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where 8'2p —W2 I'=37.82 mc, Wgl' —Wlp'=12. 60 mc,
and p, =0.700 debye units.

The plot of theoretical separation vs. field strength

(see Fig. 5) agrees with the plot of experimental sepa-

ration es. field strength to within 0.5 percent. The
intensities of both components are the same and are
proportional to [aPa42 2a&a—4b&b4+bPb4'$. This expres-

sion varies from zero when the field is zero through a
maximum as the field increases and decreases to zero

again for large fields. Rough intensity measurements
showed that the intensity followed the theoretical
expectations.
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This paper deals with some general properties of nuclear reaction and scattering cross sections which
can be derived from the dispersion-theoretic treatment of nuclear reactions as given, for example, by%'igner
and Eisenbud. The form of the cross section near the resonances is found to satisfy the Breit-Wigner formula
with corrections of the order F~/O', F=level width, a=level spacing. In the region between the resonances,
the behavior is found to be of three types. In the first two types, simple minima occur di8ering in order
of magnitude in the two cases by a factor F'/O'. In the third type, a Rat non-resonance maximum occurs
between the resonances considered, accompanied by two minima. This type of behavior may be associated
with a large fluctuation of F or D at some of the neighboring levels. The cross sections are explicitly calcu-
lated for some special choices of the F and D, and the averages compared with those of the statistical theory.
The effect of the potential scattering on the scattering cross sections is brieQy discussed.

I. INTRODUCTORY REMARKS

'T is the purpose of this paper to investigate in a
~ ~ more or less quantitative manner the behavior of
nuclear reaction and scattering cross sections both near
and between the resonances, using as a basis the results
of the formal (dispersion) theory of nuclear reactions. ' '

These results are concerned first with the estimation
of the maxima and minima of the cross sections (corre-
sponding to the behavior near and between the reso-
nances), both of which may be derived from the general
theory, even when the explicit form of the cross section
as a function of energy cannot be easily calculated,
provided only that it is assumed that I'/D«1, I' being
the width of the resonance lines and D their spacing.

On the basis of more far-reaching assumptions about
the nuclear parameters, it is possible to calculate the
cross sections explicitly as functions of the energy; the
results so obtained serve to indicate what may happen
if the assumption I'/D(1 is relaxed. It is then also
possible to calculate the average cross sections, and to

*This paper contains some results of a Ph.D. dissertation
submitted to Princeton University {1949}.

' K. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947}.
s K. P. Wigner, Phys. Rev. 73, 1002 (1948).' K. P. Wigner, Am. J. Phys. 17, 99 (1949).' K. P. Wigner and T. Teichmann {unpublished).
T. Teichmann, Ph.D. dissertation, Princeton (1949). This

reference contains further details of the methods described in
this paper.

compare the results thus obtained with those obtained
from the statistical theory, ' which serves to clarify the
connection between the quantities occurring in the
latter and the parameters of nuclear dispersion theory.

II. NOTATIO N

The following results or definitions are used in the
remaining sections:

o, b denotes the cross section for the reaction in which
the pair of particles denoted by "s" collide to form the
pair "t." In particular, o„denotes the scattering cross
section for the collision of the pair "s." As is usual in
this work, "s," "t," etc. , denote not only the type of
particles, but also their internal states, their spin orien-
tation, and their relative angular momentum. If there
are n such possible reactions "st" associated with the
same compound nucleus in a given energy range, then
0.,& may be expressed, in this energy range, in terms of
the e-dimensional, symmetric, unitary collision matrix
U by the formula

o „=(s./k. 2)
i (U —1), i

'. (2.1)

k, is the relative (reduced) wave number of the pa, ir "s"
in their center-of-mass system. U itself may be ex-
pressed in terms of the diagonal "potential" matrices
8, C, and co, and the real symmetric "derivative"

s V. F. Weisskopf, Phys. Rev. 52, 295 (1937).
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matrix R, by'
1—K+iBRB

U=a)
1+iC—iBRB

(2.2)

Here the diagonal matrices 8, C, and au are determined

by the behavior of the relative wave functions of the
pairs "s," etc. , in the external (separated) region. If
r,y, denotes the relative wave function for the pair "s"
in the external region (r, being the separation of the
pair), then

(2 3)~'= (4.')/I v.'i,

1/B,2 =Im(q, / A'),

C,=BP Ee(y, /q, '),

(2 4)
and

(2.5)

all these quantities being evaluated at r, =a„where a,
is the approximate range of the nuclear force between
the pair "s." The prime denotes differentiation with
respect to r, . Tables of these quantities are given, for
example, by Wigner' and Wigner and Eisenbud. ' t
co, may be written in the form

co.=exp(ix. ) (2.6)

and for zero angular momentum neutrons x, is simply
given by

(2 7)x,=k,a„
while

B,'= k„C,=O. (2.8)

E being the energy. The (constant) parameters y&„and
E~ have been discussed elsewhere. 4

The quantities
I'~, = 2B,'vi. '/(1+C, ')

In general, BP2/(1+C, 2) is simply k. times the barrier
penetration factor I', for the combined Coulomb and
centrifugal potentials for the pair "s."

The symmetric matrix R is determined purely by
intranuclear effects (i.e., by properties of the compound
state). Its elements have the form

&,~
=Zv~, vii/(Ei —E),

) . D denotes the level spacing

D= (R+~—E,)A' (2.14)

For many purposes it is convenient to use the matrix

2i (BRB C)—
V=

1+~C—iBRB

The cross sections then become

0„=(~/k 2) I ~
V„~ '+46„C sin'x,

+
~
V..

~
sinx. sin(x. +8,.)]I, (2.16)

where
V.,=

~
V.,

~
exp(ie„)

Equation (2.16) corresponds to an approximate
division of the cross section into the contribution
due to purely nuclear reaction or scattering } vis. ,
(~/k. ')

~
V.&~'], that due to purely potential scattering

L(4n/k. 2) sin'x, b„], and the interference between po-
tential and nuclear effects

((kr/k. 2)
~
V„~ sinx, sin(x, +8„) 8„].

This separation is not exact because of the part played
by the potential matrix C in V; its effect on the reaction
cross sections is, however, not very signi6cant, especi-
ally at the lower energies at which C is very small. It
is clear that even if V„has a simple form, the scattering
cross section itself need not be simple due to the
interference between potential and nuclear (resonance)
scattering.

III. MAIN RESULTS

The general results which are obtained may be stated
briefly as follows.

A. Maxima

In a region in which the totd, l width I"), and level shift
6), of the lines at E~ is small compared to the level
spacing D, the form of the reaction cross sections a, t

near the resonances E~ is

(2.11)

are defined to be the partial width for the process "s"
and the total width, respectively, at the level X (i.e.,
E=E),), while

(E)+~a—E)
+terms of the form 0}

I D )

C.B yg, 2/(1+C, 2)— (2.12)

(2.13)

may be regarded, respectively, as the partial level shift
for the process "s"and the total level shift at the level

'The notation used here in discussing applications of (2.1)
most conveniently follows that of reference 1, instead of that of
references 2 and 5, which is more convenient for the purposes of
derivation.

f See also Breit, Yost, and Wheeler, Phys. Rev. 49, 174 (1936)

The terms 0$(Eq+Dq E)/D] vanish for—E=E&+6&„
and the cross section then becomes'

(3.2)

Here, as in the remainder of this discussion, the energy
variation of the bg, Fp„and k, is disregarded as compared to the
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The correction terms' may be attributed to the contri-
bution from other levels, and, in particular, even the
term Ot (E&+hq —E)/D] may remain unimportant at a
given level E), if the contributions from other levels on
both sides of E~ tend to annul each other. If this is not
so, the approximation

may be best expressed by introducing the quantity S',
the "width of the minimum, " dehned as the distance
between the points at which the cross section has a
value 8I'/D' times the maximum. This definition coin-
cides with the natural definition of width for the minima
of type (i). One then finds

0'et—
k.' I' ' (E +b, E)'+ ,'—I' '- (3.3)

W ( )~0.55D

W(;;)=0.7j,D.

(3.7)

(3.8)

is only valid in an energy region determined by
~(E),+Aq —E)/D~&&1. In all cases the approximation
breaks down as soon as ~(E2+6), E)/2D—

~
becomes

apprecMLble compared with 1.
Thus in a region where the lines are narrow (I'),/D

small) and the level shifts small (6),/D small), the
reaction cross sections have the usual Breit-signer
form (3.3) near the levels E), The s.cattering cross
sections do not behave in quite the same way, because
of the complications introduced by the potential
scattering, and it is necessary to treat them separately
(see Section V).

B. Minima

If the lines are narrow, three different types of
behavior must be distinguished in the form of the cross
sections between the resonances (i.e., near the minima).
In the first two cases the cross section varies rather
slowly in the intermediate region, and may be repre-
sented over a large part of this region by a formula of
the type

There is a third type of behavior, (iii), related to both
the above types, but of a rather pathological nature, in
that there are two minima and one spurious, i.e.,
non-resonance, maximum in the intermediate region.
It is illustrated, as are types (i) and (ii), in Fig. 1. The
shape of the curve in the middle region is again mildly
parabolic, but is now concave downward (toward the
E axis), so that such a maximum should be clearly
distinguishable by its shape from the resonance maxima
of Section A. This type of pathological behavior may
only be expected (in the case of thin lines) if there is
some violent fluctuation of the quantities y2, 2 (the
reduced widths) or of the level spacing D in the energy
region considered (e.g. , if the value of y),.2 suddenly
becomes large at the next level but one, or if D suddenly
becomes small there). The two minima thus obtained
resemble those of type (ii) in size, and are thus given
in order of magnitude by (I'z/D) 4o, )( '*'. The maximum
is determined by the diGerence of an expression of
type (i) and the contribution of the adjoining levels.
As a rough estimate, the ratio of this maximum to the
resonance maximum is given in order of magnitude by

(r, (=0;4' '"'+C,i(E—E )', (3.4) (I'/D')(~l'/I')' «(I"/D2)(~DID)2 (3 ~)
i.e., by a parabolic approximation. The distinction
between these two types is then mainly exhibited by
the fact that for the minima of type (i)

(min) (4p 2/D2)& (msx)

if only two adjoining levels are considered, or

depending on whether the fluctuation responsible is in
the width (hl') or in the level spacing (()D).

(min) (Wp /D)2& (msx) (3 5)

in general, a.)( '*' having the value given by (3.2),
while for the minima of type (ii)

(min)~(4p 4/D4)& (msx)

if only the two adjoining levels are considered, or

(min)~(Wp /D)4& (msx) (3.6)

in general. There is also a slight diBerence in the
curvature (i.e., in the constant C, ( above), due partly
to the different ratio (r™a~/(r( '"' in the two cases. This

flegi
P

resonance variation. Their variation is only important at very
low energies (where it gives rise to the 1/u cross section for slow
neutrons), and at very high energies where the resonance variation
may be washed out due to large values of F/D. In this latter
case most of the above formulas are inapplicable. See Eq. (3.13).

OThe exact correction terms are given in reference 5 for the
case where [C.(«1. FrG. 1. Different types of behavior in the intermediate region.
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C. General Behavior under Special Assumptions

If the assumption is made that the ratio of the partial
widths for various processes is independent of the level,
e

1.e.)

Such an effect is only to be expected for rather high
energies, at which the experimental resolution would

probably be too low to detect the resonance structure
at all. The ratio a(E;~)/o (Eq) is, of course, equal to

(3.10)
A'G' (3.16)

and, in addition, the signs of the y)„are restricted in a
suitable way (see Section IV, C), it is possible to
calculate explicitly the form of the 0,& as a function of
the energy. Physically this assumption means that all
the levels behave in substantially the same way as
regards the relation between various processes. If
further assumptions are made about the regularity of
the I'q and D in going from level to level (aia , I'q. the
same for all X, and D constant), the cross sections take
a particularly simple form, and the average values of
the reaction cross sections can always be written as

(3.11)

3' tan'(a. E/D)+ 1
M

G'+ tan'(a E/D)
(3.13)

where A, M, and G depend on the energy only weakly
compared to the resonance variation tana. E/D. Disre-
garding the energy variation of A, M, and G, in order
to obtain a qualitative picture of the behavior of (3.13),
it is immediately clear" that there is a fundamental
change of character depending on whether

AG&1 (3.14)

(3.15)

The former case, which occurs for small I'/D, corre-
sponds to the usual state of affairs, in which the maxima
occur at the resonances (Eq=) D) and the minima at
points midway between (E; &= (X+-', )D). If I'/D be-
comes large, however (in which case the levels are said
to overlap, since the half-width F exceeds the spacing
between them), the second case may obtain, and the
points E~ then give the minima, while the maxima
now occur at the points E;„qbetween the "resonances, "
so that there is a "reversal" of the maxima and minima.

' See Weisskopf, reference 6, and Section VI.
"The results stated here (as also the remarks in the latter

part of Section IV, C hold for the case where the potential matrix
C is zero. Except for a level shift as indicated in III, A, there is
no essential difference vrhen C is not zero, though the formulas
are then much more complicated and less perspicuous.

where F(x)~1 for small x, and xF(x) decreases (to
some finite value) for large x. This form facilitates
comparison with the formula of the statistical theory'

(3.12)

In the cases considered here the reaction cross sections
are found to have the form

in each case. The values of A and G are given in Section
IV, C. For small F/D the values obtained for the
maxima and minima are in good agreement with those
given in Section III, A and 8, and in fact they remain
so almost up to r/D 1. For still larger I'/D, AG
increases more slowly, or decreases, depending on the
type of reaction considered. The importance of the
above results lies not in the detailed form of A and G,
but in the indication that, at least with fairly reasonable
assumptions, the values deduced for the minima in
general for small I'/D remain valid for a much larger
range of I'/D.

The above results can be applied to the scattering
cross sections only if the so-called potential scattering
is negligible. If this is the case, then all the above
results, A, 8, and C are valid, with the restriction that
only minima of type (ii) occur for the scattering cross
sections (see Section V).

IV. METHODS OF DERIVATION

It is clear from (2.1) and (2.2) that the fundamental
mathematical problem in the calculation of the cross
sections is the inversion af the matrix 1.+iC—iBRB.
Since C and B are diagonal, this problem is dehned by
the properties of R. In any given energy range in which
R is n-dimensional, this inversion is always possible,
at least in principle, but it is a matter of prohibitive
labor unless n=2, or R has some special simplifying
properties; e.g., "smallness" in a suitable mathematical
sense, so that (1+iC iBRB) ' can—be expanded in a
formal power series, or if R is of rank one or two, in
which case the inversion is algebraically straightforward.
The first case applies in the calculation of the minima
(Section IV, 8), and the second in the explicit calcula-
tion of the cross sections (Section IV, C). A combination
of the two cases applies in the calculation of the form
of the cross sections near the maxima.

A. Maxima

where

and

R—Rg+ R),

A = (~X~)/(Ez —E)

R,'= Q (y.Xy,)/(E, —E).

(4.1)

(4.2)

(4.3)

Near the resonances E=E)„R is expressible as the
sum of a matrix of rank one, and a small perturbing
matrix, and the matrix V whose elements determine
the cross sections may then be calculated by a formal
power series expansion in terms of the latter matrix.

The procedure is as follows: Near E=E~ it is con-
venient to write
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The matrix (aXb) has elements (aXb).~
——a,b, . The

components of the vector ~ are simply the yq, . R~' is
a slowly varying function of E in the region E E~,
and remains finite for E=E~. R~ has rank one, and the
matrix (1+iC iB—R~B) ' is easily found. Then

2i(BRgB C)—
U(o)

1+iC—iBR),8

(4.9) requires that

I'/D(1/2v I/2m. (4.10)

This is only a sufhcient condition; it is quite conceivable
that under various special circumstances the expansion
may be permissible with less stringent restrictions.

A straightforward, if lengthy, computation then
yields for V the expansion

V= V(o)+ V(')+ V(-'+- (4.11)

where

(&r),X &r&,),R+~~—E—ii'x/2
(4.4) the various terms being of the corresponding orders in

the elements of Rz', i.e., of I'/D. V&+ is given by"
Eq. (4.4) (see reference 5).

that is,
&r).= (I+iC) 'By)„

~) .= (B.vt .)/(I+&C. )

(4 S)

The quantities I'), and 6), are then dehned in terms of
~ and Cby

21'~= (e~*.C~) =2
I
~~. I'-' (4 6)

and
~a= —(n~* Cn~). (4.7)

Even though R~ has a pole for E=E~, it is not per-
missible to neglect R),' in the calculation of V, though
if one does, one finds simply the expression V(o), which
gives the correct leading term in an expansion in terms
of Rq' (i.e. , in orders of I'/D). In actual fact

U= V+1
= [1+iBR),'B(1 iC+iB—R) B) 'j[V&"+1j

X [1—iBRg'B(1+iC—iBR),B) '] ' (4.g)

B. Minima

8 8
+2i —R

1+i' 1+iC 1+iC

2iC

The discussion of the minima is more complicated
than that of the maxima, and the results are necessarily
less exact, mainly because there is a not inappreciable
contribution to a given minimum from non-adjoining
levels. The estimates here obtained require the assump-
tion of narrow lines: The values (though not necessarily
the behavior) are similar in general, as may be seen by
considering the case of two levels only, or some special-
ized forms of the many-level case.

The cross sections 0,& are determined by the elements
V, ~ of the matrix V. If the elements of BRB are small
enough (i.e., if IIBRBII(1, which implies narrow lines
(cf. Section IV, A), then V may be expanded in a series

In order that it be permissible to expand

[1 iBR),'B(1+iC—iBR),B) 'j ',—

it is necessary that the elements of

BRg'B(1+iC iBRgB) '=—BRg'B(1+iC) '

—2— R-- R
1+iC 1+iC 1+iC

+2i
1+iC, (1+iC,)(1+iC,)

(4.12)

+ BA'B(~),Xa&)
6,+k, E iI'g/2— —

be small enough. These elements are of the order I'/D,
so that this condition is satisfied for narrow lines. More
precisely, one finds that a sufIicient condition for
expansibility is

II BR~'BII =ZZ I
B.R~;.&'B I'&k. (4.9)

The elements of BRq'B are of the order" I'v/nD, n
being the dimension of R, and v a number depending
on how many levels contribute appreciably to the sum.
A statistical consideration similar to that employed in
Section 8 below shows that generally v x. Thus,

~Actually it is the matrix (1+iC) 'BEp, 'B(1+iC) ' whose
elements are of order Fv/nD. Since C is small in all the cases
considered, the same statement may also be made for BR&'B.

B,R,„BQR„g,B]—2
" (I+iC.)(I+iC.)(I+ iC )

If s&t, two possibilities must be distinguished. First,
R, f, may go to zero between the two resonances E&, E&+&

considered. y)„y) & and y~+L,y~+~, ~ must, in general, have
the same sign for this to happen. If this is not so, the
vanishing of R,& requires the fortuitous annulment of
the contribution of the terms at E&, E&+& by the contri-
bution of the totality of other terms on both sides of

"Note that the method here employed differs from that given
by signer and Kisenbud (reference 1) in that the widths Fg and
level shifts bp here dehned depend only on the pp, at the level
considered, and on potential factors which are known from the
behavior of the system in the external (separated) region. The
eBect of the other levels is embodied in the correction factors.
In reference 1 the Fp, and A)t depend also on the contribution of
the adjoining levels, and the separation between potential e8ects
and those of other levels is not so clearly maintained.
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this point. It may indeed happen that this contribution
is more than enough to annul the contribution of the
two adjoining levels, and in that case IR,(I' goes to
zero twice between E~ and E~+~, and has a maximum
between the two zeros. This maximum has the same
shape as the minimum which occurs when R,&/0
between E&, and Ei,+2 If .I'/D is small, it is clear that
such an occurrence requires an anomalously high value
of p»2 (i.e. , I') at a nearby level, or a rather sudden
decrease in the level spacing D.

If R,, f
——0 the minimum is closely approximated by

V, , —2 . (4.13}
~ (1+iC,)(1+. iC„)(1+iC,)

This always occurs for s=3, because Rg~ goes to zero
between each adjoining pair of resonances; thus

—2iC] 28/ Rg '8 '-'

1+iC, (1+iC,)' ~ 1+iC„
(4.14)

If R, ~ does not vanish, but is nevertheless small, then
V, f may be approximated by

2',R,)B]

(1+2C.)(1+iC,)
(4.15)

These various types of behavior, which are labeled as
type (i) [E,i/0 (4.15)], type (ii) [If,( 0(4.13)],—a—nd

type (iii) (2(!„=0twice) are illustrated in Fig. 2.
If only two adjoining levels E&„E„areconsidered, it

is not necessary to use the approximate formulas given
above, for it is then possible to use exact formulas given
elsewhere, " which do not involve the assumption
F/D«1. Direct substitution then yields in the two
ca,ses sign (yi„yi, (/y»y„, )= —1 [type (i)J, +1 [type
(ii)j, respectively,

(mini~& (mnxi[(4F2/D2)+ (4F2/D2)2] type (i)
a, i ' '"'41'/D-' for F/DC&1 (4.16)

Z(~) I V~.V2(/%2 —&)
I

(4.20)

This certainly includes all the possibilities for R,&.

Rademacher's theorem on random functions" then
asserts that the mean square of (4.20) taken over all
possible choices of sign, is equal to

and
(min)~& (mnx)4F4/D4 type (ii) (4 ] 7)

Here D=E„—E& and F is an average of I'& and F„ lying
between their geometric and arithmetic means. This
shows that the two types of minima diBer by a factor
of the order I'/D'.

The same formulas may be used to calculate the
width lV as defined in Section III, and yield easily

W&;& 0.55D(1+0.7F'/D' ) type (i) (4.18)

IV(;;i 0.71D(1—4I'/D' ) type (ii). (4.19)

The above estimates involve the tacit neglect of
levels other than those immediately adjoining the
minimum in question, on the grounds that these levels
on both sides of the point considered tend to annul each
other. This certainly seems plausible if all the p)„p&f.
have the same sign, and if the levels considered are not
near the lower end of the spectrum. Even then, the
fact that the sum for R, f, has an infinity of terms
requires an investigation of convergence, which, in
turn, requires knowledge of the variation of the y)„and
E~ with ). The results of reference 4 do ensure con-
vergence, but do not render the evaluation of the sum
much easier. If all the y~.y~& do not have the same sign,
the annulment argument breaks down, and the evalua-
tion of the sum is then still more complicated. It is
then no longer clear that the result, Eq. (4.16) say, is
not substantially altered by some large additive term,
or multiplicative factor, which takes account of the
contribution of non-adjoining terms.

It is possible to resolve this problem fairly satis-
factorily from the statistical point of view, by con-
sidering the totality of expressions

(4.21)

provided this last expression converges. This result
gives, as it were, a survey of all the possibilities, and a
typical term may therefore be regarded as satisfying

(4.22)

type(1O, type(i) type(11) type(111)

FIG. 2. Behavior of 8 in the intermediate region.

"E.P. Wigner, Phys. Rev. 70, 606 (1946), formula (46); also
reference 5.

at least on the average. The convergence is now mani-
fest for any reasonable variation of the parameters with

The subsequent determination of the minimum
depends on the approximations (4.13) and (4.15) and
involves the Taylor expansion of

I
R, iI2 up to terms of

"See Kaczmarz and Steinhaus, Theoric der Orthogoealreihen;
also reference 5, Appendix.
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or
1 1

BRB=—(x'X x')+—(x"Xx").
t' ]II

(4.28)

Equation (4.27) (R of rank one) is, of course a special
case of (4.28) (R of rank two). Because of the multi-
plication rules for the matrices (x'Xx'), (x"Xx") etc. ,
V (and, indeed, any similar function of R) may be
written in the form

FrG. 3. The Eorm of the cross section under
simplifying assumptions.

the second degree about some point between the two
maxima considered. The details, though lengthy, are
neither di6icult nor terribly instructive, and are not
reproduced here (see reference 3).

The upshot of the calculation is that in the case of
minima of type (i), for which R,i/0, the ratio
o,&&

' )/o i& ' becomes

2
V = I A'(x' Xx')+A "(x"Xx")

1+iC

+A'"(x'Xx")+A"'(x"XX') } —. (4.29')
1+iC

The (scalar) coefficients A', A", and A"' may be
evaluated by multiplying both sides of the equation for
V by 1+iC—iBEB.

Hy special choices of the p&, it is indeed possible to
get BRB into the form (4.27) or (4.28). For instance,
if y)„——u),b„ then

(~r/D)' (4.23)

so that the factor 4 of (4.16) is replaced by ir'. [This
result (4.23) depends on the assumption r/D((1. ] A
similar calculation may be applied to the case where
R, &

——0 and here the ratio o,&& '"'/0, &&
~) becomes

(err/D) [w (r—r, —r,)/D]'. (4.24)

If the potential scattering may be neglected, the relation
for the scattering cross sections is

whence

where

x,=B,b,

1 cy

& Ji7,—I;

2i X X

x
(t+6) —tr/2 (1+iC 1+iC)

(4.30)

1
BRB=—(XXx)

t
(4.27)

&min)/a &max) (~r/D)2(~r /D)2

1'~,=F—I",=absorption width for the process "s."The
appearance of an additional factor m' may be ascribed
mathematically to the fact that an extra order of
}R«}' appears in this calculation.

The above method of parabolic approximation to
}R.i}' may also be used to give a rough estimate of the
width of the minimum S' in the case of minima of
type (i). The distance W/2 from the minimum point
to a point having double this minimum value [i.e.,
2(wr/D)'a& 'x'j is found to be

W/2~D/7r [see (4.18)]. (4.26)

[This method is not suitable for the calculation of the
widths of minima of type (ii).g

C. Special Assumptions

In order that the elements of the matrix V have a
simple form, it is necessary that the matrix 1+iC
—iBEB be easily inverted, and this can generally only
be the case if E. is of rank one or two. This means
essentially that J3EB may be put in the form

—,'r=+B 'b '/(1+C ') and 5= —QC B 'b, '/(I+C, "i

[see Eqs. (2.10) and (2.12)).The reaction cross sections
then become

4 r r„r'/4
0 ~

kp r' (t+6)'+I"/4
(4.31)

t(E) = —(D/~r) tan(irE/D) (4.32)

r,r„/r'=r)„r)„/r), 2 is constant for given s and r and
independent of X. This form of the cross section is
illustrated in Fig. 3. If F and 6 are small compared to
the level spacing D, then the widths and level shifts are
given quite accurately by the quantities F&——a&~F and
A), =a)'h. Zeros occur between each pair of resonances
because t(E) becomes infinite between each pair of
zeros. The reaction cross sections all have the same type
of energy variation and differ only in their relative
amplitudes.

A special case of interest in which the formulas
become very simple occurs when the levels are uni-
formly spaced, with spacing D, and the total widths
are the same at the various levels (i.e. , ri=r„= . =r,
ai'=a„'= =1). t(E) then becomes
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and thus levels. Then

4 r.r„ (wI'/2D)'
g a ~ . (4.33)

k,2 I' [tan(wE/D) —(wb/D)]'+ (wF/2D)'

wF/2D
(& ) & (max) .

1+( F/2D)
(4.34)

which has the general form of (3.11).If DAO (but 6/D
is still small) then (4.34) must be multiplied by the
correction factor

1—[a/(wD —F/2)]&. (4.35)

The maxima and minima, as for (4.31),are, respectively,
(4w/k. 2) (I',I'„/I') and 0. The actual line width is given
by (D/w) tan 'wFD/[D'+w (a2—F2/4)] which I" for
small F/D. For narrow lines the width of the minima
becomes 0.64D in good agreement with the previous
results.

The remaining results of this subsection are clearer
if they are only considered for the case C=O (i.e.,
6=0). Since the C, (and 6) are generally small, this
assumption is justified. If it is not made, the results
are much more complicated, though unchanged in their
essence. For instance, if d =0, the average (0,)) is found
to be

)wF~' (wF"~' wE

I I+I
4w I',I', ),2D) (. 2D ) D

0 ~st
k,2 F2 ~wF~2

- wF' wF"-2

I+ 1+
(2D) 2D 2D D

(4.37)
m.E

tan'

and
~wF~' wE

sec
)2D) D4 r,r.

g esa
kP F2

p F~
- F' F"-2

I'+ 1+
) 2D) 2D 2D

mE
tan'

D

(4.38)

Here I' is the total width, I'=Q, F„while I", I'" are
the respective partial widths for processes with given
sign, i.e.,

F'= g F, and F"=PF..
saba

tT g has a similar form to O.,t with r' and r" interchanged.
A distinction must be made between the possibilities

wF/2D(I and wF/2D) 1. It may be supposed that the
former case applies, the latter having been discussed in
Section III. The ratio 0' '~)/o( '*' is then given,
respectively, by the expressions

(wF/2D)'(wF "/2D)'

[1+(wI"/2D) (wI'"/2D) j' (4.39)

(wF/2D)'

[1+(wF'/2D) (wF"/2D)]2
(4.40)

PXS Ppt +]is YXt
2 2 — 2 2

which leaves the signs of the yq, arbitrary, but not
for the two types of cross section and a, t and r„.These
results are in agreement with the more general results
of Section V, A and B. The minima are of two types,
being, respectively, of order F'/D' and I'/D' times the
maxima (if I'/D is small). The latter case occurs only
for reactions of the type "su" which are just those
whose matrix elements never vanish.

These distinctions do not, in general, play a role in
the absorption cross sections

PXsglst Pfss+Xt

as is done above. Quite arbitrary variations of the
signs" cannot be dealt with by the above method, but
certain special types of sign changes lead to BRB being
of rank two: to wit, if

It seems natural to try to generalize the assumption
(4.30) in such a way that the ratios of the partial
widths for diGerent processes remain independent of

and
the level, but without restricting the signs of the y)„so
severely, vis. , to require only

yg, ——(1—2+8 ),Pb.,)agb, (4.36)
0'8A = &st) 0'aA = &at)

tgs tea
where the n, u run only over some of the X, s, respec-
tively. Thus the sign of p&, is reversed only for processes
u, b, -, and then only at the levels 0., - . . MB then
has the form (4.28).

The general features of the results are shown most
clearly by considering a rather more special case on the
lines of (4.32). Again the levels are supposed equally
spaced with spacing D, and the width the same at all
the levels, but it is now assumed that for processes
u, b, ~ etc., the y~, have alternate signs at alternate

"See reference 5 for a fuller discussion of this point.

o,&& '~&
p ~F q

' F"

E2D) F-F,
and

Fq' I"

E2D) F-F.
that is,

g (min)/g (max) (wF/2D)2 (4.41)

the other factor on the right being of the order 2 and
taking account of the number of processes of each type.

because the summation substantially averages over
the various possibilities. For small I'/D



T. TE I CH MANN

The averages may also be calculated and are found —y, is simply the complex argument of the relative
to be external wave function y„ i.e.,

mI'

(o ) o (max) .

~r' ~F" ~r ~~r"q
1+ +-

2D 2D 2D(2D&

o "" =(./I(o. l (5.3)

a;.=o,.(o)+i)a;..sin'-(8+i, „) (5.4)

A straightforward calculation then yields for the cross
section the expression

4n. F,2 I' —F,
0.,& ' =—- — + sin'y,

k2 2r2 r

(4.42) where
~r' ~r"- - ~r ~r' ~r"-

1+ 1+ +
2D 2D 2D 2D 2D

xI" 1
(o)—a()

2D - ~r' ~r"-
$+ 0

2D 2D

(4.43)

and

I',
~
I'.' I' —I',

——
(
—+4 sin'y,

~

(5.5)
2FEF2 r i l

both of which have the form (3.11).

V. SCATTERING CROSS SECTIONS

In order to extend the discussion to scattering cross
sections it is necessary to consider the effect of the
potential scattering term, and the interference between
the potential scattering and the resonance (nuclear)
scattering (see Section II). If these terms are com-
paratively small, which is the case at low energies
where x,=k,u, is small, then the scattering cross
sections behave just like reaction cross sections, and
nothing further need be said. In general, however, the
behavior is very complicated unless the discussion is
conhned to the vicinity of a resonance, in which case
may be approximated by a single term of rank one
(vis , the E.),= (y),X~)/(E), —E) of Section IV, A. The
calculation is then formally equivalent to that following
from the simplifying assumption (4.27); thus the result
is not only applicable to the scattering cross sections
near the resonances of thin lines, but may also be used
to give a rough indication of what happens between the
resonances when the lines are not thin.

Using ~ to denote E),+8~—E when single resonances
are considered, or b,—(D/n) tan(v E/D) when the
simplifying assumptions (4.27) and (4.32) are used,

gf 2~2
+

1+v'C, ~—ir/2 (1+iC,)'

2i
(5 1)

The second term is the analog of what has already been
obtained for V'" in Section IV, A, or for V in Section
IV, C. The erst term is due to the contribution of the
diagonal matrix C which appears in the expression
(2.5) for V, and appears only in the diagonal elements
of V. Its main effect is that in the 6na1. expression for
the cross section it is not x. but

(5.6)

Here

F )(

tane= —
i

=
2v ( 2(Eg+6),—E)

and

near a resonance
~

(5.7)

2 siny, cosy, .

tang, =
(F,/I') —2 sin'y,

(5.8)

M r2 r, F, pr2 r —r,——sin'y, ——
~

+4 sin'y,
(

k.2 2r' r 2rkr2 r )

The first part vanishes for y. =0 (no potential scatter-
ing), while the second vanishes both for y, =0 and for
F,=O (no resonance scattering). l')o., sin'(8+1', ) is the
sum of the pure resonance scattering and the energy
dependent part of the interference between resonance
and potential scattering: it vanishes identically only
for F,=O. For small y„

(0) (4)r/k 2)((r—r.)/r $2 sin'y,

while

i)o„(4)r/k, 2) (F,'/I')

o.„("is independent of the energy (as far as the reso-
nance variation is concerned), and is the minimum
value of the cross section. It is the sum of the pure
potential scattering

(4v./kP) sin'y,

and the energy independent part of the interference
between potential and resonance scattering, vis. ,

(5.2)y, =x,—tan 'C
which is the value obtained for the maximum if po-

which appears. Reference to (2.3) and (2.5) shows that tential effects are neglected (see Section III, A).
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VI. AVERAGE CROSS SECTIONS

It is of interest to correlate the expression here
obtained for the average cross section

a, being the radius of the compound system. Thus

4 rr, xr pr~
&~„)=— F—

~

—
I

k.2 I' 2D (D)

with that of the statistical theory

(6 1)
=~a'] 1+

/
F

]
—

/
. (6.6)

k,a, J 2D E D)

&~„)=s,g,q, =s,]r,/r = (~,)q, . (6.2)

(~,), the cross section of formation of the compound
system, is thus given by

(6.3)

(0.75 (E)&F),
( m'

) (6 4)

E being the energy measured in Mev. Thus, S, the
penetration cross section of the nucleus may be placed
equal to (x/k, ')P, and $„ the sticking probability
equated to 0 75F(E)&. Bo. th these quantities then have
the properties required of them by the statistical theory.

Proceeding to higher energies" it is necessary to take
into account processes of higher angular momenta when
computing &~.); this now becomes the sum of all partial
(o,) with angular momenta

Note that (o.)&(0.r), o,r=g~ 0, ~ being the total cross
section for the colliding pair "s," including the potential
eBects. In the absence of any potential scattering,
&s = &eT ~

Introducing the expression k2,P,yq. 2for r, )see (2.8)j
and noting the relation y~,2/D'~0. 27X10 " cm (see
reference 4)

Since k,a, is now large, S, may be equated to xa„"-, while

((4mr, /2D)F(1'/D))A, . (6.7)

Because of the properties of F (xF(x) constant for
large x), $, constant in this region since I', I'. At
still higher energies $, tends to decrease, because I',/r
decreases due to more modes of disintegration of the
compound system coming into play (i.e. , the dimension
of U increases, see reference 2). With these assign-
ments, S„$, again have the properties demanded by
the statistical theory.

The absorption cross section rr,g=P~g, ~.~ is given
by

Since (r r.)/D=r—z./D is practically constant till new
processes begin paying a role, (6.8) shows that in this
part of the high energy region the energy dependence
of the average cross section is determined mainly by
the factor F(r/D). In the simplest case F has the form

F~i/$1+0. 18(E)~] E in Mev (6.9)

and more generally this must be multiplied by a
complicated but slowly varying function of E which is
of the order 1 (see (4.42)).
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