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Moderation of Negative Mesons in Hydrogen I:Moderation from High Energies
to Capture by an H, Molecule
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The moderation of negative p.- and ~-mesons, as well as of hypothetical negative particles of mass 1000 m
and 1837 m is described for a hydrogen moderator and a meson energy range: 10 Mev~0 ev (capture by
an H2 molecule). In this energy range, there are three principal modes of energy loss by the mesons: 1.High
energy ionization loss, describable by the ordinary stopping power theory. 2. Energy loss due to nuclear
collisions. 3. Low energy ionization loss caused by non-adiabatic processes special to hydrogen. From
estimates of the probability of these three processes, the moderation times of a meson in liquid hydrogen
from 10 Mev to capture by an H2 molecule are calculated:

From 10 Mev to e/c =5 X10 '
From o/c=5X10 s to tt/c =6X10 '

in 1Hg

From s/c=6X10 3 to s/c=5X10 & in 'H~

in 3Hq

8.6 X10».sec.

7.4X10 13

7 9X10»
9.0X10»
9.4X10»

4.8X10»
9.7X10»
7.4X10»
1.1X10»
1.2X10»

2.9X10»
3.4X10»
1.5X10»
2.2X10»
2.6X10»

2.4X10 10

6.3X10»
2.4 X10-»

2.9X10»
3.4X10»

1, INTRODUCTION

~HE absorption of negative mesons in hydrogen
and deuterium can yield interesting information

on the character of mesons and their coupling to
nucleons. ' However, the possibility of an experiment
depends on an appreciable fraction of the negative
mesons being absorbed before decay can take place.
In this and a following paper we analyze the moderation
of a negative meson in liquid hydrogen. Such an
analysis might seem superfiuous, because of the exis-
tence in the literature of detailed studies of the mecha-
nism of slowing down of negative mesons. ' However,
so far as the present author knows, those studies were
not intended to apply to the case of hydrogen and in

part, at least, use approximations inappropriate to that
case. In fact, as we shall see, a principal part of the
moderation process takes p1ace by molecular mecha-
nisms peculiar to the case of hydrogen. '

In this 6rst paper, we consider the moderation of a
negative meson from 10 Mev down to energies less than
0 ev. At the low energy end of this range the meson is
bound to a hydrogen molecule. This energy range can
be divided into three parts according to the velocity of
the meson.

' See for example: B. Ferretti, "Report of an International
Conference on Fundamental Particles and Low Temperatures, "
Phys. Soc. London {1947),p. 75. C. Marty and J. Prentki, J. de
phys. et rad. 10, 156 (1949). Irving Stein and L. I. Schi6, Phys.
Rev. 76, 461 (1949). R. E. Marshak and A. S. Wightman, Phys.
Rev. 76, 114 (1949).A. S. Wightman, Thesis, Princeton (1949).

~Fermi, Teller, and Weisskopf, Phys. Rev. 71, 314 (1947).
E. Fermi and E. Teller, Phys. Rev. 72, 399 {1947).H. Frohlich,
Nature 160, 255 (1947). Frohlich, Huby, Kolodziejski, and
Rosenberg, Nature 162, 450 (1948). B. Ferretti, Nuovo Cimento
5, 325 (1948).N. F. Mott, Proc. Phys. Soc. London 62, 136 (1949).

'These mechanisms result from the formation and inelastic
collisions of ~ H+ atoms, and seem to have been mentioned
6rst by Fermi and Teller, Phys. Rev. 72, 406 (1947).
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1. Velocity of the meson»e'/5= the velocity of
electrons in a hydrogen atom or molecule. For this
energy range the ordinary stopping power formula can
be used.

2. Velocity of the meson of the same order of magni-
tude as e'/h, the velocity of the electrons in the hydrogen
atom or molecule. For this energy range, the ordinary
stopping power formula fails, but the exact Born approxi-
mation expression for the stopping power is valid.

3. Velocity of the meson(e'/h Here t.he energy loss
of the meson due to ionization drops off to zero very
rapidly as calculated in Born approximation. However,
the Born approximation is no longer valid for these
meson velocities and other appropriate methods of
calculation show that energy loss by ionization con-
tinues down to very low meson velocities. In addition
to the ionization loss, there is energy loss by nuclear
collision which is of the same order of magnitude as
ionization loss in this velocity range. At higher velocities
nuclear collisions yield an energy loss negligible in
comparison to the ionization loss. We consider each of
these three velocity ranges in turn in the following
sections.

The calculations are carried out for the three hydro-
gen isotopes as moderators, and for four kinds of
negative particles, p. -mesons, x -mesons and the hypo-
thetical particles, r -meson (mass assumed to be
1000 m) and negative proton (mass assumed to be
1837 m). For brevity, we shall carry out our discussion
for the case of m=mesons in 'H~.

2. ENERGY LOSS FOR MESON VELOCITY v))e'/5
The ordinary stopping power formula is:

dE 4n.Xe'
ln(2mv'/I),

8$8$8
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TmLE I. Time, 5, in seconds, to moderate meson from 10 Mev
to velocity e/c=5X10 according to the stopping power formula
(1). Compare with mean lives for decay ~„=2X10 6 sec., ~ = 1.1
&(10 8 sec. Liquid H2 at —253'C, one atmosphere pressure.
H2 gas at O'C, one atmosphere pressure.

Llquld H2
H2 Gas

8 64X10—1o 4 78X10—1o 2 94X10-1o 2 42X10-1o
6.77X10 z 3.79X10 z 2.34X10 z 1.92X10 '

where I is the mean ionization energy of moderator;
N is the number of atoms of moderator per unit
volume; v is the velocity of incident meson; m is the
electron mass. The moderation time of a meson calcu-
lated from (1) is given by

p, =—meson mass; v=—final meson velocity; ~0
—=initial

meson velocity, v/c= (I/2mc')&=4. 17&&10 ' for hydro-
gen If =zpv .

We tabulate this formula for several cases (see
Table I):As moderators we take hydrogen gas at O'C

and one atmosphere pressure and liquid hydrogen.
For the gas iV=2)&2.69&(10"atoms/cm', for the liquid
at 20'K and one atmosphere pressure N=4. 275&(10"
atoms/cm'.

Comparing the times of Table I with the mean lives
for decay of p,- and m-mesons, one sees that in liquid
hydrogen a very small percentage of p,- and x-mesons
will decay during this part of the slowing down. In
order for a similar statement to hold for m-mesons in
gaseous hydrogen one would have to compress it to a
density within better than a factor ten of the density
of liquid hydrogen.

Relativistic corrections to the above formula for the
moderation time, t, come from two sources: The rela-
tivistic corrections to the stopping power formula
(ln(2mv'/I) is replaced by in(2mii'/I) —ln(1 —ii'/c')
—ri'/c'), and the relativistic variation of the mass of the
meson with velocity. For mesons with initial velocities
v=0.4c the first correction is less than 0.1 percent. The
second is then about 10 percent and so would have to
be taken into account if very accurate moderation
times were needed. There is no point in making this
correction here because the uncertainties in the moder-
ation time for later portions of the moderation are at
least of this order of magnitude.

3. BORN APPROXIMATION CALCULATION OF THE
ENERGY LOSS OF A MESON BY INELASTIC
COLLISION IN A GAS OF HYDROGEN ATOMS

Bethe has derived a theoretical expression for the
energy loss by ionization of a charged particle passing

'Yukawa and Okayama. Papers of the Inst. Phys. Chem.
Research 36, 385 (1939) have calculated moderation times from
(1) taking into account the relativistic variation of mass with

&=, d E/ (sdE/dx) = 1/8~(p/m) gjc)'Dm'c')/(Ve4)]

)& [Ei(3 In(s/8)) Ef—(3 ln(rin/v)) j.

through hydrogen. ' Hirschfelder and Magee have given
a semi-empirical expression for the stopping power of
hydrogen for protons based on an exact calculation by
Bethe for elements with Z~&4 in which outer screening
is taken into account. ' However, the formulas of Bethe
for hydrogen do not seem to have been evaluated
numerically for velocities of order of magnitude, e'/h.
In this section, we record the results of such a numerical
evaluation.

According to reference 5, p. 367, the stopping power
of hydrogen per atom per unit volume is given by

)I DEdahE
1 ( dE/dx—i

(47I aQ ) (e'/2an) E X & (4~ati') (e'/2an)

r~&'/c&' - l.™"dQ
=I —

I I

—
I Z(.+1)„,IF..(Q)I

i hc) t.vI .='- ~ q;. Q'

~e—1 Qmnn dQ(u+1)du, IF -(Q) I', (2)
0 Qmin

where n is the initial velocity of meson; ~ is the initial
energy of meson in Rydbergs. c and m are the energy
levels of hydrogen atom measured in Rydbergs from
the ionization limit; Q is a measure of momentum
transfer in Rydbergs. dE/dx is th—e stopping power;

Fn. 1. Stopping number of hydrogen for negative particles
Bdf„„t, gives the contribution to the stopping number due to
excitation of discrete states of hydrogen atoms. 8„ t, gives the
contribution due to ionization of hydrogen atoms. Their sum, 8,
can be approximated for u/c&)e /kc by ln(2m''/I), where I, the
mean ionization energy of hydrogen, is 17.6 ev.

velocity, but neglecting the variation of the logarithm in (1).
For our purposes, it is more worth while to take into account the
variation of the logarithm but to calculate non-relativistically.

~ H. A. Bethe, Ann. d. Physik 5, 325 (1930).' J. O. Hirschfelder and J.L. Magee, Phys. Rev. ?3, 210 (1948).
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X is the number of H atoms per unit volume.

Q-'-= ((/~) (" —(o —(o-+1))')'
Q ~ = (r/~) (~'+ (~ —(o.+1))')'

where

while we take
r = I:(I &H)/~+fPIa],

Q = (1/3) e'/2a, .
where p, is the reduced mass of meson. The definitions
of the form factors I'&„and F& are given by Bethe. '
The evaluation of the sum in Kq. (2) is carried out by
him in reference 5. We have evaluated his expression
for the sum and have carried out a numerical integration
to subdue the integral. The results for the stopping
number are shown in Fig. 1. (The stopping number is
—(dE/dx)/(4mSe'/mv'). ) The stopping power is shown
in Fig. 2.

4. ESTIMATE OF ENERGY LOSS BY
NUCLEAR COLLISION

For meson velocities large compared with electron
velocities in hydrogen molecules, e /h, the contribution
of nuclear Coulomb scattering to the energy loss of a
meson is less than the energy loss to electrons by a
factor of order of magnitude (m/3fa) = (electron ma. ss/
nuclear mass). However, for meson velocities less than
e'/fE, the energy lost to electrons decreases precipitously
and contribution of nuclear collisions becomes more
important. Of course, for sufFiciently low energies of the
meson the energy loss from nuclear collisions also drops
o6 very rapidly but this occurs at a meson energy of
the order of magnitude of the binding energy of the
nuclei in the molecule= (1/3)e'/2ao«1/6p(e'/5)'.

To get a quantitative estimate of the energy loss of
the meson due to nuclear collisions we use the Ruther-
ford cross section for the scattering of the meson by a
free nucleus. Only afterwards and then only approxi-
mately do we take account of the screening and binding
of the nuclei, by limiting the possible energy transfers
to greater than a certain minimum = (1/3)e'/2ao. The
justification for this treatment is that over the energy
range in which we are interested, the time of collision
is short compared to the period of the vibrations of the
nuclei in the ground state of the H2 molecule.

The cross section for collision with energy loss
between Q and Q+dQ is given by the so-called knock-on
formula

do.q ——(2m e'/M~o') (dQ/Q').

The average energy loss is, in convenient units,

&0

l STOPPING POINEA

N

fnE do-~E

(«~'j ('/~a. )

Equation (3) is plotted in Fig. 2, for representative
meson and moderator masses.

5. ENERGY LOSS BY IONIZATION IN
SLOW COLLISIONS

For meson velocities &e'/5 it is reasonable to try a
diGerent approach to the calculation of the energy loss,
an adiabatic approach in which, as a first approxima-
tion, the meson and nuclei are regarded as standing
still and the electrons moving in stationary states
around them. The fact that the meson is moving can
be taken into account approximately afterward. A
special feature of the problem under consideration is
the negative charge of the mesons. From this circum-
stance it follows that even in the adiabatic limit the
meson may suGer energy loss. The presence of a nega-
tive meson in the interior of a hydrogen molecule may
make it impossible for two electrons to be bound to
the system. In this case, the collision between a negative
meson and H2 may result in ionization even though
the negative meson moves inhnitely slowly.

On the other hand, if the ground state of the molecule
always binds two electrons regardless of the position

J Qdoo
( st 'l (o ) (c) (Qm~)

I

—
I I

—
I »I I (3)

(47ra02)(e'/2ao) EMlr) (he) E o) I Q;„3

Q-= 23(r'+)/3d H1,

'H. A. Bethe, Handbgch der Physik Vol. 24-1, p. 503 (1933),
Eqs. 52.11 and 52.13. Note missing Q in numerator of 52.13.

Q is determined from the maximum possible
energy transfer in head on collision

00[ i00 l00

FIG. 2. Stopping power of hydrogen divided by number of
hydrogen atoms per unit volume, in units of (4~(Bohr radius)' )
(Rydberg). 1: According to ordinary stopping power formula,
given by Eq. (1). 2: For v/c)10 ' this curve is calculated using
Born's 6rst approximation for v/c(10 ', its magnitude is esti-
mated in Section 5. 8: Contribution to Born approximation
stopping power due to ionization of hydrogen atoms. 4: Contri-
bution to Born approximation stopping power due to excitation
of discrete states of H atoms. 5: Due to nuclear collisions, for
negative protons in 'H2. 6:Due to nuclear collisions for v=mesons
in 'H~. 7: Due to nuclear collisions for ~=mesons in 'H2. 8: Due
to nuclear collisions for p, -mesons in 'H~.
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-02 ',

H THE VARIATIONAL WAVE FUNCTION

~ Q'tt'I)

.0g
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ELECTRON
BINDINC E

IN RYDBE

-05—

-06—

3 4 5 6 7 6 9 10
IYIESON- H SEPARATION IN UN!TS OF (Lg 0.5?BA

FIG. 5. Binding energy of electron to m H system as a function
of meson —H+ separation. E,( 0) is the critical radius for which
the electron becomes unbound. The exact curve is compared with
approximate curves calculated by variational methods. Although
the two-parameter variational wave function gives quite accurate
values of the binding energy, it gives a misleading value of the
critical radius.

we ignore the fact that this B must be the same as
ne B determined from the angular equation, then for

every real value of e we get a value of B. Finally by
equating the B of the angular equation with the B of
the radial equation we get

B., (e)=B(, (o, R), (4)

an equation which determines the possible values of
the energy. The most convenient way to do the compu-
tation of the energy of the ground state as a function
of R turned out to be

(1) to assume a value of o and determine the corre-
sponding value Bo,o(o) from the radial equation;

(2) taking those values of Bo o and e to compute for
what value of R, Eq. (4) was satis6ed.

The qualitative behavior of the B for the two lowest
states is shown in Fig. 3. It is evident from Fig. 3 that
with decreasing internuclear distance the B value for a
given bound state approaches closer and closer to the
8 value for the corresponding state of zero energy
until finally for B=4 the critical radius is reached and
the bound state disappears into the continuum. The
justification for this statement is obtained by studying
the radial equation for zero electron binding energy,
8+2/R=O. For simplicity, we consider the case of zero
azimuthal quantum number, nz=0. M satisfies

d/df[(P 1)(dim/dg)—]+BED =0.
The general solution of this, the I.egendre equation,
can be written

M =aP.(g)+bQ. ((),
where —n(n+1)=B and P and Q are Legendre
functions of the first and second kind. Now

~= —o+o(1—4B)',

t~ 5 CALCULATED WITH THE YARIATIPNAL WAVE FUNCTION
(o o I t'g&(liP)I

C

-Ol '—

and P,($) is asymptotically proportional to p while

Q ($)~P +". Thus for B&o the asymptotic form of
M has in general an infinity of nodes while for B(4 it
has at most a finite number and with proper choice of
a and b, no nodes. These statements about the asymp-
totic form of M also hold for M itself. Now, if there is
a zero energy state with no nodes, then there can exist
no bound state, for the lowest state always has the
smallest number of nodes, less than the number of
nodes possessed by any other state. "Thus, no bound
state can exist with B&4. At B=4 the state of zero
energy suddenly acquires in infinity of nodes. Since
the number of nodes of the lowest state is a continuous
function of the parameter R, it must be for B=4 that
a state with &=0 and no nodes breaks out of the
continuum and becomes a bound state. Thus, the
critical radius, R,&'" for the lowest state can be found
by solving the equation

Bo,o(0, R &o, o

It turns out that R,&")=0.639up. ' A similar considera-
tion can be carried out for the critical radius of the
state specified by the quantum numbers l and m.

In Figs. 4 and 5 we have plotted for the lowest state
the total energy E of the m H system and the binding
energy E' of the electron as a function of the meson-
proton separation. Note the binding energy of the
electron is very close to zero for a considerable range
of R greater than the critical radius, R.&"&.

Kith this information on the energy, E, of the
system as a function of R, we can calculate the energy
loss of the meson due to ionization in the adiabatic
approximation as follows. Treat the motion of the
meson as that of a classical particle moving in the
potential E(R). Compute the largest impact parameter,
R, for which the orbit of the meson reaches the critical
radius. Then the cross section for ionization is and the
average energy loss satisfies the inequality

AEdOgg ~ 8 2Cp 'lf'R .

Ke can get a lower limit to the right-hand side by
replacing R by R.&' &. Then

&~0.102.
(47raoo) (e /2ao)

In this simple consideration we have treated the nucleus
as infinitely heavy. Actually, there will be a large
correction due to the motion of the nucleus. Ke will
not discuss this correction, since it has already been
taken into account for the molecular case by the
calculations of Section 4. Thus it is clear that in a gas

"See, for example, Courant-Hilbert, Methoden der Math.
Phys. I (Interscience Publishers, New York, 1943), Chapter 6.



A. S. WIGHTMAN

TwsLE H. Radial distribution of charge: Difference between den-
sity for H and H, as a function of distance from the nucleus.
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0

FIG. 6. Binding energy of electron to x H2 as a function of
meson position on H2 internuclear axis. The H+ nuclei are at
the H2 equilibrium separation. The position and slope of the
binding energy curve at the nuclei are determined from existing
information on the H atomic ion. The dashed lines are linear
extrapolations of the slope at the nuclei. The solid line gives the
expected behavior of the binding energy curve.

of hydrogen atoms a negative meson of velocity e'/h
would be moderated rapidly toward zero velocity, due
to ionization alone. For example a x -meson might be
expected to spend less than 10 " second in the energy
range 1000 ev to 5 ev.

The case of an atomic hydrogen moderator is partic-
ularly suited to the testing of approximate methods
which one might use to treat the case actually met in
the laboratory: H2 molecules. Ke have tested vari-
ational methods for the determination of the wave
function of the 7t. H system. The wave functions used
were

P=e ~&E+YI ancl P=e ~'E+~'(1+Pg).

The results are shown in Fig. 5. It is clear that the
two parameter wave function gives a rather good value
of the energy over most of the range of R, accurate,
indeed, to about 0.005 Rydberg. However it gives
quite a misleading value for the critical radius:
R,&' '& = 1.0ao, instead of 0.639ao. This gives an ominous
sign of the difhculties to be expected in the case of a
hydrogen molecule. There, it is impossible with present
methods to solve the problem exactly and it appears
that even if we calculate the energy to a thousandth of
a Rydberg by variational methods, and find a value of
the "critical position" where the second electron of H2
becomes unbound, we may be completely wrong because

the binding energy curve may well behave just as th
of Fig. 5 for the hydrogen atom.

It is interesting to note how spread-out the wave
function of the electron becomes as the meson ap-
proaches the critical radius. For example for R= 1.00ao,
o.=0.01 so that the approximate wave function requires
50up in order to drop to 1/e of its value at the nucleus.
This will mean that in a moderator composed of H
atoms where the atoms are say 8OD apart (the molecules
of liquid hydrogen are about this far apart), the meson
wiQ already ionize the atom for R=ao. However, as
we will see later in the practical case of H2 molecules,
non-adiabatic effects will cause ionization as soon as the
electron binding energy gets suKciently small, so that
the behavior of the electron in the adiabatic limit of
zero meson velocity is not decisive for the meson
moderation.

Now we turn from the case of a moderator of H
atoms to one of H2 molecules. The question then arises:
is there a region within the hydrogen molecule where
the presence of a negative meson will unbind one of the
electrons of the molecule? This question is not answered
in this paper, but, as will be seen, a considerable insight
can be obtained on the basis of calculations already in
literature.

The binding energy of an electron to the system
x H2 is the difference between the energy of m H2 and
the energy of x H2+. Consider first the energy of
~ H2+. If the distance between the nuclei be held fixed,
then when the meson is far away the energy of the
system is just the energy of H2+ plus the Coulomb
attraction of the meson and H2+. %hen the meson gets
closer the H2+ will have a Stark effect which will lower
the energy of the system by an amount

where aH, + is the polarizability of H2+ and (e/R') is
the electric field at the position of H2+ due to the meson
at a distance R. In the opposite case, when the meson
is very close to one of the nuclei the Coulomb attraction
of m and H+ will give the greatest contribution to the
energy.

The energy of interaction of a negative meson and a
neutral H2 molecule is quite similar to that of an H2+

ion, except that there is no Coulomb interaction
between the meson and the neutral H2. The difference
between the energy of x H2 and ~ H~+, which is the
binding energy of an electron to x H2 is indicated
schematically in Fig. 6 for the case where the meson is
on the internuclear axis. Since in the collisions of the
meson with H2, which we will have to consider, the
nuclei do not have time to move very far, the inter-
nuclear distance in Fig. 6, has been taken as 1.4ao, the
equilibrium internuclear separation for H&, H2+ has an
equilibrium separation of 2@0. In Fig. 6, the binding
energy rises as:

e'/R+ ', (aH, + aH, )-(e/R')'—
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at large distances. On the other hand, when the meson
is on top of one of the nuclei, the binding energy of an
electron is very accurately equal to the electron affinity
of hydrogen atom, since the charges of meson and
nucleus cancel each other leaving a hydrogen atomic
ion H . The hydrogen atomic ion has been studied
very carefully by astrophysicists" so that we know
not only the electron affinity, 0.0528(e'/2ao), very
accurately but also the charge distribution. This
information enables us to determine the slope of the
binding energy curve as a function of mesonic displace-
ment because that slope is the electric field at 8=1.4uo

for H minus the corresponding electric field for H."
d/dR(E(vr

—
H2) —E(s H2+)) ~s=).4..

I'4 o pdZq pdZq

, I, dr)—
Now —(dZ/dr)rL=4er'e "and taking the charge distri-
bution from reference 12, we get the values in Table II.

We then have

)1.4
[(dZ/dr)H (dZ/dr)H]d- r—=0 13e.

0

Slope=0. 13/(1.4)' or 0.0664(e/2ag) in Rydbergs per
Bohr radius.

If the binding energy curve were continued as a
straight line with this slope it would reach zero energy
at a distance 0.399ao from the nucleus. Thus if the
linear approximation were correct there would be a
stretch of length 0.6uo of the internuclear axis, on
which the presence of the meson would ionize the H2
molecule. Provided that this result also held for the
meson off the internuclear axis by a few tenths of a
Bohr radius we could then conclude that the cross
section for ionization loss in the adiabatic limit should
be of the same order of magnitude in H2 as in H.
However, the linear approximation probably gives quite
an incorrect answer (see the shape of the binding energy
curve for H atoms, Fig. 5).

If one wishes to calculate the binding energy by
variational methods, one must get the energy of H2
and H2+ and take the difference. In that case, even

though one would have an upper limit on the energy of
H2 and H2+ separately, one might get either too small
or too large a value of the binding energy depending on
the relative accuracy of the H~ and H2+ calculations.
To trust a determination of a point on the binding
energy curve, one would have to calculate the energy
of both H2 and H2+ to an absolute accuracy considerably
better than half the difference (which might be quite

~ R. E. %'illiamson, Astrophys. J. 96, 440 (1942).
"This calculation gives the slope of the binding energy curve

emctly. To determine the binding energy of the electron when
the meson is a Gnite distance away from the nucleus one must
resort to perturbation theory.
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FIG. 7. Rate of change of moderation time with ln(u/c) of
moderated particle. The right-hand curve describes the modera-
tion from u/c=5X10 ' to o/c=6X10 '. Here the slowing down
is independent of moderator. The left-hand curves represent the
moderation in the velocity range o/c=6X10 ' to o/c=5)&10 '
for selected meson masses and moderators.

small, say 0.001 Rydberg for a point near the middle
of the molecule). We thus conclude that to calculate
the binding energy curve by variational methods would
demand an inordinately high accuracy.

There are direct methods for determining the points
at which the binding energy curve crosses the axis,
analogous to the one used to determine the critical radii
for m. H. In fact, just as in the case of the hydrogen
atom, one can answer the question of the existence of
bound states solely from a knowledge of the solutions
of the wave equation corresponding to zero energy;
zero, that is, relative to the energy of meson +H2+ for
the same configuration of the nuclei and meson. One
needs only to look to see whether zero energy solutions
of the wave equation exist which have no nodes; if so,
no bound states exist. Unfortunately for the application
of this method the investigation of the nodes of the
zero energy wave function does not seem to be particu-
larly straightforward.

Thus, our analysis so far does not answer the ques-
tion: What is the cross section for ionizing an H~
molecule in the limit of zero meson velocity'

However, it does show the existence of a region
within the molecule of cross section of the order of
magnitude ao', where the presence of a meson makes
the binding energy of the last electron smaller than
0.01e'/2a0=0. 135 ev if not zero. We now present argu-
ments to show that even if the H2 molecule is not
ionized by the presence in its interior of a negative
meson standing still, it probably will be ionized by
non-adiabatic processes resulting from the finite velocity
of the meson.

This proposal might seem unreasonable at first sight
since in the collisions we have to consider the meson as
moving very slowly, relative to the average velocity of
the electrons in the undisturbed molecule. However,
in order for a collision to be adiabatic the periods
associated with transitions of the colliding system
should all be short compared to the time of collision.
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TmLz III. Moderation times in seconds.

From «/c=5X10~
to s/c =6 X10 s these
times are the same
for 1Hg, ~Ha, and 3Hq
as moderator

7.4X10» sec. 9.7X10» 3.4X10» 6.3X10»

From 'in 1Hz
s/c =6 X10-tt
to in 2Hg
e/c =5 X10-&

in 382

7.9X10»
9.0X10»
9.4 X10-»

7.4 X10» 1.5 X].0-» 2.4 X10-»

1.1X10» 2.2X10» 2.9X10-»

1.2X10» 2.6X10» 3.4X10-»

Now, the collision time is of order of magnitude

t' p ) &h'/(me')
ao/v=

(
—

/

(m) o1

(=3.36X 10 "/o& sec. for a or-meson),

where e is the meson energy in Rydbergs. On the other
hand, the separation of the bound state from the
continuum is of the order of magnitude of 0.01 Rydberg
(or less) and therefore the associated time is

0.01(e'/2ao)

( h
=2X10'~ —

~

=4.18X10 "second.
Ense' )

The shortness of the collision time in comparison with
the equivalent period shows that the collision is not
adiabatic and that transitions of an electron from the
bound state to the continuum are likely in the collisions
of a negative meson with an H2 molecule. This conclu-
sion hoMs for p, m, ~ and P having energies down
to those considerably less than the binding energy of
an electron to H2.

In order to investigate the non-adiabatic processes
more quantitatively, the following crude model was
treated: An electron is bound in a well of depth Vp

and range, ap. At time t=0 the depth of the well

suddenly changes to V1. Then, at time t= T, the depth
of the well returns to its original value. The depths
Vp and V1 are adjusted so that the binding energy of
the electron is =e'/2ao initially, and =0.01e'/2ao during
the time interval (0, T). T is adjusted to be = the
collision time for a meson H2 collision. The model gave
the result that in typical cases ionization resulted in
90 percent of the cases. There is another restriction on
T which shows up clearly in this model: T must be not
only shorter than (h/binding energy of electron) but
also longer than

ao/e'/h =h'/me'.

This latter restriction merely means that an electron
which is knocked into the continuum by the approach
of the meson must have time to get away before the
collision is over. This condition is satisfied for meson
velocities &e'/h.

On the basis of these arguments we may feel fairly
secure in estimating that in the velocity range e'/h)v)5X 10 4e /h the cross sectiort for ionisation of a hydrogen
molecule by a negabve meson mill be )0.05map' and vill
probably be =O.loraoo. This holds for p= and v meso-ns

as well as the hypothetical r and negative proton.
The inelastic collisions which we have been discussing

ought to yield an energy loss which goes over smoothly
into the energy loss due to ionization and excitation as
calculated in Born approximation. The result of fitting
the two curves is shown in Fig. 2. In making the 6t,
it is assumed that in every inelastic collision the meson
loses an energy e'/2ao. Actually, on the average the
meson should lose more than this.

0. MODERATION TIMES FROM v/c=5)(10 ' TO
CAPTURE BY AN H2 MOLECULE FOR

p, m, c, P IN 'H2'H& 'H&

In Fig. 7, we have plotted the rate of change of
moderation time with ln(v/c), for the various mesons
and moderators. The moderation time betwee'n two
velocities is the area under the curve between the
abscissas corresponding to those two velocities. From
these curves, the moderation times of Table III have
been computed. The lower limit of meson velocity
corresponds to an energy which is less than the binding
energy of an electron to H~. On its next ionizing collision
the meson is captured by the struck H2 molecule,
forming a m H2+ system. Thus the times of Table III
are the times taken by a meson to reduce its speed
from v/c=5X 10 ' to the point where it is captured by
a hydrogen molecule. These times are two orders of
magnitude smaller than the moderation times from 1.0
Mev to v/c=5X10 '. Thus the uncertainties involved
in the low velocity stopping power of hydrogen are
quite unimportant as far as the total moderation time
is concerned once the order of magnitude of the low
velocity stopping power is determined.
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