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section of the plane of w and v with the plane normal

to curl w. Dot multiplication by t annuls the right-hand
side, so that we obtain the following not inelegant
theorem: I.et the curves t' be nerymhere tangent to the

p/ane of w and v, and everytohere normal to curl w; then

along these curves, which are determined by the instan-
taneous velocity field only, in any goto of a viscous

incompressible fiuid of uniform viscosity if the vorticity be

steady and the extraneous force be conservative Bernoulli's
theorem in the classical form

V+V+ 'v'+(p-/p)=F(t) (7)

is valid Sp.ecial cases when (7) holds for wider classes
of curves or for special types of curves or for surfaces
may be left to the reader; among these are the results
of Sbrana and Castoldi. '

' In the case of plane or rotationally-symmetric Bow the curves
8 are the vortex-lines, as indeed is obvious from symmetry, and

The foregoing theorem exhibits the non-uniformity of
the limit p,~0 in a strikingly simple dynamical form:
since the curves C, along which the pressure obeys the
relation (7), are determined by the instantaneous ve-

locity 6eld, they remain 6xed as p,—4, while at the limit
p, =0 of an inviscid Quid they spread out discontinuously
into Lamb's Bernoullian surfaces.

The results given here constitute an application of a
general theorem of pure kinematics, to be published
elsewhere. '
only if perchance the stream-lines and the curves of constant
vorticity magnitude form an orthogonal net (Sbrana's case
v curl w=0) does (7) yield a non-trivial result, namely a theorem
of type (8).

7 C. Truesdell, "The kinematics of vorticity, " Memorial des
Sciences Mathdmatiques (to be published). I am obliged to
Dr. P. Nembnyi for having suggested the problem of finding a
kinematical generalization of Bernoulli's theorem valid in motions
where Kelvin's circulation theorem does not hold, and for dis-
cussion of the present paper.
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The covariant S matrix formalism of Dyson has been applied to the calculation of the fourth-order radia-
tive correction to the magnetic moment of the electron. Intermediate results for the covariant 6-functions
which describe the interaction of virtual electrons and photons with the vacuum are given to order u. The
addition to the magnetic moment to order a' is found to be finite after the charge of the electron is renor-
malized consistently. This correction amounts to —2.97' /x Bohr magneton so that the magnetic moment
of the electron is p, =1.001147 Bohr magnetons.

ECENT developments in the techniques of
quantum electrodynamics, and in particular the

general considerations of Dyson, ' have shown that the
radiative corrections to the motion of the electron can
be made 6nite in all orders by the consistent use of the
ideas of charge and mass renormalization. The renor-
malizations are, of course, infinite, so that one is forced
to regard the present form of the theory as provisional.
Still, the fact that one can give an unambiguous, con-
sistent, and sensible prescription for dealing with this
situation, and the excellent experimental veri6cation
accorded the second-order eBects already computed,
suggest that an investigation of a fourth-order eGect
might be of value: 6rst, in order to make possible a
sensitive test of the agreement of the theory in its
present form with experiment and second, to demon-
strate in a complete calculation of a particular example
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' F. J. Dyson, Phys. Rev. 7, 486, 1736 (1949), henceforth

called I and II, respectively.

the feasibility of Dyson's program. The magnetic
moment of the electron was chosen for investigation
because it promised to present the least difhculties of
computation while it does contain those points of
theoretical interest which are relevant to the difhculties
of quantum electrodynamics. Furthermore, in view of
the success already achieved in the measurement of the
anomalous moment of the electron, ' it appears that the
fourth-order eGect may be accessible to experiment.

METHOD OF CALCULATION

We shall begin with a discussion of the fourth-order
corrections to the elastic scattering of an electron by an
an external electromagnetic 6eld. The question of
isolating that part of the scattering which may be
attributed to an anomalous magnetic moment will be
discussed in a later section.

In evaluating the matrix element describing the
scattering, the methods of Dyson have been followed
quite closely. %e, therefore, require the fourth-order

~ P. Kush and H. M. Foley, Phys. Rev. 74, 250 (1948).
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part, U~&'&, of the transformation matrix U~ given by
Dyson' as

»q a+1 1 ~a&

f/i= Q Ug&"& =g
( ~

—
I $4x»$4x) .d'x„

n-0 a-0 ( Ii» ) I!4

XPLH'(x»), H'(xg) EV(x )] (1)

»)—» 1
Ug"' =

( )
—„d'xod'x d'x

E Ac ) 4! ~ „
XP$H'(x ) H (xg)g H (x4)]. (2)

The variables x; refer to particular space-time points
and are thus to be understood to have four components;
PP ] is the chronological ordering operator of Dyson. '

In the above expression, H'(x») describes the inter-
action with the external electromagnetic 6eld, whose
vector potential is denoted by A„'(x»), and is given by

H'( )x=»—(1/c) j„(x»)A „'(xo)

= —»el(x»)vA (xo)A.'(*»), (3)

while EV(x~) describes the interaction with the photon
6eld and is given by

and Dyson. ' The matrix element in question is given by
a sum of terms each of which may be described by a
graphically represented transition scheme. The dia-
grams for our process appear in Fig. I and will be dis-
cussed in the next paragraphs. To each diagram there
corresponds an integral over the variables xo, x~ ~ ~, x4,.
the integrand can be written down by inspection and
gives the contribution of the associated. transition
scheme to the matrix element. In these integrals the
effect of the ordering operator P[ ]has been absorbed
into the S» (x) and DI (x) functions, so that this operator
no longer appears explicitly. These functions do of
course contain an implicit dependence upon P[ ] in
view of the relations

-', S» p(xg —x») = (Pg p(xg), P.(x»)]),»(xg, x»), (5)

(hc/2)DI'»(x& x») = (PLA—„(xz),A„(x2)])p

= (f»c/2) b„,Dp(x, —x,), (6)

where ( )» denotes the vacuum expectation value.
To complete this summary of the method of calcu-

lation, it will be convenient to specialize the discussion
to the problem at hand. For this reason we turn now to
a discussion of the diagrams in Fig. 1 and the cor-
responding integrals.

H (x;) = ieg (x;)—y„f(x;)A „(x,:) hc»»'»P(—x;)P( )x(4).
It is to be observed that the operator iecf(x;)—y„f(x,)
is the usual unsymmetrized current density operator for
the Dirac particle field. The term —bmc'gP appearing
in H (x~) implies that the interaction representation in
which the theory was originally cast has been modi6ed
so that the mass appearing in the equation of motion of
the electron states is the mass of the electron as cor-
rected by its interaction with the radiation field (i.e.,

presumably the experimental mass) rather than the
mass of a hypothetical uncharged electron.

The matrix U has the property that when it is applied
to the state vector of the system at —~, it produces
the state vector at +~. Uj is the part of U corre-
sponding to a 6rst Born approximation and is the
limiting form of U for a weak external 6eld, while U&&')

is that part of U~ which describes processes involving
four interactions between particles and photons and one
interaction between a particle and the external poten-
tial. As such it describes a great many processes in
addition to those in which we are interested. In par-
ticular, we shall be concerned with the "one electron"
part of U~"&, i.e., that part of U~&" connecting states
consisting of a single electron and no photons. A simple
and. elegant method of extracting from U any portion
in which one is interested has been given by Feynman

' See reference 1, II, Kqs. (6) and (7}.' See reference l, I, Section V.
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' See reference 1, II, Section II.

Fzc. 1. Feynman diagrams for the fourth-order radiative cor-
rections to the scattering of an electron by an electromagnetic
Geld.
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included in

X X,

FIG. 2. Feynman diagrams for the second-order radiative cor-
rections to the scattering of an electron by an electromagnetic
Geld.

The diagram I gives rise to the integral

AX' fM'= ——,' d'xpd4xi d4xpA„'(xo)P(xi)y„
Ac 4

X5» (xp —xi)yxS»(xo —xp) y»5»(xp —xo) y.

XSF(x4 xp) ygf —(x4)D»(x, xi)D»(—x4 xp) (—7).
e2 1

4mkc 137.0i

This diagram is irreducible since it cannot be repre-
sented as a lower order process corrected by modified
interaction functions. It contains a logarithmically
divergent charge renormalization plus 6nite physical
effects, of which the magnetic moment, to be extracted
later, is one.

Integrals analogous to M can be written down for
the diagrams grouped under II. For example, we might
observe

en~a. ~

3f~l'= d'x d4x d'x d4x d'x
4hc ~

X TrLygS»(x, —x4) y„S»(x4—xo)]

XA „'(xp)P(xi) y„S» (xp —x,)y„

X5»(x2 xo)|4 (x2)D»(x2 x4)D»p(xo xi) (8)

where Tr( j indicates the trace of the bracketed ex-
pression. These diagrams are all reducible, however
to the second-order diagram 2 in Fig. 2. Since the
second-order diagram 2 is given by

X-X

Fn. 3. Feynman diagram for the second-order terms of Dg'(x}}.

e nm
d xpd xid xpA» (xp)P(xy)y„S»(xp xy)y»

ac 2 &

XS»(xp —xp)y„g(xp)D»(x& —x,), (9)

all higher order corrections as well as (9) itself are

e ax
M = ———

i dxpdxpdxp dxjdxydxy
hc2~
Xd'xpd4xp'doxp "A„"(xp) D»'(xp —xi)

Xg'(x ') I'„(x —x ', x "—x )5 '(xo' —x,")

Xr»(xp —xp, xp xp)5» (xp xp )

X P»(xp xo p xQ xo)lf (xp ), (10)

where the primed functions and the current operator
I'„(x, x') are as defined by Dyson. ' The presence of nine
rather than five variables of integration is associated
with the fact that (10) contains terms of all orders in n
except the zeroth. The primed functions and I'„are to
be obtained as expansions in n, and inserted in Eq. (10).
The terms of order OP will then include all of the dia-
grams in class II. When this is done, integration over
four of the variables will be trivial, as these variables
will appear only in the arguments of b-functions.

We should like to emphasize that for the evaluation
of the diagrams of class II, the use of the reduction Eq.
(10), rather than expressions like Eq. (8), is of great
assistance in the unambiguous elimination of the eGects
of charge renormalization. In any order, radiative cor-
rections to scattering processes must be expected to
include terms which merely renormalize the electronic
charge occurring in lower order corrections. Thus, for
example, a strightforward evaluation of 3f I from ex-
pressions like Eq. (8) would yield infinite corrections to
the magnetic moment for just this reason. ' Were the
charge renormalizations 6nite, this would cause no
difBculty as these terms could then be readily subtracted
out. They are, however, infinite and one would therefore
have to exercise the greatest care to guarantee that no
6nite remains of charge renormalizations had been
included in the true higher order correction. On the
other hand, in using the reduced diagram method one
explicitly separates out all renormalization eGects,
infinite and finite, at each order, so that the isolation
and removal of the entire contribution of renormaliza-
tion to the moment is simple and unambiguous. For
the purpose of illustration the renormalization terms
will be retained throughout so as to exhibit at the con-
clusion the renormalized second-order moment. This,
of course, is not really necessary since the under-
standing that all effects be given in terms of the experi-
mental charge allows one to drop renormalization terms
as they appear.

~ See reference 1, II, Sections III and IV.
~ One can avoid the use of the reduction Eq. (10} if one is

willing to introduce Pauli regulators in such a way as to make all
charge renormalizations Gnit». The application of regulators to
higher order processes is discussed by J. Steinberger, Phys. Rev.
76, 1180 (1949). The true fourth-order correction obtained after
the now Gnite contributions from charge renormalization are
recognized and removed is the same as obtained by our procedure.
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FIG. 4. Feynman diagram for the second-order terms of Sp'(x).

integral

Dr„„&2&(x)= (—1)(—i/Ioc)2)I d'xod4x,

X g t &„(x1),&1,(x2)7)o

X(~L(1/)i (*) (1/)i.( )7)o
Diagrams of class III are all reducible to the second-

order diagram 1 of Fig. 2. Therefore, methods similar
to those described in the last paragraph are to be used
in their evaluation. These diagrams include corrections
to the polarization of the vacuum by an external Geld
and charge renormalizations applied to lower order
vacuum polarizations. As such, the observable eGects
which they represent are modiGcations of the external
potential and not of the properties of the electron. This
implies that they cannot contribute to the magnetic
moment, so they will not be considered in any further
detail.

The diagrams of class IV can all be regarded as
reducible to the second-order diagram 3 of Fig. 2,
without including any modiGcations of the external
potential at the vertex xo. They can therefore contribute
nothing but a charge renormalization of the zeroth-
order scattering. They are of interest only if one wishes
to investigate the actual form of the fourth-order renor-
malization.

Our discussion of the diagrams may be concluded
with the remark that by the Furry' theorem diagram
Va and Vb exactly cancel. '

The remainder of the paper will be concerned with
the evaluation to order n of Sp', DI', and I'„and the
extraction of the magnetic moment correction from the
relevant integrals M and M . No error has been in-
curred by the neglect of the supplementary condition. "

Here

Xb.„D3 (xo x,+x—)

—(coor/2) t d4xod4xoD3 (x1—x2)

XTr[yaz(xo —x,)y„Sp(xo —x,)7

XDo (xo—x1+x)

—2i 4

I d4pd4kd4k'd4p'
(2x)4

X I d4X d4X C
—1o(*1 *3)C 43(*3 ~3)

2 3

~&+~)——

Z fk K Zpk K

XTr y„
$2+ K2 /~2+ K2

1 p 1
I"d p.-"

2+ (2~) 4 ~ (p')' &

iyk 14 iy(k —p) 14— —
XTr y„

k2+ 14-"(k—p) 2+ 32

px =pox„= p x—poxo;

SECOND-ORDER FUNCTIONS

The function Do'(x), which describes the properties
of a virtual photon as modiGed by its interaction with
the electron-positron Geld, must be obtained to second
order in e. The leading term, of course, is

2i p d'p
Do(x)= —

I
e-*&*—.

(2x)4 ~ p'

The corrections to this function arise from the ability
of the virtual photon to create pairs. The first term is

simply due to the creation and annihilation of one pair,
as described by the Feynman diagram Fig. 3, or by the

8 Wendell H. Furry, Phys. Rev. 51, 125 (1937).
9No reference has been made to diagrams and associated

matrix elements arising from the term —Bmc'P(x)P(x) in H~. As
described by Dyson, diagrams containing these interactions are to
be placed in one-to-one correspondence with the diagrams con-
taining self-energy parts. Their effect is taken into account in the
evaluation of the Sg', P'(x), and P'(x) functions.~ F. J. Dyson, "Longitudinal Photons in Quantum Electro-
dynamics, "Phys. Rev. (to be published).

2i l'yP —z
SF(x)= —

~
d4pe '&'

(23r)4 ~ p2+ o2

The integration over k must be carried out carefully,
because the integral is divergent. This has been eftec-
tively carried out by Schwinger and yields"

ipk —
14 iy(p k) —14——

d4P Tr ~
k'+ 31' (p —k)'+ 14'

Six"- I'+I'o
(B„„p"-—p„p„) lim In —1

3 P~ao

~ 1 212(1 1p2)p2
+i2r2(5„,P" P„P„) I

d-r— (12)
~ o «2+ p'(1 —22)/4

after the requirements of gauge invariance have been
imposed. Since the electromagnetic potentials obey the

' Julian Schwinger, Phys. Rev. 76, 790 (1949), Appendix;
Schwinger's result has been multiplied by 2~ because of slightly
different definitions of the singular functions.
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Iorentz condition, the term (p„p„) may be dropped.
Then

DF„„&2&(x)= b„„DF&'&(x),
and

Dp'(x) =Dp(x)+Dp&'&(x)

22 t' 1 ( 42

p —i1+—Ai
(2 )4J p2& 2x )

42
&

& 2v'(1 ——',v')
+— dr,

22r ~ o 4K'+P'(1 —v')

42

=
i

1+—A iDF(x)+Dp&'&(x),
I

The function Sp'(x) describes the behavior of a virtual
electron as modi6ed by its interaction with the electro-
magnetic Geld. The relevant diagrams, in this case, are
in Fig. 4, while the appropriate integral is"

sp"'(x) = (—i/kc)'( —2e)'J" (P[4 (»), 4(x2)7)ov I

x (P[&P(x2) & &P(x2) 7)&&p~ (P[A &(x2), A „(xs)7)&&

XSp(x&+ x—x2)d'x2d'x2

—(—i/k)ct d4x2(P[&P(x, ), &P(x2)7)p

X 52&&c2S p(x1+x—x2)

where
4 I'p+I'

limln —1 .
3 P-+ae

=e'/8kc i Sp(x2 —x&)y„SF(x2—x2)

=i 1+—A iA„'(*)+—2 '&'&(x).
&2 '&t 42)" (14)

This inhnite constant, however, has no observable
consequences because the term in which it occurs is
indistinguishable from the original Dp(x) function. It
merely means that the matrix element in which Dp(x)
occurs is multiplied by a factor [1+(42/22r)A7 and that
the quantity which measures the intensity of the
dynamical interaction described by the matrix element
must be renormalized.

By a very similar calculation, the function A "(x), the
external electromagnetic 6eld modi6ed by second-order
interaction with the pair 6eld, may be calculated. Thus,

(A„(x)=J e"«pA„(p)
i

1+—A
i

2m

~p2 ~& 2v2(1 1v2)

+ —
i Ck

22r J
&&

4K'+ p'(1 v')—

X y„Sp(x&+ x—x2) b„,Dp(x2 —x2)d4x2d4x2

+2/2kcJ d x2SF(x2 xl)b2&2c SF(xl+x x2)

2'rp K

= (&2/2&r2) (2&r)-4
i

"d4pe-'F*
p2+ K2

iy(p —k) —K 1
X i d4ky„

i J (p —k)'+K' k'+ V

2'&&P K—(4in'/c4) (bmc2/hc) . (15)
P'+ K'

Here again, the integral over k diverges and therefore
must be evaluated carefully; furthermore, charge renor-
malization must be exhibited explicitly. This identi-
fication can only be done simply, however, after the
integrand has been rearranged considerably so as to
write it as a function of iyp+K Thus, ".

i~(p —k) —.
I(2yp+K) = Jtd4ky„

(p —k)'+ K2 k'+ V

iy(p —k)+2K

J J [(k pg)2+K2g2+p224(1 g)+) 2(1 g)72

1

i by the use of 1/&2b=
~

dg
I [&2g+ b(1 —g) 72)

f imp(1 g) iyk+ —2K-
= —2 I dpi d4k

J [k2+ K2g2+ (p2+ K2)g(1 g)+)&2(1 g)72

8 i'—2 I dye
'

d4kPf, g (16)
J c&k [k2+ K2g2+ (p2+ K2)g(1 g)+ y2(1 —g)72

"The D~(~) function here is replaced by a hg{s) function with mass AX/c to avoid an anticipated infra-red catastrophe in the
physically significant part of the Sz'(x) function. Sz&~)(x) does not diverge in the infra-red.

~ The Lorene invariance of I assures that it is a function of (imp), hence of (imp+a).
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Here the second integral represents a surface term that must be added to take into account the eGect of the
displacement k„~k„+p„u at large values of k', where the integrand does not tend to zero rapidly enough. It should
be emphasized that all integrations are undertood to be symmetrical with respect to the origin of the variable of
integration; i.e., the angular integrations are to be carried out first, and are followed by the integration over

~
k~."

Kith these points in mind, the operator becomes

1
r(imp+«) = —2 du d'k [(iyp+K)(1 —u)+K(1~u))

[k2+X2)2 [k2+X 2]2

(iyP+K)(1 —u)+K(1+u) 1 k-"

+ +sppu (17)
[k2+P 2]2 [k2++2)2 [k2+g2)3

vrhere
A2= «2u2+X2(1 —u)+(P'+K')u(1 —u) (18a)

Using the facts that"
A32= «su2+X2(1 —u). (18b)

and that

1
d4$

(k2+u2)3
=i~ /22u 2 (19)

d4k
(k'+42)' (k'+432)'

one obtains

~1 (P'+ K')u(1 —u)= —2~t'd4k I ds = —$7l dz {20)
[A "-+(P'+K')u(1 —u)z)' l)3 A'+(P'+«')u(1 —u)s

I(imp+«) = —2
(k'+432)'

(imp+«)(1 u)+«—(1+u) i+2 in'
dl d4k +u(z+p+K) —K u

2 2

+i+ [(2iyP+K)(1 u)+—«(1+u))(iyP+«)(iyP K)1l(1—u) ' —ds
Je p 2+(p2+«2)u(1 —2l)s

(21)

Only the still remaining integral over momentum space is divergent here, and it ~vill become apparent that it
consists of renormalization terms only. After a slight rearrangement of the hnite parts, the operator assumes the
for Dl

(1+u)« 1 K'u(1+u) in2-
I(syP+K) = —2 du d'k —(ivr2/4)K +(iyP+K)(1 u) ~l

—d'k —2i2r2 +
(k'+532)' (ksygss)2

K(1+u)+(z&P—K)(1—u) I1—[2«'u(1+u)z]/[u'K'+X'(1 —u)] I
+ix2(imp+«)'u(1 u) ds—

0 K2342+g2(1 —u)+(p2+K2)u(1 u)s
(22)

The erst term in this expression is equal to (mrs/a)(hmc2/kc) and is therefore canceled by the mass renormalization
term, Eq. (15). The rest of the integral can now be inserted into the expression for Sp'(x),

Sp'(x) =S»(x)+Sp&2&(x)

iyP —a f n
2i/(2x)4)f—e '&*d4p —

(
1 8~+(a/2n)) duu(—1—u)—

p2+«2 ' 2w )
K(1+u)+(i&P K)(1 u)—I1 [—2«2u(1+—u)s)/[«su+X'(1 u)))

X ~ dz
aj, «2u2+)P(1 —u)+(P2+«2)u(1 u)s

= [1—(a/2~)B]Sp(x)+(a/2x)8» &'&(x)

"This implies fk„f(k2)d4k=o, f k„k~f(k2)d4k= flak k3f(k')g4k, etc.
"R.P. Feynn1an, Phys. Rev. ?6k 769 (1949).

(23)
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where 8 is an ininite constant, "
f

1 k'+A ' —4x'u(1+u)+A '
8=(1/in') (1—u)du d4k

Jo al [k'+he'j'
k' —4x'(1 —u ——'u')

=(1/iw')
~

udu d'k
J Lk +"u +g (1 u)]3

(24)

The fact that 8 is inhnite, however, is not a source of
diKculty since it can be interpreted as a charge re-
normalization just as the constant A in the treatment
of the Dp'(x) function.

It must now be observed that the physically sig-
nificant term of Sr'2&(x) diverges logarithmically as
)—4. Since this divergence is associated with the
vanishing mass of a photon, it is an infra-red catas-
trophe. It is introduced by the separation of real and
renormalization eGects in S'"&(x). One must hope, of
course, that the logarithmic dependence on X will cancel
when all contributions to a certain scattering process
are added together. The work of Bloch and Nordsieck"
indicates such a cancellation will actually occur.

We shall merely note now that the modification of
the electron wave function brought about by virtual
interaction with the electromagnetic 6eld is obtained
from the same diagram as the Sr'(x) function, if one of
the electron lines is taken to be an external line. Then,
since the wave function obeys the Dirac equation, "

P'(x) =L1—(a/4x)B]g(x) (25a)

'(x) =L1—(~/4x)K4(*). (»b)
As pointed out by Dyson, the eGect is merely one of
renormalization so as to preserve the unitarity of the
matrix U.

Some explanation is required for the necessity of replacing the
renorrnalization factor Z2 in Eq. {23}by Z2&=Z2/Z2& in Kq. (25),
a substitution which is equivalent to dividing by Z2n the matrix
element of U between states containing n electrons; for as long
as the scattering matrix U is de6ned between two specific surfaces
01 and o.2 in the remote past and distant future, its unitarity is
guaranteed. Thus, it should not be necessary to apply an explicit
renormalization. Furthermore, the use of the eigenstates of non-
interacting fields to specify conditions at al and cr2 must be jus-
ti6ed, since experimental conditions mould lead one to assume

Fro. 5. Feynman diagram
for the second-order terms
of I'„{x,x'}.

X-X

"By the use of

f p, (1—2u)k2 pl p, —2ukp2+2a u2(2 —u)
p ~ (k2+Ap2) ~p ~ (k +Ap2)

, —2(1—u}Ap2+28u2{2 —u)
{k2+Xo2)3f

w hich is the result of an integration by parts.
F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937}."See reference 1, II, Kq. (99). Z2=1—(af/2~}&+ ~ ~ .

that the one-particle eigenstates (i.e., essentially the Bloch-
Nordsieck states) of the interacting electron and photon fields
(or combinations thereof for several particle problems} ought to
be used. The replacement of 01 and 02 by —~ and +~, however,
together with Dyson's computation rules imply a certain averaging
of the matrix elements over long sequences of surfaces in the past
and future. One can readily show that the averaged matrix
element is just equal to the matrix element between Bloch-
Nordsieck states, multiplied by a constant which depends only
upon the number of real particles in the initial and final states.

For simplicity, we con6ne our attention to the one-electron
part of the scattering potential and restrict 0.1 and 02 to be surfaces
of constant time, tl and t2. The requirements that the state vector
C 1(t) corresponds at time tl to an uncoupled or "bare" electron of
momentum kl and that C2(t) corresponds at t2 to a bare electron
of momentum k2 are contained in the relations,

P,+(x„)cg(ig)=ay, +exp[ikg„x„]C)(ig),
p~+{„„)C,2(t2) =ay~+ expt-ik2y~yg jC,2(t2},

where the u+'s are annihilation operators, together with the
annihilation of cl(tl) and c2(t2) on application of p (x„) and
A„+{x„}.The possibility that c»(tl) and c»(t2} have tl or t2 de-
pendent phase factors is eliminated by the requirement

(C2(t2)) 8~2 ~I,1 C»(tl)) =1
for all tl and t2 ~ To interpret the procedure of calculation used it
is convenient to expand C 1, and C2 in the exact eigenstates, 4 (t),
of the coupled electron and radiation 6elds thus,

c,(t,) =Z A.(t,)c.(t,),
C'2(t2) + +n(t2}+n(t2) ~

We might observe that these relations serve to determine the
behavior in time of the states C; for zero external field. That is,

c»(t) = Up(t t )4 (t ) =Z A (t )0' (t),
42{t)= Up(t, t2)4 (t ) =z 8 (t2) 4' (t).

The important point is the fact that the tl and t2 dependence of
the A's and B's as determined by the boundary condition is
given by

A „(tl)=u„expt. (i/k}(E„—El)tl),
B„(t2)=b„exp[(i/k)(E„—E2)4j.

Thus the matrix elements of U(t2, tl) between Cl(tl) and C2(t2)
are related to matrix elements between eigenstates of the coupled
system by

(c'2 U(t2 tl)c»=& b a exp/ —(i/4)(E —E2)t2j
XexpL(i/k)(E —El)tlj(+ (t2), U(t2, tl)%' (tl)).

Since the matrix elements between the exact eigenstates will
not depend upon tl and t2 if these occur respectively before and
after the application of the external Geld, we can average over
these times explicity, thus obtaining

((C4 U(t2p tl)C»))Ay=bn2 Aal(+n2(t2)p U(t2& tl}'kml(tl))q

where E 1=El, E 2=E2. From

((C'2& U(t2 tl)C. 1})Ay Gml 8 1(+ml& Up{t2& tl)+ml) Cml8m

mhere k» is taken equal to k», one finds u 1 a 1=Z2 and simi-
larly b l*bml=Z2.

If there are n widely separated electrons in the initial and final
states, the appropriate factor is clearly Z2", because the state
vectors C 1 and C 2 can be factored into states corresponding to the
presence of a single electron, and for each of these the above
analysis can be carried through,
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The vertex operator 1'„(x', x") describes the scattering of a virtual electron by a potential. The second-order
contribution to it is given by the diagram, Fig. 5, or by

~."'(x', *")= (—'/& )'(—M)'[7.(~[4(*.—'), 4(x )])oV.(~[&(xo)*&(x +x")])o

X y„(8[A«(x2—x'), A, (x3+x")])]
= (e2/8hc) y„SF(x') A@2 (x")y„Dp(x"+x') (26)

where

=(1/22r)3 I d4p'd4p"e '&'*'e '&""'L„(.p', p")

i42 t' v„(i r(P' k) ——«)y„(iy(P"—k) —«) y„
L„(p', p")= i d'k

42r3 g [(p& k)2+«2][(pl& k)2+«2][k2+y2]
(27)

Thus one obtains the operator L„(p', p")."This must now be rearranged so as to display explicitly renormalization
terms. First the denominators of the three 5-functions are combined,

y„[zy(p' k) «—5y„—[zy(p" k) «—]y„—
L„(p', p") = (342/42rz) 2udu dv d'k

{[k—u(p'v+ p"(1 v))]2+ A 2}3

1 1

= (i42/22r3) " udu t dv) d4k{y„[zy(p'(1 uv) —p"v(—1 u) —k) —«]p„—
~o "o

X [iy(p" (1 u+—uv) p'uv—k) —«]y—„I /(k"-+ A')', (28)
where

A"=u'[«'+ (p' —p")'v(1 —v)]+X2(1—u)+ u(1—u) [(p"+«') vt (p'"+ «') (1—v) ];
a change of variables, k„~k„+u[p„'v+p„"(1—v)] has been made.

On extensive rearrangement, the numerator of the integrand can be brought into the form"

(29)

—y„[k2—4«'(1 —u —-'2u )2] +2k.„(P', P";u, v),

where

K„(p'& p"; u, v) = (1 u) (zyp—'+ «) y„(zyp"+ «) (zyp'+—«) [«(1 u') r„—+z(1 u) (1 —uv) (p—'+ p")„
—i(1—u+ 2uv) (1—uv) (p' —p")„]—[«(1 u') y„—+i (1 u+ uv)—(1 u) (p'+—p")„
+i(1 u+ uv)—(1+u 2uv) (p—' p")„](—zyp

"+«)+ (1 u) y„[(—p"+«') (1—uv)

+ (p"'+ «') (1—u+ uv) ]—z«(p' —p")„u(1+u) (1—2v)

(30)

Thus, with

L.(p' p") = (z~/2~')
pl

udu du d4k

+y„(P' P")'[1 u—+u'v(1 —v)]+«0„„—(P' P")„u(1 —u). (31)—

A32 ——«'u'+ X (1 2u), —

y [k' —4«'(1 —u ——,'u')] 2E„
+

[k'+ A22]3 [k'+$"]'
1 k'(A. '-"—A22)

+3y„dz
[k'+ A32+ (A"—A, ')s]4

—4«'(1 —u ——,'u')
(k2+ A&2) 3 (k2+ A 2) 3

A. —Ap"
= —(a/22r) BV„+ +V„ II d—s—

A, '+ (A"—A, 2) 2

where B is de6ned by Eq. (24).

—2«zy„(1—u —-', u')
A "A.p'

(32)

' See reference 1, II, Eq. (26).
~' This expression may be compared with Julian Schwinger, Phys. Rev. 76, 790 (1949), Eq. (2.94). The expressions di6er only in the

de6nition of o and in the fact that certain terms, zero for a real electron, are included here.
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Finally, therefore,

F„(x', x")=q„b(x') b(x")+A„&» (x', x")

=gob(x )b(x )31+(a/22r)83 —(a/2&r)(1/(22r)2) t d'p'd'p" exp' ix'p' 2—$"p"]

X —+y„(A"—A02)! I ds
A' (&0 402+(A'2 —A02)s

=y„b(x')8(x")L1+(a/22r)Bj+A. „&"(x', x").

(33)
2&&2(1—u ——,'u') )

)

Here again the separation of the renormalization term 8 has made the physically signihcant correction divergent
in the limit 'A—+0.

CALCULATION

Now that the singular functions have been calculated to second order, it is possible to proceed with the evaluation
of the matrix elements written down earlier.

Thus,

M = —(eaor/2hc) Jt d' dx'pxdp'x dp' d$'&$d&' $d&' d$'2$d2'x A2„"(xp)DF'(xo xl)&p($1 )—
XF&($2—xl, xl $4)SF($0 —xl )Fp($0 xp, xp xp)SF($2 $0 )F„($2 $2 & $2 $2)&P (x2"). (34)

On substitution of the last part of Eqs. (13), (14), (23), (25a), and (33) one obtains, to order a',

~II ~IIO+~IIa+~IIc+~IId+~IIe+~IIf 20 (33)

t' a ) eaor
&M = —! 1+—A ! I d xpd $2d $2A»'(xp)DF(x2 $2)&p($2)r&S—F($0 $1)'Y&&SF($2 $0) Y&4'($2)

) 2)2c &

e ( a
1+—A !, d xpd'xld $2A0'($0)lP(xl)AF "(xp—$2, $2 —$0)&P($2), (36a)

hc

eo.'
t d'xlld'x, 'd'x, "d'x,d'x, A „'(xll)DF (x2 x&)&P(x,)y,S—F (xp' —$2)

4kc ~

X A„&'& (xll —x,', xll" —xll)SF (x,—xll") y„lp($2), (36b)

ea2
'~d xpd xld $2d $2 d $2 A» ($0)DF($2 $1)&p($1)r&SF($0 $1)r»SF($2 $0)

2kc
X b& ($2 $2

& $2 $2)lp($2 ), (36c)

en'
M""=— " d'xod'x&d'$2A „'(xo)DF (x2 $2)0 (x,)V„SF (x—p xl) y„SF "&(x2——xp) y&&P($2) &

2kc
(36d)

eo;~
M '= —

l

~ d'xpd'xld'x2A 0 ($0)DF ($2 $1)&P($2) V&Sp (xo $2) V0SF($2 $0—)7&&P($2) &

4kc ~

eo.'
3f r= — It d xod $&d x2A„'& l($0)DF($2 $2)&P($2)y„SF(xo——$2)y»SF($2 —$0)VA'($2).

4hc ~

Finally,

ea2
M = — or'J d xod $&d xod xod $4AF'($0)DF($2 $2)DF($4 $2)&p($—2)rDF($2 $2)Va

4hc

(36e)

(36f)

X SF(xp x2)p»SF($2 xp) p„SF(x4 xo)

peak($4)

. (37)
&tl The bar on jglI etc. indicates that the renormalization terms have been removed. These are incorporated in M ~. Since ~

contains only renormalization, MII~ is zero.
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lt is convenient to continue the calculation in momentum space. The momentum p| will be used to denote the
momentum of the final state and pm the momentum of the initial state:

4 (~) = v'""4(p2)d'p2, (i&p2+«)4(p2) = o (38a)

Then

&(~)= J~ &
*"'*tp'(pi)d'pi, 0(pi)(imps+«) =o (38b)

8 Cl f iy(p, k—) «—iy(pg k—k—') «—
M'= — (2v)'

I
d4pgd'p2A»'(pi p2—) i' d'kd'k'(1/k')(1/k")p(pg)y„

$~ ]6~6 (p —k)'+ «' (p —k —k')'+ «'

iy(p~ k —k')—« —iy(p, k'—) «—
Xv. , v. , vA (p2), (39)

(p2 k —k )2y «2 (p2 k )s+ «2

Mii'=
I

1+—A )I + I(2v)4 Ii d4p d'p A„'(p —p ) I udu dv

v», (pg —pg),u(l —u)+ (pi —p2)'y„(1 —u+u'v(1 —v))
Xlp(pg) By»+y——»(p, p,)'u'v(—1 v)—

«'u'+) '(1 u)+—(p, p,)'—u'v(1 v)—

X
~ 0 «'u'+X'(1 u)+—(pg pg)'—u'v(1 v)s—

2«'(1 —u —-', u')
4(p~), (4o)

[«'u'+ X'(1—u)][«'u'+ X'(1—u)+ (p,—p, )u'v(i —v)

(2v)4 i d'P&d4P&A»'(P, P,) I d—4k I udu I dv
8v'hc ~ J k'+ g2 3,

iy(pg k) «—K»—(pg k, p, —k; u, v—)
Xi(P )v, +~„(~"—~,')

(p —k)'+«' A"(p|—k, p2 —k; u, v) i& A '+(X"—A, ')g

2«'(1 —u ——,'u') iy(p, k) «— —
&4 (p2) (41)

A"A02 (p —k)'+ «'

ice' iy(pi k) « —iy(—p, k) «— —
M'"=--- (2v)' d'Pgd'P2A»'(Pg P2) lt d'k—

I udu
~ tv(P|,)p„

4v'&& " " k'+ &' " J (p k)'+ «' —(p —k)'+ «'

K.(p2 —k, p2, u, v) 1" ds

&"(pn —k p~ u v) ~o &0'+(~"—&0')z

2«'(1 —u —-'u')
4(p2), (42)

(iy(p, k) «) (1—u)—(1 [—2«'u(l+—u) vg/[«'u-'+ X'(1—u) g)+ «(1+u)
X vA (p~), (43)

«2u2+ X2(1—u)+ [(p —k)2+ «' ju(1—u) v

iec2 2v'(1 —-,'v')
(2v)'J d'p|d'p~A»'(pi —p2) J

d'k
J

dv
8m4kc 1—v' k'+ (4«'/1 —v')

ip(p, k) « iy—(p,—k) «——
Xk(Px) v. v» -v.4 (P2), (44)

(p, k)'+ «' (p2 k)' —«'——

iy(pi k) «— —
(2v)4 II d4p, d'p, A„&(p,—p, ) d'k u(1 u)du II ds—lp(p&)7„

0 (p, —k)'+ «'



R. KARPLUS AN D N. M. KROI L

M+2 1 iy(pi —k) —«
M' = — — (22r)' d'p, d'p, A„'(p, —p2), l d'k (Pl —p2)'p(pi)y, 'y,

g~4kc ~ »2+ ~2 (p —k)'+"
iy(p2 —k) —« v'(1 —ov')

(p, —k)'+" ", «2+(pl —p2)'(1 —v'/4)

Now, the interaction energy density of an anomalous magnetic moment pek/2mc with the electromagnetic field is

lj(xo) = —u(ek/2mc)-22F„, (&o)4(&o)o'o.ip(xo). (46)

Since the calculation is being carried out in momentum space, it is convenient to have the Fourier transform of
this expression. Its contribution to the scattering of an electron is

e
u(22r) Jt d pld P2Ao (pl P2)4'(pl)&ov(pl P2)A'(P2) ~

2hCK

(4l )

a ) ( ea y t
t' p' u(1 —u)«

iM"o~I 1+-A II + I(2~)'
i

d'pld'P2A'(pl P2)4—(p,)e„„(p, p2)„—4(P2) udu I dviI, 2kci J O
N2K2~l p

In calculating the correction to the magnetic moment of the electron, therefore, one must seek to bring the matrix
elements into this form by rearranging the Dirac matrices occuring in them and by using the Dirac equation to
simplify the momentum dependence of the integrand. This, of course, can only be done after the integration over
the directions of the virtual momenta has been made trivial, so that these variables no longer conceal a dependence
on the initial and final momenta. In this process, any terms that contain a factor (Pl—P2)' may be dropped from
further consideration, because they represent derivatives of the quasi-constant electromagnetic fields. Hence,
M"~ does not contribute to the magnetic moment. Further, Mr" gives (X2=0)

e ( a ) a
I

1+ A
I
—(2x)'J d'P d'P A:(P P2)&(pl)e"—(Pl P2).4(P2) —(4g)

2kcKE z ) 2z

The second-order part of this expression clearly is due to the well-known anomalous magnetic moment

(a/22r) (ek/2mC) " (49)

This quantity, however, depends on the "bare" charge e of the electron. The measured charge of the electron is
el = [1+(a/42r)A)e to second order. Furthermore, the external potential A„', whose source is a current, must also
be renormalized, (A„')2=[1+(a/42r)A jA„' Equat. ion (48) may therefore be rewritten, to order a',

ej A'y

(2 )'Jt d'P d'P (A '(P p)) ip(p ) .(P— P).4'(P )—
2ACK 27/

(50)

and is due to a magnetic moment
u"o= al/22r in units elk/2mc, (51)

which depends on the renormalized charge.
M ' can be evaluated quickly by observing that the integration over d'k and subsequent rearrangement of the

matrix element is idential with that in L„(Pl, P2), provided one sets X2=4«2/(1 —v'). Hence,

e a' t' p' 2v'(1 —-'v')
+IIe sos

2kcK 2x' p p

u(1 —u)
(22r)'

u'+4/(1 —u)/(1 —v')

The magnetic moment responsible for this scattering is

&&
i

d'pld'p2A;(pl P2)4(pl)~..(pl P2—)A(P2). (52)—
4

a' r
' t' u'(1 —u)v'(1 ——',v') a' (119 orog a'

dzc cR -- I=0.016-.
&o u'(1 —v')+4(1 —u) or' k 36 3 &

"Julian Schvringer, Phys. Rev. 73, 415 {1948).

(53)
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The expression for M " will be examined next. The first task now is to simplify the integration over k. The
situation here again is very similar to that encountered in the evaluation of L„(p', p"); simplifications can be made,
however, because of the equations satisfied by Pl and P2 and because (Pl —P2)' may be neglected. The scattering
becomes

4—zeo, '
M' r": (22r)4 d4pld4p2A„'(pl —p2) ~ u(1 —u)du ds vdv II dw~ d'g(pl)

X Y, {2Y[pl(1 —vw) —plv(1 —w) —&)—«}Y„
u(1 —u)s

{2Y[P2(1—v+vw) —Plvw —0)—«}(1—u) (1—[2u(1+u)s]/[u'+ (V/«2) (1—u)])+ K(1+u)
X VA (P2) (54)

{$2+ v2«2+. ) 2(1—v)+ v(1 —w) [«2u2+) 2(1—u)]/[u(1 —u)s) }
2

Here, obviously, the k& vectors in the numerator contribute no magnetic moment, because the linear term vanishes
and the quadratic one is independent of Pl and P2.

It is useful at this point to discuss the extraction of magnetic-moment terms from these more complicated mo-
mentum-dependent spinor matrices. Thus, with the neglect of charge renormalization terms (independent of pl
and P2) and terms representing higher derivatives than the first of A„'(xp),

2 (pl) «lp(pl) 4'(p2) =z(p2) «4'(pl) $(p2) 24'(pl) 42«r (pl p2) ~$ (p2)

4 (Pl) Y,2YP14 (P2) =4 (Pl) 2YP2 YA'(Pl) = —~,
4'(pl)Y.2YplY. Y p(p2) = k(pl)Y.2Yp2Y«YA'(p2) = —2~.

lp(pl) Y.Y«2YplY.&(p2) = lp(pl) Y.Y„2Yp2Y, lp(p2) = —2222„)

1P(Pl) Yv2YPl Yl42 YP17 1P(P2) 4'(Pl)Yv2'YP27«2YP2YvlP(P2)

(55)

$(P1)7v2YPl Y«ZYP2YvlP(P2) = 4«222«,

4'(pl)Yv2Yp2Y«2Yp&vp(p2) =0.

The magnetic moment contribution to M '" is due to a moment

~~2 ) ~1
prra

{ «} u(1 —u)du
im-"1

tB 'vd8 d'R '—
~p ~p ~p 2 u(1 u)z

2«[2(1—v) (1—u) (1—[2u(1+u)s]/[u'+ (1—u) X2/«2]) —(1+u) (1—v)—2« (1—v) (2 —v) (1—u) (1—2u(1+ u)s]/[u'+ (1—u) X2/«2])

«'v'+ )P (1—v)+ v(l —w) [«'u'+ X2(1—u)]/u(1 —u) s

(1—v) [v(1—u) (1—[2u(1+u)z]/[u'+ (1—u) X'/«2)) —(1+u)]
u(1 —u)du ~l ds II vdv ' du

7l 0 & p ~ & p [v'+ (X'/«') (1—v)]u(1 —u)s+ v(1—w) [u'+ (V/K') (1—u)]
(56)

As was already mentioned earlier, this expression may diverge logarithmically as X—4. It is easy to verify that
this catastrophe occurs only in the term which has two denominators, and that is associated with the integration
over u. After integration over s, only one simple term is left which is addicted with this difhculty. The photon mass
may then be set equal to zero in all others, and the integration can be easily completed to yield

422
f

11 2r2 1 X2y f' 1 X2
~

4«2err«{ ——+- ln—}={—0.090+—ln-
2r' &24 28 2 «2~ & 2 «') 2r'

(57)

The expressions for pl, p, ', p, become successively more complicated and very much more tedious to evaluate
and cannot be given in detail here. The contributions from group II are all treated in a manner similar to I.„"'.The
presence of two virtual momenta in M, however, and the symmetry of the integrand suggest that this quantity
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be evaluated by noting that

e a'
t ( (iy Bq t" y ( (iy Bq
d'pd'p~, '(p —p) &(p», I +I ——}i d~ I»I «+I—

Pic 16m' E2 api J.~ ) E E2 ap'2&. ~

(ip 8 ) !'" ) ( (iy 8
x'I «+I — „ I„@"l~ I «+I — „, I

d.'" }v. ~(p.)
t, 2 ~p"2 ~.. i «2 ap'"& . )

d4kd4k'/k'k"

" L(p —k)'+t ]L(p' —k —k')'+t ']L(p"—k —k')'+t "]L(p'"—k')'+t "'] t':t" '~-
and evaluating the integrals over k and k' before carrying out the other indicated operations. ~ The result will

clearly involve five variables of the type of u, v, u, Eq. (54), to be integrated from zero to one. The other two
remaining terms also involve five variables, but in these the variables tend to separate into two groups, because
they were introduced in connection with two independent momentum integrations. The magnetic moments may
now be deduced as before. They are integrals of rational functions of the auxiliary variables. ~

After one trivial integration, p,
' involves the same type of functions as p, ". It is found, however, that the

infra-red catastrophe introduced into the X„& ' operator is compensated by one that arises in the integration over k,
Eq. (41).In other words, the terms depending on the photon mass all go to zero as this quantity is made to vanish.
Thus

u'(ll x ) n'„-.=—
I

—+—l=o.778—
«' (48 18)

(59)

and no longer involves X.
After a term —(a'/2«') In(X'/«') is separated from tir", this quantity is finite in the limit X~O, so that the

integrand may be accordingly simplified. A typical term, which happens to involve only four variables, is

2iet (1—t) (1—ue)
du dv I dt ~ dx dq

~ p & 0 ~ 0 Itp ~ 0 {swL1 uv+ut(I —e)]'+ut(1 —ue) }
' (6o)

If the first three integrations are carried out in the order indicated, each can be done analytically by virtue of
simplifications that occur when the limits are inserted in the preceding integration. The order of the last two
integrations must be determined by inspection for each term; with two exceptions they can be carried out with
the help of well-known formulas. The value of p,

'" is therefore given in terms of two integrals, Ll and L,2.

Here

ancl

n' ( 11 4 1 49 34 ) n' u'
—i2 Ink'/«' —l3—+3—7r' —8—m' In2+ —L2+—Li I=—3.178——isInX~/«2—

24 9 6 3 3 )

I

Li= Lin(1 —x)]'dx/x=3 Q —=2.4041138
~o n=l +3

(61)

(62a)

I 8 (In2)'"+'
Iq Dn(1+x)]'d——x/x=(ln2)'-/2+(In2)'t6+ P (—1)"+' =03005655 '4

~o (2n+ 2) (2u)!

A typical term of p, is

1 I 1 I

du)l de) dt)l drerettu4v'

0 0 0 0

(62b)

X (63)
L1—wt(1 —un+ u'u')] {u't —reL(i —t+ tue) '—u't'(1 —us) —2tu'v(1 —t+ tuv)] }

'

~2 The integration over the virtual momenta is accomplished by combining the six denominators in the manner of Eq. (16). There
are many equivalent ways of introducing the auxiliary variables; some of these, however, are much more convenient than others for
carrying out the subsequent integrations.

~ The details of two independent calculations which were performed so as to provide some check of the final result are available
from the authors. The work is made lengthy by the large number of integrals over auxiliary variables.

~4 pote meed As proof: Using the results of H. F. Sandham, J. Lon. Math. Soc. 24, 83 (1949), one can show that L2 ——$LI.
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where a trivial integration over one variable has been carried out. After two integrations, which again can be carried
out analytically by virtue of some remarkable simplifications, the functions of u and e obtained are very similar
to those encountered in the calculation of p'". The final result, in terms of the integrals Eq. (62) is

0! 13 5 0!
p,

r =—13/96+—n' ——~' ln2+ (5/3) 1.2+ (5/12) 1.& ——0.499—. (64)
36 6

SUMMARY OF RESULTS

The five contributions to the fourth-order radiative
correction to the electron's magnetic moment are, Eqs.
(53), (57), (59), (61), and (64),

n' 13 13 5 5 5 t1'

+—m' —-x' ln2+ —1.2+—I.g
= —0.499—,

~' 96 36 6 3 12

0.'11 1 Q"
err =——+—+' =0.778—,

m"- 48 18

a' 1 p 7,'y a'
= —0.090—+-( ln—

~
—,

„2j ~&'

0,'11
rr 3 —=0 016—;

36 3

here I.& and 1.2 are the integrals of Eq. (62a) and (62h),
respectively. Hence, the total radiative correction to
the magnetic moment of the electron, to fourth order
in e, is

o."- 11 4 1
pr r. —13—+3—m' —8—m' ln2

24 9 6

n 1
eg'-' 95 17 4/

p =———9 —3—g2+9m. ~ ln2 —18I 2
——Lg

2~ ~' 288 36

n' 1 t' X'-) u'-'

= —3.17g—-( ln —
(
—,

7I~ 2 I K2) ~2

n'-' 11 1 1
p, =—+———x'+ —ln-rrd—

24 18 2

49 34 1
+—I.g+—I g

——1n—
3 3 2 I(

Cl y Ay———2.973=0.001147 in units (e~fi/2mc)
2' ~2
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