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The theory of the effective range is applied to the photo-disintegration of the deuteron. For the photo-
electric effect, the only important influence of the range is through the normalization of the ground state
wave function. We find that this is given by an energy-independent factor (1—pro&) ', where r« is the
effective range of the forces in the triplet state, and y is related to the binding energy of the deuteron.
With the most likely experimental constants, this factor is 1.58, irrespective of the shape of the nuclear
potential.

In the photomagnetic case, the effect of the range on the matrix element nearly compensates that on
the normalization. The cross section is thus nearly the same as for zero range of the forces. However, the
cross section is sensitive to the difference of the effective ranges for triplet and singlet state, and can thus
be used to determine the latter (r&,). The capture of slow neutrons by protons gives r0„=2.6+0.6)(10-» cm,
in good agreement with the proton-proton scattering results.

In the last section, we show that the eEect of tensor forces is unimportant.

I. INTRODUCTION

N the first part of this paper' (quoted as I), we have. given the de6nition of the eGective range and the
reasons why it depends so little on the energy of the
system. We then discussed the cross sections of neutron-
proton and proton-proton scattering in terms of it. We
made extensive use of the quantitative calculations by
Blatt and Jackson' which we shall again use in this

paper (quoted as BJ).
In this paper, we shall discuss the two photo-effects

of the deuteron, the electric and the magnetic one, in

terms of the eR'ective range. Xo thorough comparison
with the experimental material is attempted, but we

shall 6nd it possible to determine the effective range of
the forces in the singlet state from the observed cross
section for capture of neutrons by protons.

Throughout this paper, as in I, we assume central
forces independent of velocity. A further paper (III)
will be concerned with the theory of the effective range
in the presence of tensor forces.

2. THE PHOTOELECTRIC EFFECT

The matrix element for the electric dipole transition
of the deuteron from its ground state (normalized radial
eigenfunction E,m, ) to a F-state of energy E (wave

*A part of this investigation was made while the first author
was at Columbia University as a Visiting Professor.

**Now at Los Alamos Scientific Laboratory, Los Alamos,
New Mexico.

'This paper is a continuation of the paper "Theory of the
effective range in nuclear scattering, " Phys. Rev. 76, 38 (1949).
This paper will be quoted as I, and equations from it as, e.g.,
(I, 24).

~ J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

number k, radial eigenfunction r) is proportional to

M ,=E, rl,,vdr.
0

It is well known that for moderate energies E the
P-state function may be replaced by that for a free
particle, ' that the latter behaves as r' for small r, and
that therefore the contribution of small r (within the
range of the nuclear forces) to the integral is small.
Explicitly, the fraction of the integral contributed by
the region between r=0 and b, is

where
F(b) = (y'+ k')'b4/24,

y=2.31X10"cm '

(2)

(2a)

is the "reciprocal radius" of the deuteron ground state
(see (I, 2)). If we set for b the width of a square well
which will give the correct effective range (b=1.85
X10 " according to I), and take k=y (corresponding
to a y-ray energy of 4.4 Mev), we find

F(b) =0.005.

Only for r&b does u, deviate from the asymptotic
expression

,=e~'.

It is therefore a very good approximation to replace N,
by P, ; in fact, doing so changes the matrix element
only by 0.08F(b) if we use a square well and assume
yb(&1. It is likely that for other potentials the error
will be about the same for the same effective range
because this quantity determines the deviation of u,
from f,. This would mean that the matrix element M,

g II. A. Bethe and R. Peierls, Proc. Roy. Soc. A148, 146 (1935).
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y-ray

Energy (Mev}
r, {10~8cm2)

ThC"

2,618
7.93

2.76
10.8

4.47
22.5

* Maxinum of cross section.

TxsLE I. Photoelectric cross sections.

6.13
20.1

comparison by Bell and Elliot' of the energy of the
capture p-ray from B+rI,=D with the ThC" p-ray, so
that this choice is likely to give the best possible value
for the difference E=hu —8'&, i.e., for the kinetic energy
of the neutron and proton, to which the cross section
(7) is very sensitive. We therefore set

is obtained correctly within 0.4 parts in 1000 by using

P, instead of ppo. This approximation will, of course,

break down at high energies (above 10 Mev, say) where

explicit calculation is necessary.
The only point where the range of the forces comes

in is therefore in the normalizing factor X, which is

defined by the condition

Wi= 2.235(1+pi).

Leaving the values of the other constants the same as
in I, we get

rof = 1.59X10"cm (8a)

and the factor (1—yrp, ) '= 1.586. Combining all infor-
mation, and indicating the influence of the possible
experimental errors pi, pp, pp in (8), (I, 20b) and (I, 20c),
we find for the photoelectric cross section

7,' u, 'dr = 1. (4) o', = 17.98X10 "rot(re+1) '
XL1+0.32pi+1.87p& —0.56opj cm', (9)

Using (3), and the definition (I, 14) of the effective

range,

No'dr= ' P 'dr —
) (P,' pI,,')dr—

J

w =E/Wi

Assuming for the relative probable errors ~I=&0.010,
op= &0.005, pp ——&0.08 (as in I), the contributions to
the uncertainty of the photoelectric cross section are

Therefore

=1/(27) —«/2= (27) '(1—Vro).

iV,'=.Vp'/(1 —pro),

(5)

(5a)

%0.3 percent from the binding energy,
~0.9 percent from the free scattering cross section,
~4.5 percent from the parahydrogen cross section.

where Eo'= 2y is the normalizing factor for zero range.
Therefore we find for the photoelectric cross section

o,=&r,o/(1 —pro), (6)

where 0,0 is the often-quoted cross section for zero range'

e„=(8or/3) (e'/hc) (5'/M) (Wi1Et/(E+ Wi)'), (7)

where W& is the binding energy of the ground state of

the deuteron and E the energy of the system after
disintegration. The range correction is therefore directly

given by the eGective range, independently of the shape

of the potential.
The result (6) was obtained independently by Biatt

and Jackson (unpublished). It explains the fact, already

noticed by Bethe and Bacher, ' that the photoelectric
cross section depends on the range in the same way as

the elastic scattering (I, 18). The correction in (6) is

independent of energy; with the value ro ——1.56X10 "
cm, given in (I, 27), the factor by which the cross

section (7) must be multiplied, is 1.562.
For all quantitative calculations in this paper, we

prefer to use the value' lV~= 2.235 Mev for the binding

energy of the deuteron, rather than 2.21 as used in I.
The main reason is that 2.235 is based on the direct

' H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 {1936)
(see p. 125).' We are taking the result of R. E. Bell and L. G. Elliot, Phys.
Rev. 74, 1552 (1948},for the ratio of the energy of the capture
y-ray to that of the ThC" y-ray, and the value of T. Lauritsen,
2.618 Mev, for the energy of the latter.

3. INFLUENCE OF THE P-PHASE SHIFT ON THE
PHOTOELECTMC EFFECT

In the last section we have calculated the photo-
electric cross section, assuming the I' state (6nal state)
to be completely free. This would be exactly true if we
assumed the potential between the nucleons to be that
suggested by Serber, '' i.e., half-ordinary and half-
exchange: This potential gives no interaction in states
of odd orbital momentum. However, it seems premature
to restrict the choice of potential so much at the present
time, and it is therefore interesting to investigate the
efI'ect of a P phase shift on the cross section.

The radial P wave function is

sin(kr+ 8)

kr

~i(kr+b)
—cos(kr+ 8) =R.P. (1—iver), (10)

ikr

where 6 is the phase shift. If we take for the ground
state wave function simply No=go= e i", the matrix—

' See, e.g., R. S. Christian and E. W. Hart, Phys. Rev. 77, 441
(1950}.

~ See G. F. Chew, Phys. Rev. 74, 809 (1948).

Only the last of these is appreciable.
For some commonly used p-rays the photoelectric

cross sections are given in Table I. These values agree,
of course, quite well with those previously calculated
from special models. They are also in reasonable
agreement with recent experimental values on the
absolute cross section.
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element (1) can easily be evaluated and we get

e'(y 2-ik)
M, = R.P.Xg

ik(y i—k)'

is the potential defined by BJ, Eq. (2.8). For the
unperturbed P-function v??, Eq- (14), we may set its
expression for small kr,

v =~k2r'0 3

Now f'? is small; therefore P and higher powers may be since r band—kb is assumed small. Then (16) becomes
neglected and elementary algebraic evaluation gives

2~Vgk'
M.= 1+?1—(y'+3k') .

(~2+ k2)2 2k3
(12)

,&'g~r re & "(6/kr)dr =X??8b/k
0

(14a)

Now this contribution is certainly not given correctly
by our procedure of setting u, =e &" and e equal to
expression (10): Both of these functions are actually
smaller than these approximations, and therefore we
must subtract, from the result (12), a quantity of the
order of magnitude of (14a) (in general somewhat less).
Therefore the correction factor (13) should be modified
to:

I (f?)=1+» '$y(y'+3k') Xb(y-'+k')'j (—15)

where ) is a numerical factor between 0 and 1 depending
on the shape of the potential. For k' between 0 and 2y',
the second term in the bracket is very nearly Xyb times
the first, and yb is about 0.6 for the Yukawa potential.
Thus the finite range of the forces reduces the efFect of
the I' phase shift considerably.

%e shall now calculate b, using the Born approxima-
tion and assuming kb&&1 where b is the intrinsic range.
Generally, the Born approximation gives

where

h = k ?)flVvo' dr,--
lV= Mk 'V(r)—

(16)

(16a)

The phase shift causes the matrix element to be multi-
plied by the square bracket in (12), and therefore the
cross section by

J'(~) =1+» 'eh'+3k-') (13)

We shall calculate 8 below, and find it to be proportional
to k'.

For the correction to j/I, due to 5, it is no longer true
that almost the entire contribution comes from large r.
This is easily seen by expanding v, Eq. (10), up to the
linear term in b:

no+ ~la

vo
——sinkr/kr —coskr

?1?= coskr/kr+sinkr,

~0 is the regular and ei the irregular P-wave function for
a free particle; for small r, v? behaves as 1/kr. Therefore,
the contribution of the region from r =0 to r =b to the
correction term in M, is

??=9k' t Wr4dr. (17)

Blatt and Jackson, in their Eq. (4.5), have given 8'
for the 4 customary potentials in terms of r and b.
Integration gives"

f? = cs(kb)', (18)

where s is the depth parameter of the potential, as
defined by BJ, and the constant ?: depends on the
shape of the potential; its value is

c= v'/180=0. 0549 for the square well (18S)

c=0.0670 for the Gaussian (18G)
c=0.0868 (Exponential) (18E)
c= 0.1176 (Yukawa). (18Y)

We can draw the following conclusions:
(1) ?? is proportional to k', therefore the correction in

F(fi), Eq. (15), is in first approximation independent of
k.

(2) The numerical coefficient of s(kb)' increases as
the "tail" of the potential becomes more pronounced,
as is to be expected. This effect, however, is not very
large (about a factor 2) once the potentials have been
made comparable by introducing the intrinsic range;
this is another evidence for the usefulness of the concept
of the intrinsic range. However, if the intrinsic range
is determined from the "observed" efFective range in
the 'S state (BJ and I), it comes out smaller for the
square well (1.85X10 ") than for the exponential or
Yukawa potential (2.5X10 "):This difference makes
the P-phase shift considerably (about 4 times) larger
for the latter potentials than for the square well, for
given s.

(3) For F(fi) we obtain approximately

F(b) = 1+0.1s(yb)'= 1+0.02s (19)

if we (a) use a long-tailed (exponential or Yukawa)
potential, (b) assume k«y, (c) neglect the second term
in the bracket in (15) and (d) put for f? its value in the
'S state ( 2.5X10-" cm). The second term in (15)
may reduce the correction to 0.01s or 0.015s. Now, if
the potential in the 'P state is the same as in 'S (ordi-
nary forces), s is about 1.4 (BJ, Fig. 4) and we get an
increase of the cross section by about 2 percent; for
pure exchange forces, the cross section would be reduced
by the same amount; but if the I' potential is only

8These results, as well as those for l=2 and 3, have been
obtained by J. D. Jackson (private communication).
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about 1/10 of the potential in the S state, as is suggested
by the neutron-proton scattering at 90 Mev, ' the
correction is only about 0.2 percent. In any case, it is
unlikely that experiments on the absolute photoelectric
cross section at energies of a few Mev would reveal
much about the forces in the P state.

(4) At higher energies (y-rays of 10 Mev or more,
say), the correction in F(b) increases linearly with. the
energy (Eq. (15)), so that it becomes more hopeful to
obtain information about the forces in the P state.
However, it is then necessary to evaluate the second
term in the bracket in (15) more carefully; our theory
of the efFective range then ceases to be useful, and
calculations have to be made with special models; the
result will be sensitive to the shape of the potential,
not only to its strength.

It is interesting to compare the efFect of the P phase
shift to the efFects of retardation and higher multipole
transitions. Ke may calculate the quadrupole transition
probability, which is representative of these efFects
though not the only one. The ratio of the matrix
elements of quadrupole to dipole is:

zzq xzpgip&d»
f

)I zipgp~dr

(19a)

where q is the wave number of the light, p, the wave
function of the ground state, iraq and P~ those of the
final d- or p-state, respectively, x the coordinate of
proton relative to neutron in the direction of polariza-
tion, and s in the direction of propagation of the light.
Elementary evaluation of the integrals, assuming no
phase shifts for iP~ and iraq, and use of the relation

q = (k/Mc) (y'+ k')

gives for the ratio of the cross sections

0~ M, -' 4

o-d Mg 5 Mc'

(20)

(21)

where E= (kz/M)k' is the kinetic energy of proton plus
neutron after disintegration. This is of the same order
of magnitude as the efFect of the P phase shift if the
interaction in the P state is 1/10 of that in the S state,
as is likely. If the P-interaction were of the same order
as in the 5 state, its effect on the photo-disintegration
could be observed without much disturbance from
higher multipoles, retardation and relativity.

4. PHOTOMAGNETEC EFFECT: THEORY

%'e shall now calculate the photomagnetic efFect.
The matrix element for the magnetic dipole transition

to a 'S state of energy E (eigenfunction iV,u, ) is
proportional to

M =$,1V.)t u,u, dr,
0

(22)

where E, and E, are the normalizing factors for ground
and singlet state, respectively. Ordinarily, one calcu-
lates the integral by replacing the wave functions by
their asymptotic expressions, f, (see Eq. (3)) and

P,= sin(kr+ b,)/sinb„ (23)

where 8, is the phase shift for the singlet state of energy
E. The normalizing factor is

.V, = sinb, /k.

Elementary integration gives

y+0 cotb.
0A &»=

J +2+ P2

(23a)

(24)

The efFect of the finite range on this result is less easy
to obtain than for the electric dipole moment, but its
numerical value will turn out to be much smaller.

%e consider the difFerence between the integrals in
(22) and (24) and get

2D= 2 (ik,iP, u,u, )dr—
0

4p
(pg' u, ')dr+ ) (p,z—up )dr—

0

—~ LQ, —P,)'—(u, u, )'jdr —(25).
0

40=1—r/ai (26)

and ip, by the singlet function for zero energy, $,0=1—r/a. , where a~ and a, are the scattering lengths (I, 26);
these approximations are good because of the arguments
given at the beginning of Section 4 of I. Then

The first integral is by definition one-half of the
efFective range rp& for the triplet state of the deuteron,
the second is one-half of the singlet efFective range rp,,
which may be difFerent from rp&. The last term is likely
to be very small: In the first place, the integrand differs
from zero only within the range of the nuclear forces;
but within this range iP, and iP, are nearly equal because
they are both normalized to one at r=0; likewise,
u, and u, are both zero at r=0. Thus each of the two
parts of the integrand is small, and moreover they tend
to compensate. For an estimate, consider a square well
of width b, and approximate f, by the triplet wave
function for zero energy,

'Hadley, Kelly, Leith, Segre, Wiegand, and York, Phys. Rev.
75, 35i (1949). Also private communication from R. Serber.

(Pg iP,)'dr = 3 (1/a, 1/a, )'b—'—
0

(27)
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Using the experimental values of a~ and a, (I, 26) and
b=1.9X10 " cm (which corresponds to the experi-
mental value of the triplet effective range, (ga)) this
is 7 percent of the sum of the first two terms in (25).
However, a large fraction of this will be compensated by
J'o (u, u, )—'dr because for r near b, where P,—P, be-
comes largest, I,—I, is equally large. Probably the
last term of (25) is actually about 2 percent of the erst
two in typica1 cases, and these two terms in turn are
only about 20 percent of the total matrix element (22).

If the la,st term in (25) is neglected, we get

the singlet is longer than for the triplet, is less unfavor-
able.

3. Yukawa potential. To simplify the calculation, we
have used the Hulthen potential (Kq. (33)) as a stand-in
for the Yukawa potential. The Hulthen potential has
the advantage that analytical wave functions are
obtained, but the disadvantage that the shape of the
potential must be taken slightly different for the ground
state and the singlet state. Explicitly, we take for the
ground state potential

V~= (0'—v')—/(o" "'r 1),— (33)

D= (P—oP, u,—u,)dr= ~~(ro~+ro, ). (28)
where p has the usual meaning and P can be arbitrarily
chosen to fit the observed effective range r«. The
relation is

N,l,dr =y+k cotb, --.'(ro~+ro, ).
~2+ P2

(29)

This result, which is independent of the energy of the
state s, should be subtracted from (24). For very high
energy, when (24) becomes less than (28), the approxi-
mation breaks down, of course; but then the photo-
magnetic e6ect is negligible compared with the photo-
electric.

Collecting terms, our approximate result for the
photomagnetic matrix element becomes

ro =4/4+0) (1/P)—

Choosing r«=1;60X10 "cm, we get

/=15.5X10"cm '.

(33a)

(33b)

The potential (33) yields the (exact) wave function
—vr e—Pr

g (33c)

(1 nr) e—"" 1— (34)

For the singlet state of energy zero, we take as the
potential

ro, ——(3/g) (1—4a/3g) (34a)

and can be adjusted by choice of g. The wave function is
(30)k cotb, = —1/a, —=—a,

where a, is the singlet scattering length. For this
quantity, and for p, we have taken the experimental
values (see I). The models tested were:

1. Square well, width b=1.85&10" cm, for both
singlet and triplet.

Results: r«= 1.582X10 "cm, ro, = 1.905&10 "cm,
Elementary result (24):

(34b)u, = 1—nr —e-'7".

It is possible to choose q so that the two potentials
(33) and (34) have almost the same dependence on r:
This can be done by choosing s n=P —ywhi—ch gives
q=12.8X10" cm ' and r0, =2.43)(10 ', a value very
close to the experimental resul. t, Section V. With this
choice, the ratio V,/V, becomes(1/y)(1 —1/ya, ) =5.121X10 "cm,

We have tested this result against four direct numer-
ical calculations for zero energy of the singlet state. where +=1/a, (a negative quantity). The effective
If E=O, we have range is then

Correction (28): D=0.872X10 " cm,
Corrected value (29) (difference of above):

Ug—=const. ~

U,

1—O.r—e ~"

e—av
(35)

=4.249&10 "cm, (31)

Numerically calculated value: 4.250&10 "cm.
The agreement is better than could be expected.

2. Square well, triplet range 1.85 (as in example 1),
sing1et range zero. Result:

From formula (29) 4.72X10 ",
From numerical calculation 4.45X10 ".

The agreement here is not good but the conditions are
very unfavorable: the term (u,—u, )' in the last integral
of (25), which normally is rather less than (iP, —P,)', is
here very much greater because u, remains equal to f,
all the time. The case in which the intrinsic range for

1( n) 1 1
D=-I 1—I+

P E P) ~+»+P (36)

Computation shows that with very good accuracy, for

and changes by only 0.5 percent from r=0 to r=ro, .
An even smaller variation of this ratio could presumably
be obtained if g were chosen so as to make the intrinsic
ranges of (33) and (34) equal. The potentials (33) and
(34) may therefore be considered as having essentially
the same "shape. "

With these potentials and wave functions, D can be
calculated explicitly and is



rf)& in the neighborhood of 1.60X10 ",
D =0.52ro&+0.155ro,—0.24X 10 ".

The diRerence from (29) is appreciable. However, the
numerical values for D from (36) and (29) agree for
rp, ——2X 10 " (if we assume rp/ ——1.6X 10 "). It is
reasonable that (29) is a good approximation when the
effective ranges are nearly equal because then the
neglected term in (25) is likely to be small. The sensi-

tivity of the cross section to the singlet range is less
according to the exact formula (36a) than accordng to
the approximate one, (29), but is still appreciable.

4. Exponential potential, of the same intrinsic range
for triplet and singlet state. The range was chosen so
that the wave function of the ground state would be
given by the tabulated function Ji/3 (see reference 4,
Eq. (42c, d)). The potential is then

Then the matrix element becomes

t u,ugr= [yz+kp]-'[p+y+ p'rp„
0 ——'y (rp, +rp, )+ok'(ro, —rp, )] (40)

and the normalizing factor

cV, =sinii, /k= (k'+Pz) &[1+Pro.+-,'(k'+P')rp '] ' (40a)

while .V, is given by (Sa). Then the dipole moment
may be written

M =7//I pF(ro. , ro/), (41)

where M 0 is the value for zero range,

~-p=(P+v)(2v)'/(v'+7/') '(P'+J'o')' (41a)

and I'" the correction factor. After some algebra, one
finds

with
e—2r/a

a=1.44X10 "cm

(37)

(37a)

F=1+ (" "o )[ ( +2P) &']/(P+ )
+z/Lv(7+4P) k ]ro~ +0(7 &o/[ro/ ro.])

+0(v'ro '). (42)
Vp= 168 Mev (triplet state) (37b)

Vp= 104 Mev (singlet state). (37c)

The intrinsic range defined by BJ is 2.&SX10 " cm.
The effective ranges are ro&= 1.82 and ro, ——2.70X10 ";
they were obtained by direct integration. The quantity
D defined in (25) is 1.09X 10 "cm whereas the approxi-
mate value (28) is oz(ro/+ro, )=1.13X10 " cm. The
agreement is very good; the deviation is in the same
direction but not as large as for the Hulthen potential,
Kq. (36).

On the basis of these test examples we believe that,
for most potential shapes, (29) will give a good approxi-
mation to J'u, u,dr. The effective range then enters
the matrix element (22) in two places, z/is. (a) in the
normalizing factor and (b) in the integral. The former
is increased by the finite range, the latter decreased;
the former involves the triplet range only, the latter
the mean of triplet and singlet ranges.

The theory so far outlined is useful for numerical
work (see Section 5). However, the effect of the range
of the forces can be brought out more clearly with the
help of some algebra. First we use in (24) the funda-
mental relation of the eRective-range theory (I, 16)

k cotb, = —1/a, +-,'k'rp, . (38)

—1/a, =P+-,'P-'r p, . (39)
'0 This choice gives the formula for the singlet scattering cross

section

I 1+Pro +$(P'+k') r0,'j
similar to (I, 18). This is a more convenient definition of the
virtual state than that of S. Flugge and K. Huckel, Phys. Rev.
73, 520 (1948).

Next, we de+me a quantity p for the virtual singlet state
in analogy with p for the ground state by setting"
(see I, 19)

The first correction term in this expression is propor-
tional to the deere&zce of the egectzz/e ranges for triplet
and singlet, ro& —ro, . The photo-magnetic effect is
therefore a sensitive way to determine this dift'erence. "
The absolute value of the range is immaterial in this
approximation, it comes in only in the correction of
relative order (yrp)o. For the observed value of rp„ this
correction is about 3 percent (increase of the cross
section). Terms of second-order azzd proportional to the
range difference are likely to be considerably smaller.
Terms of order r,' have been neglected already in (28).

os/on= 22/0&30. (43)

The error given is statistical only; there may be an
additional systematic error, therefore we adopt a
probable error of ~45, i.e., 2 percent. The boron ab-
sorption cross section is given by Fermi and Marshall"
as

Oa= 703&7 barns (44)

at a neutron velocity of 2200 meters per second.
Velocity selector measurements by Sutton et ul." favor

"This was first pointed out by W. M. Woodyard on the basis
of qualitative considerations.

'~ W. J. Whitehouse and G. A. R. Graham, Can. J. Research
A25, 261 (1947)."E.Fermi and L. Marshall, Phys. Rev. 72, 193 (1947).

"Sutton, McDaniel, Anderson, and Lavatelli, Phys. Rev. 71,
272 (1947).

5. COMPARISON WITH EXPERIMENT

The only accurate experiments on the photomagnetic
eBect, so far, are those on the capture of slow neutrons
by protons. The most exact determination, to our
knowledge, is that of %hitehouse and Graham" who
found for the ratio of the capture cross sections of boron
and hydrogen
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where p~ and p„are the proton and neutron moment in
units of the proton magneton and P'= —1/a, . D is

given in first approximation by (28), corrections are
discussed in (36) and elsewhere in Section 4. We use

p„—p.„=4.707„y corresponding to the binding energy
Eq. (8), the other experimental constants as given by
(I, 20). Then, including probable errors, the theoretical
result for sero range of the forces is

eu& =6.64X 10 'o(1+2.35&i+0.80&

+0.05&~) cm'/sec. (48)

To include the dependence on the difterence of singlet
and triplet range in a convenient way, we set

D= 2rp]+-4D' (49)

so that in the approximate theory of Eq. (28) we have

m/D —ro roi. (49a)

If we then express D' in units of 10 " cm, the theo-
retical result is

o ne =6.64X 10 "(1+0.126—0.124D'+ 2.8&i

+1.5e2 —0.15e3) cm'/sec. (50)

Equating this to the experimental value (46) gives

D'=( 0. 81 +23&, +1 e2
—
2 1.2e3—8.2e4)X10 lcm. (51)

If we use (49a) and ro~
——1.59X10 " (Eq. (8a)) we

get
rp, =2.40X10 "cm. (52)

Because of the large coefFicients of the e's, the probable
error of this result is considerable. Using the values of
e&, e2, e3 given below Eq. (9a), and c4 from (46), we get
for the contribution to the probable error in D' (and
therefore in r„,,):

from the binding energy of the deuteron
from the free proton scattering
from the parahydrogen scattering
from the capture cross section

&0.23,
&0.06,
&0.10,
&0.33.

a somewhat higher value (717);we shall adopt 703+14.
Then

on=0.310 barn&4 percent (at 2200 m/sec. ). (45)

It is convenient to write

a'nv =6 81X 10 '0 cms/sec. (1+e4),

where &4= +0.04.
The theoretical prediction, according to (12) and

(16), is

e' fi ( Wi y & (y„—p„)'
~Hw =2+

Mc Mc EMc') (1 yrp, )P—"
XLv+P' v'D—]', (47)

The binding energy of the deuteron will probably soon
be known with much better accuracy; an accuracy of
~5 kev would reduce the error due to this datum to
+0.05. It would therefore set„m important to improve
the measurement of the capture cross section.

To appraise the reliability of the approximate formula
(29), we use the examples of the last section. For the
square well, the approximation is likely to be very good.
For the Hulthen (near-Yukawa) potential, our value
of D, 1.00&0.10X10 " cm, leads to rp, =2.65+0.65
X10 ".For the exponential potential, we may estimate
i4(ro, +ro~)=104D=104X10-" cm, which leads to
rp, = 2.5&~0.5X10 ".All of these values are reasonably
close together; the shape of the potential has less
influence on the result than the present experimental
error.

The effective singlet range here obtained is within
experimental error equal to the proton-proton effective
range of 2.7X10 ".This lends support to the charge-
independence of nuclear forces. Moreover, the difference
between singlet and triplet effective range is just of the
magnitude required for a long-tailed (Yukawa or
exponential) potential if the intrinsic ranges for singlet
and triplet are assumed equal.

A further uncertainty in our theory arises from our
neglect of exchange currents. "These are known to give
no contribution to the magnetic moment of the deuteron
in any stationary state but they contribute about 6
percent to the magnetic moments of H' and He'. They
must also be expected to contribute to the photo-
magnetic transition probability. " The magnitude of
this contribution is not known, but it might be possible
to correlate it theoretically with the measured extra
magnetic moments of H' and He', and with the effective
ranges.

If the contribution of the exchange currents to the
matrix element M is coherent with the main part of
M, which is likely, a 1 percent exchange contribution
to M will cause a change of D' by 0.16X10 " cm
which is quite appreciable, and a change of rp, by the
same amount.

Apart from the uncertainty due to exchange currents,
the photomagnetic effect appears to be a good way
to determine the eGective range in the singlet state,
which may compete in accuracy with the determination
of rp, from the neutron-proton scattering at a few Mev.
According to BJ Fig. 8, 1 percent error in the scattering
cross section at 5-Mev leads to an error of about 0.5
X10 " in rp„ if rp~ is known with infinite precision;
any error ~ in rpt causes an additional error of about 4e
in rp, . In the case of the photomagnetic effect, rp, is
rather insensitive to the measurements which deter-
mine rp&, moreover, 1 percent error in the capture
cross section means an error of only 0.08)&10 " in rp, .
One must of course remember that it is more difFicult

Assuming these errors to be independent,

ro, (2.4+0.4)X10 "cm. —— (52a)

"F.Villars, Phys. Rev. 72, 256 (1947).
"A. Pais, Kgl. Danske Vid. Sels. Math. -Fys. Medd, 20, Na.
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to measure the capture cross section precisely than the
scattering of 5-Mev neutrons. Still, it seems worth
while to improve the accuracy of the measurement of
the capture cross section, including that of boron which
serves as standard: Such a measurement will either
give a better value of rp„ if the contribution of the
exchange moment can be shown to be small, or it will,
in conjunction with an independent determination of
rp, from scattering, give a direct result for the contri-
bution of the exchange magnetic moment.

In concluding this section, we want to discuss briefly
the photomagnetic eGect at higher energy. This effect
is more diKcult to measure accurately, but it is almost
uniquely determined by the capture cross section at
low energy. From (24), (25), (38) we have

~ u u dr= (y'+k') '[y+P' y'D+k—'(-'ro —D)] (53)

R(E)=R(0)(1+0.045E), (55)

where E is measured in Mev and R(0) refers to zero

energy. From (46) and (50),

R(0)= 1.026. (55a)

For ThC" p-rays, E=0.383 so that R=1.043. The
cross section for zero range is

2pr e' ) k q' ky(y+P')'
~ o=——

f f (u,-u.)'
3 Sc (Mc) (k'+y')(k'+P")

(E)k

=7.02X10 " cm',
(E+2.235) (E+0.0735)

(56)

where E is the energy in Mev. For ThC" y-rays,
E=0.383 yields o.

p
——3.63X10 "and, after correction

by the factor E above, o- =3.79X10 ~. The total
photo-cross section is then (see Table I)

o.g=11.72X10 '" cm'

and the ratio of di8erential cross sections in the forward

Taking the approximation (28) for D, the factor of k' is

o(&o.—&o~) = oD'=0.20X10 ". (53a)

Inserting this, and introducing the ratio

R= actual photomagnetic effect/
photomagnetic effect for zero range (54)

we 6nd

and sideward directions

~(0)

o (pr/2) —,'(7.93)+3.79
=0.242. (58)

(59)2 (Ppo up')dr=ro~ Pg&(—1/y rpg)— —
Jo

instead of simply rp&. Here PD is the fraction of D-state
in the ground state wave function which is experi-
mentally about 0.04. The correction (second term) in

(59) is —0.11X10 ".According to (25), the quantity
4D is equal to the expression (59), plus the singlet
effective range r pmin suthe last term of (25) which
we have neglected. Since D is essentially determined by
experiment, the decrease of (59) must be compensated
by a corresponding increase in rp, . Therefore, with
tensor forces,

rp, =2.5X10 " (6o)

if Eq. (29) is used, or about 2.8 for the Hulthen po-
tential, Eq. (36a). This makes the agreement with the
proton-proton scattering even better.

Ke are very grateful to Dr. John Blatt for many
valuable suggestions regarding this paper.

'7 VV. Rarita and J. Schwinger, Phys. Rev. 59, 436, SS6 (1941)

6. MODIFICATIONS DUE TO TENSOR FORCES

The effective range in the presence of tensor forces
will be discussed in paper III. The main result from
that paper is that the anisotropy of the forces has a
negligible eBect on the photo-disintegration. Transitions
from the 'D part of the ground state to either 'P or 'Il

states in the continuum by the electric dipole moment
are negligible, as are transitions to 'D by the magnetic
moment, and also electric quadrupole transitions. All

these results confirm, under more general assumptions,
the conclusions of Rarita and Schwinger. "

For the electric dipole moment there is virtually no
change at all. It can be shown that the normalization
factor of the ground state function, E„still depends
on the effective range rp& by (5a). The only change is
in the shape of u at small distances, but this, as we
have shown in Section 2 of this paper, has practically
no e6'ect on the photoelectric cross section.

For the photomagnetic effect, there is a slight
modi6cation because, as will be shown in III,


