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After making these substitutions, (2) may be integrated from
Ho 81 to 80 8~, the acceptance angle of the spectrometer, to give

dN" 4x'intro'f(p+1)'+u'ji
dp vv(a+1+2m+2m')

a—1 2 472

a+1 (a+1)(a+1+2')1+ +
S s=cos82

)&cosh '
La/((1+7} +a)j a cosg1'

Equation (5), in conjunction with (4), gives the primary
momentum spectrum of the Compton secondaries rigorously,
provided that scattering of the electrons and attenuation of the
primary gamma-ray intensity are negligible. While it is usually
possible to select a converter such that this is so for the converter
thickness at the mean spectrometer acceptance angle, scattering
for electrons traveling along a radius of the converter, and attenu-
ation of the radiation along a radius may he important. In these
cases, however, only the lower energy part of the electron spec-
trum, which generally is not useful for the determination of
quantum energies or intensities, is affected.

Before the primary spectrum of (5} can be compared with the
observed distribution, one must allow for the effect of energy

loss in the converter, of the finite instrument resolution or "win-
dow" and of any inhomogeneities of the primary gamma-ray
energy (e.g. , Doppler broadening from motion of the excited
nucleus). The eGect of the converter may be represented by a
distribution of energy loss, the details depending on the converter
and electron energy involved. After conversion to a momentum
scale, this is folded into the primary distribution by numerical
integration. The eÃect of instrument resolution may be similarly
treated, using the observed "window" curve of the spectrometer.
If any extended range of the spectrum is required account must
be taken of the fact that the instrument window has a constant
percentage width by plotting dX"/dp from (5) against logp jp
and folding in a window curve of constant width. Such effects as
Doppler broadening may also be represented by appropriate
distributions and folded into the primary spectrum.

It may be, if the acceptance angle of the spectrometer corre-
sponds to a large range of the angle Ho, that the window curve of
the spectrometer is an implicit function of 80, that is, that the
window curve for some small part of the accepted range of Hp

does not coincide with the integrated window curve for the whole
range of Ho. Since d.V"/dP is also a function of Ho, the simple
folding operation is then not strictly justified. In the present
case, however, the error resulting from the neglect of the finite
range of 80 is negligibly small.
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Theory of the D+D Reactions

Part I. Analysis of the Energy Dependence
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The variations with energy of the newly extended observations on the D+D reaction products are
analyzed. It is found adequate to assume that all these variations, including details of the angular distribu-
tions, are due to differences in centrifugal barriers met by different components of the incident deuteron
waves. This is found possible only if considerable spin-orbit interaction is allowed for. The possibility is
investigated that numerical measures of the interactions can be obtained from the experimental data. Such
conclusions as are permitted by the nature of the data are presented.

~. ImmaDUCnom
'HE reactions of deuterons with deuterons have

been undergoing intensive experimental inves-
tigation. There is interest in analyzing the results con-
cerning these simplest of the transmutations. In par-
ticular, the extension of the observations to deuteron
energies greater than 400 kev was expected' to reveal
how large a part is played by the spin-orbit coupling
during the process of reaction.

Besides the cross section cr as a function of deuteron
bombardment-energy, E, the experiments yield the

*AEC fellow.
'The latest and most extensive results are due to G. Hunter

and H. Richards, Phys. Rev. 75, 1445 (1949); we are indebted to
Professor Richards for making these data available to us before
their publication. Blair, Freier, Lampi, Sleator, andWilliams, Phys.
Rev. 74, 1599 (1948) have obtained data on both the He' and H'
production for energies between 1 and 3.5 Mev. The latest low
energy measurements were made by Bretscher, French, and Seidl,
Phys. Rev. 73, 815 {1948).

~ E. J. Konopinski and E. Teller, Phys. Rev. 73, 822 (1948).

angular distribution with which the products appear, in
the form

do =da)o'(E) [1+A (E)ii'+B(E)p4+C(E)ii'+ . .], (1)

p=cos8, with 8 the angle between the direction taken
by the detected product and the incident deuteron
beam, as measured in the center-of-mass system.

0'= ~(E)/$1+ (1/3) A+ (1/5) 8+ (1/7) C+ ] (2)

is the "isotropic cross section" measuring only the
products in the isotropic component of (1). A striking
feature discovered by the Wisconsin and Minnesota
groups' is that the "first asymmetry coefficient, " A (E),
descends from a positive maximum at E=0.5 Mev to
negative values. This behavior will be seen in Fig. 3.
One of the aims of this paper is to show that even such
a peculiarity can be attributed entirely to the diGerences
between the centrifugal barriers met by the various
components of the incident deuteron wave. A further
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point borne out is, therefore, that the process can be
understood as one of "first order, " in the perturbation
theory sense, not requiring the ad hoc introduction of
resoAailces.

The analysis here is to be based on a minimum of
assumptions concerning the basic nuclear forces. Only
considerations of barrier penetration (external to the
nucleus proper), of symmetry, and of angular mo-
mentum conservation will be needed. A second part
follows which presents what seems to be the minimal
formulation necessary for bringing the basic inter-
nucleonic forces into relation with the analyzed experi-
mental observations.

2. THE APPROACH

The two deuterons can meet in 9 distinct spin states,
y~,~, classifiable into a singlet, a triplet and a quintet.
Schi6' has listed the state functions for these. Then the
incident deuteron wave relative to the center-of-mass is:

(90)
—z'[(X 0+Q X 0) (s inz+ s—ikz)

+Q X 0(Sikz 0
—ikz) j (3)

aside from well-known modifications required by the
irrepressibility of the Coulomb eGects. v is the relative
velocity and k the corresponding wave number
[k=M0/k= (ME)'/k, if M is a nucleon mass). s is the
projection on the incidence direction of the separation
distance between the deuterons. The wave (3) is
normalized to unit current in each of opposite direc-
tions, corresponding to bombarding and target deu-
teron, respectively. Thus, a count of the processes
following from (3) gives the cross section directly.

Analyzed into "L-wave components, " far from the
collision center at r=0, (3) is equivalent to:

2(40r/90)& Pksnr(2L+1)&ik(kr) '
XSin(kr 0L7r) I'kO(6—z)XSnr0, (4)

where only even integral values of L are to be used with
S=O or 2, odd values with S=1. The I'1.0 are the
normalized spherical harmonics. 8„ is adequately
de6ned through: s=r cos8„.

As the hrst step toward a reaction cross section, we
introduce an "approach" cross section, 0.1,, which counts
the number of collisions in which the deuterons
approach within their "sphere" of nuclear interaction
or to the "nuclear surface, "at radius E. This naturally
depends on the boundary conditions adopted for the
nuclear surface. Severa14 plausible boundary conditions

' L. Schiff, Phys. Rev. 71, 783 (1937).
40ne condition tried was the requirement that no reflected

wave start at the nuclear surface. This was considered plausible
on the supposition that the strong nuclear interactions would
make the reflections incoherent with the incoming wave and
incapable of interfering with the approach. It led to (5) multiplied
by the factor f1+-4e~ L j~, which is nearly unity except near the
top of the barrier where CL~O. An alternative boundary con-
dition investigated was the requirement of a vanishing amplitude
at the nuclear surface. This was suggested by Flugge's (Zeits. f.
Physik 108, 545 (1938)) results showing that the high kinetic
energies inside the nuclear surface limited severely the amplitudes

were investigated with %KB approximation which, was
deemed adequate considering the uncertainty of the
boundary conditions and of the value to be given E.
All of them gave approximately:

irr, = (4/9) (0r/k') (2L+1)s 'o' (5)

for the number of successful approaches per second
from one LSM component of the incident wave (4).
Here, (exp: —2CJ.) is the well-known barrier penetra-
tion probability according to the WXB approximation

Ck = k [(r./r)+ (L+-')'/k'r' —1]dr
"a

(6)

with rl. 0kr—z—+kk[r +(2L+1) /k )'*z rz=2e/E The.

factor "1/9" enters in (5) because it applies to any one

of the nine spin components of the L-wave. The factor
"4"is due to the symmetrization of the deuteron wave. '
(It has as part of its function, a compensation for the
loss of alternate L-values with a given spin. ) The im-

portance of 0 I. rests on the energy-dependence,
~e 'ok/E, which will be presumed capable of account-
ing for all the variations with energy observed by the
the experimenters. The energy dependence is demon-
strated by the curves drawn in Fig. 1.

that could connect with an external wave function. This procedure
led to (5) with a multiplying factor I (4/5}+(1/5) e 4~Lj ', which
is unity at the barrier top. The energy dependence included in (5)
is the most important part in any case.

~ We were led to use a centrifugal barrier height of (L+ —,')'h~/MR
even for L=O by the 6ndings of Yost, Wheeler, and Breit, Phys.
Rev. 49, 174 (1936).

~The factor "4/9" was not included in the de6nition of cry

advanced in reference 2. There, a separate weight factor was used
in place of the "1/9" and the "4"was ignored, without material
eBect on the results.' E. Wigner, Gruppentheorie (Friedrich Vieweg a Sohn, Braun-
schweig, 1931),p. 208.

'We rely on the usual argument that the Pauli principle
binders a sufBciently close approach in quintet collisions. The

3. THE PRODUCT WAVE AMPLITUDES

Since it is the total angular momentum J, rather
than the individual momenta L and S, that is con-
served we can make general statements only about the
results of a collision wave which is an eigenfunction of
J and its components. We represent the eigenfunction
corresponding to an eigenvalue J and its component
eigenvalue M by the symbol: +'Lz~. As the symbol
implies, the quantity is simultaneously an eigenfunction
for the magnitudes of L and S, though not for their
components.

For singlet states 'LI, =zooI'I, .&, simply, while for
triplet states:

Lg =g (LJM
~
m)x& &r nr

with (I.JM
~
m) the elements of the well-known unitary

transformation matrix. Following previous treat-
ments, ' we ignore the quintet contributions and so
make no provision for them.'
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The character of the product wave which may result
from an initial state '8+'Lg~ is clear from considera-
tions of parity and angular momentum conservation.
The product amplitude arising from an initial 'Ll„' wave
will be written:

'Lr, o-var, 'I.r, '+Pr, 'Lr, ' (Po=0; L, even), (8)

where ar. , Pr, are coefficients (generally complex) which
determine the intensity with which various products
arise. They are clearly proportional to appropriate
matrix elements of whatever "perturbation, " IIO), is

cross section is written below. For triplet collisions (I.
odd; M=O, +1 only):

oL or~ 8L M+P 1L ilr

'Lr+r ~rrrrr+r 'Lr+g +Prr+r '(L+2) r+g, ",
'Lr, r "~err.r. r'Lr-j.+-Prr. r.'(-L —2)r-r "~

(10a)

(10b)

(10c)

where
pLLyr~(o(I+2)z~&. IH&'&I'Lz+rM), etc. (11)

The coef.Iicients n~J, Pl.q are independent of M in con-
sequence of the invariance with respect to absolute
orientation of the system.

Since the singlet components of the initial wave are
~happ VI,O= LI, the differential cross section for the
products resulting from singlet collisions can be written
(L even, only):

0.4

where the symbol S signifies integration over the spin
coordinates. One sees that the definition of nr„Pr, has
been so chosen as to allow putting rl, in evidence. One
of course expects the product intensity to be propor-
tional to the number of successful approaches as
measured by or. . Integrating (12) over ail directions
gives the total singlet cross section:

from which the significance of the coefhcients is
obvious.

The triplet cross section requires more elaborate
treatment because the initial triplet L-wave is propor-
tional to:

lQ 2.Q

El INev}

Pro. 1. Approach cross sections as functions of the deuteron
energy. The vertical arrows at the bottom give the s and p barrier
heights.

(Z~ xi~o) 1'io= Pz~(LI~ I ~) 'Lr~ (14)

(J=L, L+1) as follows from (7) and the unitary
character of the matrix. Ke then have the triplet dif-
ferential cross section:

responsible for the reaction:

o
I
H(»

I

iL o)

p (oL oIHO& IiL o)

(9)

Here conventional symbols designate the matrix ele-
ments and the states they connect. A closer de6nition
of nr, , pr, emerges when the expression for the differential

symmetrized wave amplitude for a given spin state may be ex-
pressed as

x~~'(1234) I ~'h(r1+r2) —~(ra+ r4) j
+~'I k(r3+ «) —k(r1+r2) j I

o(3214) I F'Q(r3+ r2) —,(r1+ r4)j
~~'P~(r1.+r4) —$(r3+ r2)jI,

since yg ~'(3412) = (—)8gs~o(1234). (The lower signs must be used
with S=1.) g2~' is unchanged by any permutation of spins so that
there is complete cancellation when r1~r3 (or rm r4). Inclusion
of the small effects remaining because some interaction with
r&&r3 can occur would only give us greater freedom in obtaining
agreement with the observations.

where L is odd only; s=o, /=L for J=L and s=i,
/= I&i for 7=L&i. No interference between terms of
diGerent M is allowed for, since the initial spins are
random. The same fact, of course, also allows us to
treat the triplet and singlet cross sections as simply
additive.

Factoring out explicitly the approach cross section err.

as done in (12), (15) leaves the "matrix elements" ar,
Pr., nr. r, Pr.r, see (9) and (11), independent of the
energy on our assumptions. It is plausible that the
particular bombardment energy within a fairly wide
range make little diGerence once the specifically
nuclear interactions take hold.

4. THE ANGULAR DISTRIBUTION

In order to obtain the angular distribution of the
products, the '8+'Lg~ waves must be put in terms of
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the spherical harmonics with the aid of (7) and even-
tually in terms of the cosines, rr, explicitly, as in (1).
The 6rst of these steps also permits the completion of
the spin coordinate integrations in (12), (15).

The first step is easily carried out for the singlet
cross section (12), giving:

«'=d&d{ IZr&rr'-0&ryrol'+ I+r &rr'Pr Vr&I'} (16)

Use was made of the facts that (LLOI 0) =0, (LLO& &1)
=&2 & and Vl.g* ———Vl.

The equivalent step for the triplet cross section
results in some complexity. First we introduce certain
new "matrix elements, "

yL,~, such that

Qr(LJMIM)err 'Lr' =Q yrgg "Vr gg xr„(1r)
with the consequence from (7) that:

yr &r „"'=Jr0&rr(LJM
I M)(LJMI rrr) (.18)

From the "matrix element" character of Q,I.J, one finds:

yr. nr
" (xr I'r vl fJ. '&I x.&'orI r),o(19)

that is, a matrix labeled according to the I.MI.sm
scheme rather than with JMLs like al.~. Since they
substitute for only three quantities 0&rr (J=L, L&1),
only three of the pl. .&& can be distinct for a given I..
%'e have first: yr.o', yl.o'=pLo ', yJl +I., —1 pI., —1'

=pl, g
' and yg, 2'=y1.2

' as the only non-vanishing
ones. Then, besides,

vr. -r' —err'= LoL(L+ I)j'(pro' —pro')
=L(L+1)l 2(L—1)(L+2)) ter, o" (20)

give no power of the cosine higher than p,'~. It can be
shown with the help of the expansion of the spherical
harmonics into their highest powers' that the terms in
p'~+' and p,

'~~ vanish identically.
To obtain the theoretical equivalent of the experi-

menters' formula (1), the dependence on the cosine, rr,
must be made explicit in do. =do('+do") as given by
(16) and (25). This can be done most conveniently for
particular values of I., especially since we shall be
interested only in the lowest ones. The reason is made
obvious by Fig. 1 which shows that the higher cen-
trifugal barriers characteristic of higher I. values will
make them negligible at less than a given finite energy.
Based on this fact, we adopt a systematic procedure
which is characterized by a certain definition of "order, "
n. The cross section do. will have been evaluated to the
"nth order" if only terms are included which are pro-
portional to (&rr&rr )', L+L' having all the possible
values ~&2n.

To avoid unduly lengthy expressions, we further
define new energy-independent coeScients: KI., Al. ,
Bl., Cl., K«, A«, BI.I. and Cl.l. . These will be
defined in such a way that the contribution of a single
incident L wave, inferrab-le from (16) or (25), can be
written:

d&r&»=d&o&rr, {Kr+Arlr'+Br rr4+Cr go+ }. (26)

It is clear from the foregoing discussion that A1.~~=0,
BL~2=0, CL,~3=0. The interference contributions from
(16) and (25) are included by introducing d&r&rr' such
that:

serve to reduce the number to three.
To obtain the full amplitude produced by triplet

collisions, according to (15), one must add to (17):

d&r=Qr. «'"+Jr., r. &r.«""
One has then:

(27)

(LLM
I M)P« 'Lr~= 2 *'P«I'r «o-o

Qr=r ~&(LJMI M)prr '(L&2)r"
Zm xlm Q/=L&oI &, .1f—m&1&or —m

The "matrix elements":

(21)

(22)

d&r'&rr'&=d&d(&rr&rr )i{Krr +A«p'
+&«v'+&rr go+ }. (2g)

CoeAicients of any power higher than p,
~+~' will vanish.

The convenience of the newest coefFicients is made
apparent when one now compares (27) with (1) and
thus finds:

rao, &r ~,= (L, L&1, Ml M)
X (L&2, L&1, M lrrr)Prr+&, (23)

(xr~I'r~o, .w ~ I

H"'
I

xvr' r.I) o(2&)

are each numerical multiples of the quantity PL, z,a& for
all the values of M(0, &1) and m(0, &1).

Putting the sum of (17), (21), and (22) into (15) and
integrating over spins gives:

d~&"=d~{
I
Z«r'P«I'»I'
+Q ~rl Qr ~r'(vror, -i'rv.

+E& ~&v--"I'&.~--) I'} (25)

This expression, as it should be, is independent of the
azimuth &o and even in rr= cosor and (1—rro)&. It is less
obvious that, although it contains spherical harmonics
to the order l= L+2 (for a given L) it nevertheless will

Q L &rLKL+Q LL'&L(&rl &rL'), KLL') (29a)

o'A =Jr rrrAr+Pr, r &r(&rr&rr )~Arr (L &~1), (29b)

&r'&=Jr. &rr&r+Er r. &r(&rr&rr:)'&rr (L. &~2)) (29c)

QL &rL+L+Qr, L'&L(&rr&rL')'C«(L &~3). (29d)

The forms (29), directly comparable with experimental
curves for o.', A ~ ~ make the energy-dependence
explicit by putting &rr and (&rr&rr )t in evidence. The
latter, of course, can be read directly from Fig. 1.

There remains the task of relating the new coefficients
with the previously introduced "matrix elements. "

' Jahnhe-Emde, Tables of Functions (B. G. Teubner, Leipzig,
1928), p. 110;E. Eisner and R. Sachs, Phys. Rev. 72, 680 (1947);
and C. Yang, Phys. Rev. 74, 764 {1948) have given proofs of a
theorem that this must be so.
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Comparison of (26), (27), and (16) gives:

Ko——
f no[',

&oo= —oAoo= —o&'(no'no+non *),
(30a)

(30b)

OCN I I I
OS LQ LS 20 2.5 I 55 iC 45 50 59 40 5.5 70

ts: oowf

FIG. 2. The isotropic cross section in barns (10~' cm~) multiplied
with the deuteron energy E in kev as a function of E &. The two
lower curves were calculated without providing for spin-orbit
coupling, using two values of the nuclear radius, E. The upper-
most curve is also for 8=7(10) '3 cm. The experimental points
designated by circles are due to Hunter and Richards; the crosses
are due to the Minnesota group; the triangular points are due to
Bretscher, French, and Seidl. (See reference 2.)

Eo (5/——4)
i
no i', (30c)

A =3& —~ = —(»/2)(lnol' —Ittol') (30d)

Ko4= —(1/10)A oo= (3/35)Bo4= (9/8) (no*no+ non4*)

(30e)

To be emphasized is the fact that not all the new coef-
ficients are independent of each other, as the tabulation
shows.

For odd I., we compare (26), (27) with (25) and
obtain:

&~ ——.IP»l +3I»~ '+6 *P»l-
+3I viP —6 'Pal', (3»)

Ai=3( vio'+(2/3)'Pio('+6) vio' 6Po—~' It i —(31b)

It would not be of much profit to list further ones of
these, particularly because of their inordinate lengthi-
ness.

The quantities occurring in the expressions (30) and
(31) are all "matrix elements" which must be con-
sidered unknown as long as no calculation of them from
assumed internucleonic forces is undertaken. Actually,
evaluation of them from experimental data may be
regarded as preferable, since it may give more per-
manently valid results.

5. COMPARISONS WITH EXPERIMENT

The measurements, as extended by Richards and
Hunter, ' are conveniently divided into three deuteron
energy ranges: below 0.5 Mev, where the second and
third anisotropy coe%cients, 8 and C, are observed to
be negligible; between 0.5 Mev and 1.5 Mev, where
B rises but C is still negligible; above 1.5 Mev, where
C rises. The three ranges may be appropriately referred
to as of first, second, and third "order, " in the sense
defined in the foregoing section. Thus, for example, the
negligibility of 8 in the lowest range implies that the
second-order terms proportional to o., (oooo)&, (a~&so)l

may be neglected there.
Another point becomes evident immediately. The

variations with energy of all the terms of a given order
n, proportions. l to (o.ra» r,)l with L=O, 1, ~ ~ ~, n, are
so similar that the experiments should not be expected
to differentiate between them, considering that they
measure superpositions such as given by (29). Figure 1
exhibits the similarity between" (o'oo'o)' an" (1/3)o'i;
between (aocr4)& and 0.08oo,. and between (&r&o,)l and
—,'o&. These facts effectively reduce all the formulas (29)
to the form:

(32)

where X stands for o', ~'A, &r'8 or o'C (os,'=Er,)

Xp =Xp q Xy =Xy+0.33Xp2 ~
X2=X2+0.08Xp4+O. DX]3.

(33)

From a viewpoint in which the coefFicients EI,, EL,I. ,
A~, AI.I, ,

~ ~ ~ are regarded as unknowns to be obtained
from experiment, one sees that the measurements
should not be expected to give more than the com-
binations (33) with any accuracy (except that X& and
Xp& are separately obtainable from measurements in
the third-order region").

One might also anticipate that the experiments will
not test the theory very severely. From (32), each
measured function of the energy Le.g. , A(E)], will be
represented by a theoretical formula having an unknown
constant LA&, Ao, Aoj for each range of energy. Each
will naturally be used as a parameter, adjustable so as
to obtain agreement with the data. However, the
energy variations given by the 0L, are of a special type,
and success in fitting the data with constant coefIicients
would confirm the assumption that the differences of
centrifugal barriers, as represented by the difference of
the 01., can account for the observations.

The latter conclusion gains support from the fol-
lowing. As a preliminary step, we have considered a
simplified version of the theory, for which the separate
conservation of spin and orbital angular momenta was
assumed. This seems to have some plausibility as a
first approximation since it is well known that a rough
accounting of the properties of the light nuclei is
achievable without introducing spin-orbit coupling.

' An exception from the following treatment must be made for
X~ in the third-order region, as Fig. 1 makes clear.
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Ko 0.027
Ei=Ei+3E02=0.030+0.005,
A g

=A I —E02=0.16~0.04,
E02= —0.15~0.2,
K2= K2+0.08E04+0.5KI 3=0.16~0.04,
A2= 2 2

—0.83EP4+0.&A I3= —0.8~0.2,
8,=3K,—A,+1.05E«+0.58»-1.07~0.1,
E3=0; A3= 082; 83= —23; C3= 25.

(34)

Coefficients which are u prt'Ori incapable of independent
variation according to the relations (30) and (31) were
eliminated from this tabulation as one can see. The

Reference to the "matrix elements" (9), (11), and
(19) shows that, without spin-orbit coupling, all coef-
ficients vanish except O.L, and yI.O'=pl, o+'. The most
striking consequence of this is that the triplet collisions
now contribute nothing to the isotropic component

( a') of the product distribution Lsee (29a) and (31)].
One can show that now

O'= I/i. (—)&~L1 3 5 (L 1)/2—4 L]
XI:(2L+1)~~)'«I'

with L even only. Figure 2 demonstrates the result when
R=7(10) " cm and if R=12(10) " cm. The experi-
mental isotropic cross section increases much more
rapidly with energy. To remedy this one might try
either to give the higher order coeKcients n2, a4, ~ ~ ~

extremely large values or to use a smaller value for the
nuclear radius, R. Either procedure would make the
coeScients 8 and C rise far too rapidly. The curves in Fig.
3 are drawn with the inclusion of spin-orbit coupling, as
discussed below, but they represent exaggerated lower
limits for the rate of increase given when spin-orbit
coupling is neglected.

Ke conclude first from the attempts just described
that the 0+0 reactions cannot be understood without
the inclusion of considerable spin-orbit coupling. We
also learn that the freedom given by the adjustability
of the constants in the forms (32) is limited. The only
additional restriction effective with the dropping of
spin-orbit coupling had been that odd L-values were
excluded from 0', yet this produced strong disagree-
ments with the observations.

All the calculations with spin-orbit coupling to be
reported here employed R= 7(10) " cm, arguments for
which have been given in reference 2. We found that
increasing the radius substantially makes the isotropic
cross section dificult to 6t, just as without the spin-
orbit coupling. (There is a low energy region in which
0'p predominates, and this is unchanged by introducing
the coupling. ) On the other hand, the radius adopted
represents about the minimum for which the rate of
increase of B(E) and C(E) near their beginnings still
lies within the experimental uncertainties.

Figures 2 and 3 demonstrate the fitting with the data
which were attainable with expressions of the type (32).
They are based on the values:
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FIG. 3. The anisotropy coeKcients as functions of the
deuteron energy.

uncertainties indicated were estimated for the curve
fitting.

The greatest interest of the numerical results is in
the comparison of E~ and Ko. Whereas Eo involves no
spin-orbit coupling, K~ can be regarded as a measure
of it. This was shown by the discussion above and by
formula (31a).If Ki =Xi could be assumed, then ICi/Eo
has about the value unity signifying that the spin-orbit
transitions contribute quite as much as those in which
spins are separately conserved. Actually, the entire
value of Xi=0.030 is not due to KI but, as shown,
E iE +i0.3K g. oNow, &oi (~2*~0+n~~o*) also con-
tributed when no spin-orbit coupling was included

I see
(30)]. It was found then that it could not be given a
sufficient magnitude (=3K&) without giving ni and so
~$2, 82, ~ too large values. This means that the con-
tribution of Ep2 to KI must be moderate and that
Ei/Eo cannot be much less than unity.

It is also interesting to see that the coe%cients listed
in (34) associated with larger orbital angular momenta
are still of order unity; thus the "intrinsic reaction
probabilities" for all values of L~&3 are quite com-
parable. There are also minor points to be noted: that
a negative A2 is to be expected since the main term of
i 9 is —(15/2)

I
n2

I

' according to (30); by the same
token, a rather larger positive B (425/4) I

u. I' should
be expected and is found.

Note added in proof.—Since this paper vas submitted, work
along these lines has been published by Y. Nakano, Phys. Rev.
76, 981 (1949).This author expanded the results of reference 2 to
include the eRect of D-waves, without considering, e.g. , S—G
interference, which becomes eRective at the same time. This may
be quite defensible. Further, no consideration of the relations be-
tween the adjusted constants and matrix elements was attempted.
Nakano unfortunately did not possess the information, due to
Hunter and Richards (see reference 2), that the cos'8 term is
appreciable in the energy range considered, a fact which renders
futile a comparison of his numerical results with ours.


