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Theory of the D+D Reactions

Part II. Relation to the Internucleonic Forces

J. R. PRUETT, F. M. BEIDUK,* AND E. J. KQNQPINSKI
InCiana University, 8/oomington, Indiana

(Received October 4, 1949)

The adequacy of current ideas about the internucleonic forces in accounting for the observations as
analyzed in Part I is investigated. In particular, the adequacy of the spin-orbit coupling provided by the
tensor forces is examined. To this end, a "minimal" formulation of the four-body problem is attempted. The
interaction responsible for the reaction is derived. Some order-of-magnitude comparisons with the experi-
mental data are presented.

I. INTRODUCTION

' N Part I, the experimental data on the D+D reac-
~ - tions was analyzed for the information it could give
when detailed assumptions concerning the internu-
cleonic forces are avoided. It is also of interest to see
whether current conceptions of the basic forces are
adequate for an understanding of the results of Part I.
Such an investigation is necessarily subject to two
sources of uncertainty. On the one hand, there is the
uncertainty as to the forces. On the other, the com-
plexity of a four-body problem is such that the ex-
tensive approximating is necessary and much more than
qualitative results cannot be expected. Nevertheless,
even with the "minimal" formulation we propose to
carry through, some reasonably definite conclusions can
be drawn.

2. THE COUPLING OF THE SPIN STATES

The potential' V;, which will here be assumed to
connect any pair of nucleons i and j is:

V;, = kw+bB&1+2WI'&4+2bM&4
+-', (1+2/M;, )5;,]U;,(r;,). (1)

8;; is the Bartlett spin-exchange operator, M,; is the
Majorana space-coordinate exchange operator, and
I';,.=8;,M;; is the Heisenberg, particle permutation
operator. According to the "symmetrical" theory, the
constants m and b are to be taken equal to —-', and +-,',
respectively. S;, is the "tensor coupling":

S;,= (48; e)(48,'e) —
—8,(48, 82,).

e is a unit vector joining the pair of particles; e;, are
the Pauli spin matrices with unit eigenvalues. We shall
hnd it convenient to adopt the form

U;, = Dexp( r;,2/482)— —

for the potential well. u is the force range and D is the
so-called "singlet depth. "

*AKC fellow.
'See, for example, F. Rohrlich and J. Eisenstein, Phys. Rev.

75, 705 {1949).Our form is equivalent to their: —(1/3)(g; g;}
g(e; e;)(1+5;;)U;;, where z;, ; are the "isotopic spins. " We
have used the equivalent isotopic spin formulation only in certain
checks, having found it unwieldy for our problem.

The most immediate results are obtainable by con-
sidering first the coupling between our initial and final
spin states as provided by an interaction of the form (1).
The spin state functions for our four-particle problem
have been listed by SchifI'"; we rewrite them in terms of
two-particle spin functions: the singlet,

s;,= 2-l[n~p,—p;n, ];
and the triplet,

/„'=n, n, , t;8 =2 **[n;P,+P;n,], t;, '=P,P/.

Here n, P are individual particle spin states corre-
sponding to positive and negative spin projections, re-
spectively. We shall associate the indices 1 and 3 with
the two neutrons, 2 and 4 with the two protons. The
"unpermuted" order will be considered to be the one
in which the two deuterons are paired as (1, 2) and
(3, 4); and in which the neutron 1 is the ejected particle.

For the initial, two-deuteron states g8.~0 we have:

x00 (12) [3$18$24+/18 /24 t18 t24 /18 /24 ]
=(12) 8[3$14$28+/14 /28 /14/28 /14 lt28] (4)

which is symmetrical in the pairs (12) and (34); and

0 2 ',[ / .lf+—-t M ]
—=2 '[$14/28' +/14 $28]

which is antisymmetric in the interchange of the pairs
(1, 2) and (3, 4). Both the singlet and triplet are sym-
metric in 1+-+2 and in 3+-+4, as is proper for deuterons.

For the final states g,„, we take functions antisym-
metric in 2~4, these being the protons within the
product triton. We have:

XQQ $18824= 2[S14S28+/14 /&8 /14 /'ll /14 /&8 ] (6)

Xl, yl /18 $24= 2[($14&/14 )/28 +/14 (s&8%/21 )]& (/a)

+10= i 13 S24= g QS14/23 +$14 S23

/14 t'18 +/14 /28 ] (/b)

The two-particle functions we have chosen to make
explicit in (4)—(7) are those most helpful in evaluating
the couplings.

In general, the coupling between the spin states g~.~l'

and X, due to the interaction of the particle-pair (8',j)
" L. Schiff, Phys. Rev. 51, 783 (1937).
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is given by

(Xsm &'sXBM') = [(w+2bM, s)(X.m' Xs,v )
+(b+2wM;, )(x, &;,xsv')

+3(1+2M")(XBM ~. Xsv")jU" (8)
1
0—1

1
3$
6&

ALE I.

—3k
—2

3$
3$
1

where the "dot product" indicates integration over spin
coordinates. Actually, only the interacting pairs (1, 3),
(1, 4), (2, 3), and (2, 4) need be considered, since, as will

be seen below, interaction between the particles within
a deuteron does not contribute directly to the formation
of the final state.

We first attend to the non-tensor terms of (8), to
be designated by the subscript 0. It follows easily from

(4)—(7) that the Bartlett and Heisenberg forces vanish
for the unlike particle-pairs (1, 4) and (2, 3), leaving:

(X. V14XsM")o= (X. XSM")[w+2bM34]U34, (»)
(Xsm V23XBM )0 (Xsm' XS V')[W+. 2bM23 JU23s (9b)

(X... &13Xsv')0= (X- Xs.v')[(w —(—)'b)

+2(b —(—)'w)M13jU1„(&c)

(Xsm V24XBM )0 (Xsm XBM )
X [(w b)+ 2—(b w)M2—4]U24, (9d)

where

(X XBM ) b Bb »[23 bso+2 bsl j (1O)

The direct interaction here gives no spin-orbit coupling.
The tensor couplings will be designated with the

subscript T. One finds first that they do not couple the
singlet states, either to each other or to the triplets. '-'

For the like-particle pair (1, 3), we find:

(xlm' I 13xl v ) 1'

= 44m,»V2,» m(2l'33s 0213) ~ —',(1+2M,,)U, ,s (11)

where I'2,~ „, is the normalized spherical harmonic and
(5)82r)2&m.4r is given by Table I. For the unlike Particle
pairs (1, 4) and (2, 3), the expressions are the same as
(11) except that each has also a factor —,

' (and, naturally,
the coordinates refer to the appropriate separation
distance in each case). Whereas the like-particle pair
(1, 3) is coupled doubly (no factor 12), the comple-
mentary pair (2, 4) leads to a vanishing result with our
choice of the states.

The most striking result here is that the spin-orbit
coupling due to the tensor forces does not aGect the
singlet states, and, in particular, provides no triplet +-+

singlet transitions. (Of course, other forms of spin-orbit
coupling might arise, as is mell known, but the tensor
forces can plausibly be expected to be the main source. )
This couM have had serious implications for the con-
siderations of Part I. It was found there that the experi-
ments required the production of isotropically dis-
tributed products from triplet collisions. Such come
from triplet to singlet transitions. However, reference
to (31a) of Part I shows that the reorientation (change

~There is also a quintet to singlet coupling. We follow the
procedure of Part I in ignoring it.

of M) in the triplet to triplet transition also contributes
in the manner needed. Thus, the spin-orbit coupling as
provided by the tensor forces promises to be adequate
for explaining the observations analyzed in Part I.

3. THE INTERACTION RESPONSIBLE
FOR TRANSITIONS

To obtain the transition probabilities, Flugge'
evaluated matrix elements of potentials connecting all
pairs of the particles involved. This at least gives
correct orders of magnitude, but no straightforward jus-
tification of it seems ever to have been given. In the
comparison of transitions involving various angular
rnomenta, more attention must be given to the dis-
tinctive properties of the interactions responsible. %e
therefore construct a wave equation for the product
wave which will show us how the product amplitude
grows from the incident wave as a source.

%e construct a description of the process in the form
0'= 4""+0""where 4'" describes the initial situation,

the final state. At the asymptotes where
describes two separated deuterons, 0'") must vanish.
4"" is to vanish where 0 "' describes any one particle
as being far removed from the nucleus of the remaining
three. Ke write

+' 3= 2 '(1—P13)QD(r12)tpD(r34)

Xgs v &SM0(r)X8340(1234), (12)

where r=-', (r1+r2) —-', (r3+r4) and the numerals in the
argument of xs bio stand for spin coordinates. $33 is the
deuteron ground-state spatial mave function and

F.„o( ) =2(4 (93)&PL(21.+1):3L
X FLO(&,)(I3r) 'fL(r), (13)

where fL has unit amplitude [see Part I, Eq. (4)). This
gives the correct incident current for obtaining the
cross section directly by counting the resulting processes.
0„is the angle made by r with the direction of incidence.
I'~3 permutes both space and spin coordinates of the
particles (1, 3). It is then obvious that (12) is correctly
symmetrized if L is only even when S=O, and if L is
only odd when S= 1, considering the symmetry proper-
ties of g~~'.

In describing the final state we neglect the Coulomb
eGects. On the one hand, the reaction energy available
makes the Coulomb barriers fairly negligible. On the
other, the experimental observations' show that neutron

' Fliigge, Zeits. f. Physik 108, 545 (1938).
Blair, Freier, Lampi, Sleator, and williams, Phys. Rev. 74,

1599 (1948).
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and proton ejections behave in a parallel manner. Thus,
the He' nuclear state will not be di6erentiated from the
triton state, Pp((234)). Here, the symbol (234) stands
for an argument symmetrical in «», r&4, and r34, as
befits the expected evenness of the state. Now,

+'"= -,'(1—&lo+F14F.S+&loF84)4 p((234))
Xg, F...(t)x. (1234) (14)

with o= r& —(1/3)(r&+ro+r4). The permutation opera-
tars give 4(" the correct symmetry if z, is antisym-
metric in the spin coordinates, (2, 4). Each permutation
term corresponds to the ejection of a di8erent one of
the four particles. F,„(~)should describe an outgoing
wave only.

We introduce the Hamiltonian

like (19), is known to give a fair account of the inter-
nucleonic forces' when zoo= —0.23 and ho=+0.77.

The result of (18) has the form:

L
—o(&'/M) 7.'+V-(0)—E~)F-(0)= —g- (t), (2o)

where 1/„ is an "e6'ective potential, " its important
characteristic being that it vanishes rapidly outside the
"nuclear radius. " E~=B'—Ey and the "source func-
tion ls:

g-(t)=2'*Espy 4px. (H lV)4—n4nFsw o

Xxsrv (d&ldp)+Q ' s'mj~ & s'ms(mp pr)

XF*- (t')de' (21)

H=Q T+ Q V„

=Ho(12)+Ho(34)+Ho

=—Hp(234)+Hg,

(15a)

(15b)

(15c)

K being obtainable in terms of the potentials and
kinetic energies. The first of the "source" terms has the
chief interest here, since it is obviously responsible for
the D+D reactions.

We follow customary procedures' in obtaining a
formal solution of (20), of the type:

b ~+*(H lV)@dp=0— (17)

when the variation 8 is due to an arbitrary BF, ~. For
this (17) may at once be reduced to

= —bJt 4'&"*(H—lV) 4 "&dp (18).
Because (H —W) +'" has only a magnitude determined

by the newly growing state +('), it may be approxi-
mated more roughly than (H W) re+&. Quite in-
keeping with standard perturbation theory procedures,
we shall approximate II on the left-hand side with a
Hamiltonian H'" which differs from (15) in that:

V;,"'=[wp+bpB;s. +2wpP;, +2bpM;, jU,, (19)

in place of (1). A potential minus the tensor coupling,

' J. A. %heeler, Phys. Rev, $2, 1107 (1937).

where Hnfn=Enfn, Err being the deuteron binding

energy, and Hpfp=Epfp, Ep being the triton binding

energy.

Bo=~o+ Vo

= —(k'/2M) 7„'+Vgo+ Vg4+ Voo+ Vo4 (16)

is useful to note; III is equally obvious.
Well-known procedures' enable one to obtain equa-

tions for the F. , F ro~' which make += 4'&"++&'& as
good a solution of H%'=8'0 as is possible with the
forms (12) and (14). The wave equation for F,„results
from

Fsm(y) = Plm~(ks p) flmpm(p) 1' im~srn(8r sp) r (22)

glmgsm= (3M/2k )PJ dV tm~*gsm(P)' (24)

Here, es(p) is the regular solution of the homogeneous
part of Eq. (20). g& is an undetermined phase shift.

We can now put together the complete solution at its
asymptote p= ~:

', Pp(k( p)
—'e"»—P—smarm(

X7r,„Vimg( i)'e'«jt —egdp (25)

as follows from (14), (22), and (23). This represents
ejected neutrons of index 1. Twice as many are ejected
altogether, so that the consequent cross section for
neutron production is:

oo

e'= j~2(1/4k' )S Psmtrrr~xsrnVbn~( o)~e's~ t sp—gdp
~o

X (3kkg/4M)dry, (26)

' Rosenfeld, Nuclear Forces (Interscience Publishers, Inc. , ¹w
York}, p. 131, gives V;;=(1—2g) 't 1—qg+-', g(e; e;)jU;; for
s-states (.M;;=+1), with g=0.19. This leads to

wp= —g(1 3g)/(1 2g) and b0= 3 (1—&g)/(1 —2g).

It is,equivalent to replacing S;; in (1) with —,'g(3+e; e;)/(1 —2g),
which also vanishes for singlets.

'Mott and Massey, Theory of Atomic Collisions (Oxford Uni-
versity Press, New York, 1933).

where k&= (3MEq/2)&/k. At large distances,

fimps (~)= exp[—i(k, p —-', lpr+ri))]

XJt wi (p)g( '»(p)dp (23)

with
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mith the symbol S standing for integration over spin
coordinates. It is now obvious that the second part of g,
as given by (21), should be neglected here since it arises
from the newly growing state and must be negligible
in comparison with the first term, which comes for the
initially established state 4'z, soro (see below).

As is to be expected, the cross section (26) is given by
the square of a matrix element. This is given a standard
form in the following. Ke write the "final state":

4'3m3sm= Lp Oolm4sm(p) Y3m4(d, p)]1pTXsm, (27)

in which pter~~ is to be normalized per unit energy. ' The
initial state must be normalized according to (13). We
introduce a new "radial function, "

cpzsorp(r), such that
e ~LpL, 8~0 is normalized per unit energy. The ex-

ponential represents a diminution of the amplitude at
the nuclear surface due to the limited penetrability of
the barriers, as evaluated in the %KB approximation. '
Putting it into evidence as we do here allows us to
express the main energy-dependence of the cross section

(26) through the factor

sr'= (42r/9k')(2L+1)e 2 4 (28)

which is the cross section for approach to the nuclear
surface as defined in Part I. Ke now write an "initial
state wave-function":

+rsns = [r 'Ooss44 (r) Yzo]1Po(r12)1Pn(r34)Xsss' (29)

Then the differential cross section can be written in the
form:

dSr=dOOS p 121,OXsm Ylm4'42K( 3) e "1

3

t 4'3ns1sm*(H —W) Isr, s34 dr (30)j 7

in which the summation P is to be carried out over all

the indices: l, m&, s, m, J., S, M. This is directly com-

parable with the forms of Part I.
It should be pointed out that the initial wave function

(29), and therefore all but the factor ozt in (30), can be
regarded as practically independent of the deuteron

energy. It is well known that a radial function of unit
amplitude at infinity, tends to behave (kr)z+' at
small distances on account of the centrifugal forces. A

function normalized to unit energy mill then behave"
~k~+&. It can easily be shown that when the centrifugal
barriers are dominant'

e o~(kR) +&-
and therefore pL, 8M' can plausibly be regarded as
having its main energy dependence factored out.

Our chief concern is with the matrix element:

occurring in the cross section. Recalling (29), (15), (16),
(4), and (5), we may write:

(H W—)= (Hp —Ep), (32)

where Ep= W —2En(=-2'E) is the relative energy of the
deuterons. It is

Bo—&0= T'0 —&0+ Vo, (33)

which seems to play the part of the interaction respon-
sible for the reaction transitions, in place of

Vo+ Vio+ V34

as employed by Flugge. '

(&o)o
—=3&((—) '~'13+ &23). (34)

The precise significance of the bracketing ( ) was
illustrated in (31). As before, the subscript 0 means
that here the tensor coupling has been left out. The
tensor terms of Vo yield the matrix elements:

(Yo)T=( 2~13i/13+523L 23)

=
2 Km.sr(f/23Y2 sr ( 7m2 4&o322—3)

L 13Y241 m(47'13s 'P—ls)). (»)
%e see that the interactions are expressible entirely as
between like-particle pairs (1, 3) and unlike-particle
pairs (2, 3).

In the remainder, (Tp Eo), of the matrix element,
one can readily show that the proper operator following
from (16) is:

p„-'L(L+1)k'-

To +
2M 2Mr'

(36)

where p„=—ik(d/Br+1/' r) is the radial mo'mentum

operator. Moreover, this operation can, through
Green's theorem, be thrown upon functions in the
matrix integral other than v and opo t see (30), (29),
and (27)]:

(To Eo)= (x. xsv') j~j"do«(v~l p) (vs'/r)

4. THE MATRIX ELEMENTS

The many terms which constitute the matrix ele-
ments (Hp Ep) = (Tp Ep+ Vp) appearing in (32),
after insertion of (16) and (1), can be reduced con-
siderably in number by making use of the symmetries
of the wave functions 4 and O'. Part of this process has
already been carried out when the spin-integrations
leading to (9) and (11) are completed. After the Majo-
rana operations still left in (9) and (11) have been
performed, it can be shown that:

(H W) = ~%'3m1sm*(H ——W) Iszsss dr (31) X Y&m1 Yco(To Eo)Jt(dr/dtsdr)1p—rspDsprs (37).
e kinetic energy involved here is so large ~ 72 Mev

a, function of unit amplitude by the factor (2/~ke1}&.
e ine ic energy invo ve ere &s so arge, ev,

'Part I, Eq. (6}. evaluations below will show) that for the deuteron
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energies concerning us (Ev=s'E(2 Mev), Ev can be
neglected and the matrix element regarded as inde-
pendent of energy.

The greatest di%culty in estimating the matrix
elements comes from evaluating the radial functions p,
y' of (27) and (29). Flugge' has succeeded in carrying
out an approximate valuation for s-states only, with
numerical solutions of appropriate wave equations. He
thus showed that potentials of the type (19) can lead
to a correct order of magnitude for the total cross
section. It will therefore sufFice for our purposes to
estimate ratios between the contributions of more
general types of collisions and those due to s-waves. For
this, we shall assume that the product plmgwn(pl. sM is
replaceable by an average, (yy')A„within the nuclear
surface; this average value will be assumed independent
of angular momenta for the low quantum numbers of
interest to us. This has plausibility because the cen-
trifugal forces associated with low quantum numbers
should not disturb the eftect of the specifically nuclear
forces appreciably.

Specific expressions will also be needed for the deu-
teron and triton ground-state wave functions, PD and
P'r. The most important characteristics of these for the
matrix integrals are their "spreads, "which may be well

enough represented by the normalized distributions:

Po(r, 2) = (2n'/w )
*

exp( —a'r, . '),

4 r((234)) = (3''/~)'(4''/~) *

Xexp[ —g~(', , 2+r „-+.34')j.

(38)

where u is the third-position vector needed besides the
ones originally introduced: y and r. X=2 for the terms
with tensor coupling, vide (35), and X=A otherwise. The
exponentials arise from the various Gaussian distribu-
tions. The approach which could be most consistently
carried through was to use a well-known expansion of
the exponential, superposed with the addition theorem

We have obtained the values of n and P which yield
the observed deuteron and triton binding energies when
potentials of the type (19) are used, with the singlet
depth' D=27.2 Mev and the range a=2.1q(10) "cm.
They are (na)'=0. 4 and (J3a)'=0.5.

Even the integrations over the Gaussian distribu-
tions (38), (39), and (3) require undue labor because
they are not symmetrical about the collision center. Of
course, this non-central character has important eGects
in that it determines the magnitudes of the angular
momentum exchanges between the constituent par-
ticles. It manifests itself in the angular integrations.
These are threefold, arising from the position vectors of
four particles minus the degrees of freedom of the mass
center, of the type:

Jt d I' *(d', )J~d, V o(6,)J
d „V „(8, )

Xexp[—cq(0 r) —c2(p u) —cq(r u)j, (40)

for spherical harmonics:

exp[ —cr(y. r)j=4v Ptrmq( i—)"jt, (ic, pr)

X Vlymr*(8p& cp&) Elm&y(6~& p„). (41)

Here the jt, are the spherical Bessel functions. '" This
means that the subsequent radial integrations will be
over the Bessel function j~, multiplied with Gaussian
distributions. For small arguments"

j t, (icqpr) = [icrpr]"/1 3 5. . . (2lr+1).

This exhibits the most important eGect of these func-
tions: they weight outer parts of the particle distribu-
tions the more heavily, the larger the number of quanta
l~ of angular momentum that is transferred. We shall
approximate this effect by using the evaluation (42),
trusting to the Gaussians to "cut off" adequately the
regions of large p, r when (42) is invalid. The degree of
validity of this approximation is unfortunately sensitive
to the choice of coordinates, i.e., the choice made for u
in (41). Investigation showed, "however, that for rali, os

of matrix elements, adequate accuracy is obtained when
u= ra —r4 (i.e., the separation in that deuteron which
captures a nucleon from its fellow deuteron) is used
together with the y and r previously introduced.

The procedures described were feasible for (Tp Ep),
(U$3) and (U23), but for the tensor terms (S»U&3) and

(S»U») coordinates were dictated which yield poorer
accuracy with our approximations. The e6ect of this
was minimized by reevaluating (U») and (U») exactly
as (S$3Uj3) and (S23U») then employing only the
resulting ratios (S»Ur3)/(U~3) and (S»U23)/(U23) to
obtain the final numerical values.

%'e now correlate our matrix elements with the coef-
ficients introduced to represent them in Part I. For
this, we replace the symbols of the type (H W)—
=(Hv —Eo)=(Hv) introduced in (31) with the more
specific ones:

(Ho) = (lm, sm
~

Ho
~

LSrM'). (43)

Now, comparison of (30) with (25) of Part I leads to
the notational identi6cations:

az ——4v. (—i) e' c(L«OOO~Hp~L00), (44a)

"=4m( i)ce'«(L, M —m, 1m~ Hv~L—1~), (44b)

pzz+g ——4v (—i)z+'e'«+'

X[(2L+1)(2L+5)/(L+1) (L+2))'
X(L+2, 010' Hoi L10), (44c)

p r z. r= 4v-( r) c 'e'"'-—-
X [(2L+1)(2L—3)/L(L —1)]'

X (L—2, 010
~

Ho
~

L10). (44d)

As shown in Section 1, Pl.= PL, L, =O, here.

' L. Schiff, QNantem Mechanics (McGraw-Hill Book Company,
Inc. , New Yok, 1947) has a convenient summary of these.

"Made possible by the fact that in some terms the integration
could be carried through exactly.
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All the procedures needed for the numerical evalua-
tion of the ratios of the matrix elements (44) to «, the
s-wave matrix element, have already been described,
and the necessary values of numerical quantities
introduced. 8'e may therefore list the results:

,'(xone / Icxpl = 2.0,

I
~41'I

I
~pl"= 0 50

(45a)

(45b)

I
&»I'/I ool"=0 023o (I5io=0),

I Pool '/
I
~o

I

'=0 070'-, .
I &„I /I ~, I-'=0.02g.

(49)

These numbers are to be regarded only as measures of
order-of-magnitude because of the crudity of the repre-
sentations of the various wave-functions.

The present theory cannot yield the phases of the
matrix elements whose magnitudes are given by
(45)—(49). This would require much greater accuracy,

These include no tensor coupling since only singlet
collisions are involved. For odd I, there are 6rst the
matrix elements (with m =M) which receive contri-
butions from the non-tensor and the tensor interactions:

I
»o'I'/I «I'=2 9; I v o"'I'/I oI'=40. (46)

These would equal each other without the tensor
coupliog, as wouM the corresponding matrix-elements
for J.=3:

I v o'I'/I oI'=0 5g;
I v o 'I'/I ~pl'=104 (47)

Matrix elements which vanish without spin-orbit
coupling are of the type:

I
»~'I'jl «I'=

I »~ 'I'j
I

«I-'=000», (4&)

such as is obtainable only by numerical integration.
However, one can get some idea of the consistency of
the theory with the experimental data (which does
depend on relative phases) by assuming sufficient
randomness of the phases to put equal to zero the
cross terms between quantities of unequal phase. On
this basis, the quantities measured by the experiments
according to Part I are:

Ki/Ko= (61 yn'I-'+
I Pio I')/

I
~pl'-=0. 096 (Exp: 1)

A&/Kp=(31 vip I'+61 vzo'I )/I aol' =33 (Exp:
Ko/Ko= (5/4) I

«I'/I «I '= 2 5 (Exp: 5 &)

A o/K p= —(25/2) I
no

I
'/

I « I

'= —15 (Exp: —30)

Bo/Kp = (45/4)
I
« I

o/
I

exp
I

o= 22.5 (Exp: 40)
(50)

Ao/Kp= (63/4)(I »o'I'+21»o'I')/I «I'=42
(Exp: 300)

Bo/Ep (10/3)Ao//Kp —140 (Exp: —850).

As one sees, there is a general concordance in the way
the theoretical and experimental values vary from one
case to the other. Considering the crudity of our ap-
proximations closer agreements should perhaps not
have been expected.

There is just one case in the list (50) which provides
a clear measure of the spin orbit coupling: K&/Kp. One
can see that here the theory gives too small a coupling
by a factor 10 or so; this is a somewhat worse comparison
than the other values show. There is therefore, this
indication that the spin-orbit coupling provided by the
tensor forces alone may be insu%cient. However, the
discrepancy is on the margin of detectability for both
the experiments and the present theory.
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