect every particle field in nature
to be not just a slight modification of something else,
but sui generis.


