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The Structure of Atoms from Diffraction Studies
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.K nlethud is given for obtaining the electron distribution in atoms from diffraction data ~which makes u~e
ttf the fact that the distribution function is positive. The property of positiveness aEords a basis for extra-
polating the scattering data v hich are determined experimentally over only a 6nite range. This extrapola-
tion is needed since the formula relating the electron distribution to the scat 1.ering function requires that the
latter be known over an in6nite range. A procedure for the extrapolation is given and the nature of the error is
discussed.

'HE amplitude of x-rays scattered coherent. ly by
free atoms may be expressed according to theory

in terms of the electron distribution about the nuclei
of these atoms. By means of an inversion procedure the
electron dist. ribution may be in turn expressed explicitly
in. terms of the scattered x-ray a,mplitude. This sugges-
t.ive form has lead to several investigations' ' with rare
gas atoms in which attempts were made to determine
the electron distribution. In these experiments scatter-
ing data were obtained only over a small range whereas
the theory requires that the scattered intensity be
known from zero to inhnity. A procedure has been
developed for extrapolating the data beyond the range
covered by experiment which makes use of the fact
t.hat the electron distribution about a nucleus is
positive function. Extrapolation procedures used pre-
viously had no theoretical basis and caused errors in

the final result. It will be shown that exact. data known

nnly in a restricted range of angle are sufhcient to
uniquely determine the positive electron distribution of
an atom; the only requirement on the function repre-
sented by the data being the existence of all of its
derivatives at the origin. If the scattering function is

assumed to be analytic, then any finite length deter-
mines the remainder of the curve by the principle of
analytic continuation, and the concept of positiveness
need not be introduced. In practice, of course, experi-
mental data are always obtained with some degree of
uncertainty. In this case analyticity oR'ers no useful
criterion for extrapolating the data beyond the experi-
mental range. On the other hand, the positiveness of
the sine transform of the function does oGer a basis
for ext.rapolating the data within a limited range of
uncertainty. The uncertainty in the resulting electron
dist. ribution will therefore fall within limited bounds
which may be evaluated in terms of the uncertainty ii1

the experimental data. In this paper a practical pro-
cedure will be developed for extrapolating experimental
data which insures that it.s Fourier sine transform will
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be positive, and also an evaluation will be made of the
error in the final results.
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and Q=1/L1+h(1 —cos8)/mc)ij'. The quantity I, is
the incident intensity, (1+cos'8)/2 is the polarization
factor, S is the incoherent scattering function tabu-
lated by Bewilogua, E) is the relativistic correction, Z
is the atomic number, s= (4m sine/2)/X, and the quan-
tities e, m, c, h, and X have their usual definitions. In
this paper we are mainly concerned with the quant. ity
f(s) which is called the atomic scattering factor. It. is
defined in terms of D(r)=4vrr'p(r) where p(r) is the
number of electrons per unit volume at a distance r
from the atomic nucleus. The square of the scattering
factor multiplied by the quantity in front of the bracket
in (1) represents the coherent scattered intensity.

.si Fourier inversion may be performed on (2) giving,

2p f
D(r) =—

~l sf (s) snirsr/s
o

The atomic scattering factor, f(s), mav be determined
experimentally for only a restricted range of s. The
practical lower limit of the range is some small value
larger t.han zero and the upper limit is determined by
many factors including the wave-length, the sensitivity
of the measurements, and the relative magnitudes of
t.he incoherent and coherent scattering. It is evident.
that D(r) may be reliably obtained from (2) only if f(s)
is correctly extrapolated beyond the range in which it.

has been experimentally determined. The extrapolation.

"M. H. Pirenne, The DQfraction of X-Rays and Electron» by J'ree
.)iolecules (Cambridge University Press, London, 1946).' L. Bewilogua, Physik. Zeits. 32, 740 (1931).

THEORY

'I'Iie tot;&1 x-ray intensity scat. tered by a free atoin'
at a» aiigle 0 t.o t.he main beam at i, distance R is,
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TABix I. YVitches of several orders, their cooresponding distribution functions, D(r), and the coordinates of the maxima.
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procedure given here depends upon the use of a special
type of analytic function. It will be indicated, although
no formal mathematical proof will be o6ered, that tke
uncertainty in the final result for the electron distribu-
tion does not depend in the region of interest upon the
special type of analytic function used but rather on the
restrictiveness of the condition that the Fourier sine
transform be positive. The restrictiveness will be shown

by developing the formal theory of positive Fourier
sine t,ransforms and also by deriving certain of their
special properties. The formal theory overs in principle
a direct procedure for extrapolating numerical data
without resorting to special functions. At its present
stage of development, though, this procedure seems to
be prohibitively laborious. The evaluation of the error
is based on a numerical study involving a large class of
examples using two different types of functions. Again
the formal theory of positive Fourier sine transforms
afI'ords a basis in principle for studying the errors in the
resulting electron distribution without resorting to
special functions but requires considerable development
to make it useful in practice.

NON-NEGATIVE SINE TRANSFORMS

The theory of non-negative Fourier sine transforms
may be developed in terms of non-negative Hermitian
forms in a manner entirely analogous to that for non-
negative Fourier integrals of complex integrand" and
non-negative Fourier series. "'-' %e define

( / d)dLssf(s)]=p(s)

whose value may be obtained from (2) by differentiating
with respect to s, giving

y(s) =~~ D(r) cossrdr. (gl
0
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From (4) we may write

Q Q y(s, —s,)X,X,

D(r)g PX,X;cos(s , s;)rdr, .(—5)
0 2

where I; is an independent variable and X; is its com-
plex conjugate. The right side may be rewritten

D(r)LP X;coss;rP X; coss;r
0 i=l i=1

+P X;sinsr+X;sins;r]dr, m=1, 2, (6)

which becomes, since each sum is multiplied by its
complex conjugate,

D(r)r-IP X;cossgI'+I+ X.;sinsrI-']dr&0. (7)
0 i=1 i=1

Since D(r) is a non-negative function, the integral is
non-negative. We therefore obtain from (5) and (7) the
infinite set of non-negative Hermitian forms character-
izing the positive Fourier sine transform,

QQp(s; —s,)X;X,&0, ~n=1, 2
1

The necessary and sufFicient condition for the Hermi-
tian forms to be non-negative is that the following set
of determinants on the coefficients y(s;—s,) be non-

negative, "
go

pi po
D, —p2 pg (po '' p ( 2} &0, n=0, 1, 2, , (9)

IVe Pa lan 2''''po— —

"For fixed m, n ranges from zero to m —1.
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where qr, ,= p;,= y(s;—s,) is the element in the ith row

and jth column and satis6es y;,.= y; +y;. Since y is an
even function, y, ,= y;,. The determinants (9) may be
rewritten to give a bound on q „ in terms of the other
elements. This bound may be written

wll ere

The identification of the moment problem with the
problem of non-negative sine transforms may be made
by successively differentiating both sides of (2) and
then setting s equal to zero. Since D(r) is an even func-
tion of r, we obtain

d =(—1)"
' P—(n —3)

Pn —O' ' 'Po
(12)

f
X

r"D(r) dr = f r'd4(r)J„J„
= (—1)""' "' 2(n+1)f&"'(0) (16)

The element rp„ is real and is therefore bounded within
an interval on the real axis whose center is 6„and whose
length is 2r„It will . be shown for a function f(s) whose
derivatives exist at the origin that the function known
in a finite interval including the origin uniquely de-
termines a positive electron distribution. It is therefore
apparent that p„, which may be an element beyond the
experimental range of s values, is bounded with greater
and greater restriction as rs and therefore the order of the
determinants increases. As I approaches infinity, r„ap-
proaches zero and p„becomes a definite point defined as

(p~ = 1lIll

Kit.h experimental data there is some uncertainty
in the extrapolation owing to the uncertainty in the
data. However, the extrapolation of any experimental
function consistent with the range of uncertainty of the
data must obey the restrictions of (10).

In principle, numerical data can be extrapolated be-
yond the experimental range by means of (10). The
elements p(s;—s,) in the experimental range are ob-
tained by finding (d/ds)[sf(s)], s=s;—s, , from the
numerical data. These are used with (10) to extend the
function p. The extension on f(s) may then be found

by evaluating

sf(s) = f p(y)dy.

'I his procedure is quite formidable in its present stage of
development. Ke have therefore devised an extra-
polation method which is based upon the application
of special functions.

UNIQUENESS PROPERTY

The question of uniqueness may be discussed by
means of the Hamburger moment problem" which
concerns the conclusions that may be drawn about an
increasing monotonic function, 4(r), given the mo-

"J.Shohat and J. Tamarkin, The Problem of Moments (Ameri-
can Mathematical Society, New York, 1943),

where

(d/dr) 4(r) =D(r). (17)

EXTRAPOLATIO N PROCEDURE

The extrapolation method used involves 6tting the
experimental f(s) data with a function of the type, '"

a;

'=i (1+9s'-')"'

This function is used to define f(s) for all s from rero to
infinity. The quantities a;, b;, and si; are positive num-
bers and the value of p depends upon the accuracy de-

"M. Riesz, Arkiv. f. Mat. Astr. o. Fys. 17, 1 (1923), (see p. 46).
"The function a/(1+bs') is known as the witch of Agnesi. KVe

call the function a/(1+bs2)" a witch of nth order.

The moments of D(r) are seen to be simply related to
the successive derivatives of f(s) at the origin. The
function, 4'(r), according to (17) must be an increasing
monotonic function since D(r) is positive for all r.
As a corollary to a result of Riesz" who studied the
Hamburger moment problem, it can be shown that if
D(r) drops off at least as fast as exp( —kr) for some
positive k (i.e., lim, „D(r)/exp( —kr) =0), D(r) is
uniquely determined by its moments. This condition
of Riesz may be readily assumed to hold. It may there-
fore be concluded that the derivatives at the origin
of a function, f(s), uniquely determine a positive elec-
tron distribution. Since f(s), known in any interval
including the origin, determines all its derivatives at the
origin, it therefore determines the positive electron
distribution. It follows too that any finite portion of
the f(s) curve which is connected to a region including
the origin by analytic continuation will uniquely de-
termine a positive electron distribution. These con-
clusions, which relate to functions known exactly, have
been drawn without assuming that f(s) is analytic
everywhere. They serve to illustrate that positiveness
affords extra restrictiveness on exact functions and
imply that this restrictiveness may have applications
to experimental functions which possess some degree of
uncertainty.
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sired and the complexity of the atom being studied.
Generally the heavier atoms require more terms in the
summation. The values of b; and n; must be positive
for (18) to remain finite for all values of s. If, in addi-
tion, the coefficients (z„are positive, function (18),
substituted for f(s) in (3), must give a D(r) which is
positive for all values of r. Listed in Table I are ex-
amples of some of the simpler functions (18) together
with the corresponding functions D(r). In the third anal

fourth columns the abscissas and ordinates of the
maxima of the D(r) are tabulated since these are useful
in plotting D(r). If b;&0, each D(r) is seen to be posi-
tive for all values of r. Therefore the D(r) which corre-
sponds to any linear combination of the funct. ions
1/(1+b;s')"' with positive coeKcients will certainly be
positive.

The types of functions found to be satisfactory and
co(ivenient for light, er atoms have p values up to ahout
five in expression (18) and rz; values equal to integers,
none less than two.

The curve fitting procedure which has been de-
veloped is divided into two steps. The first step is to
approximate the experimental data with a function of
the type (18) with all the zz, equal to the same positive
integer n. In the second step this approximation is

improved by the decomposition of some of the witches
into a linear combination of witches of di8erent orders.

The fitting of witches with all the n; equal to a posi-
tive integer n can be reduced to the problem of fitting
first-order witches. The experimental f(s) is replace(l

by the function,

t'~~ —2't
where ( .

~
are the binomial coefficients,

) ~

= 1,) '& 0)
and so is the smallest value of s for which f(s) is known.
The function p„(s) is fitted with first-order witches by a
procedure which guarantees that the parameters a, ' and
b,

' of the first-order wit. ches v ill be positive. Multi-
plying a, '

by (1+b so'-)" ' and leaving bunc, hanged, we
obtain new parameters (z„=a (1+b so')" ' and b;=b
which when substituted into (18) with each (4; equal to
zz yield a function which is an approximation to f(s)
This may be shown by substituting (18) with zz, equal
to zz for f(s) into (19) and noting that the right-hand side
then reduces to a sum of first-order witches with the
same b; but with the a; replaced by a„'=a,/(1+b;s&P)" ':

44„(»l=p (4, [(1+t(,s„' )" '(1+-b s'-)].

9'e note that

p„(s )4=+ a;/(1+b;so')" = t(su) = /4 (21 j

passes through the p points (s;, J', ), we have a sej of p
equations

so that. f(s) and every si„(s) have the point (so, fo) in
common. Finally, if a and b,

' are positive, then so are
a; and b, .

The procedure for fitting first-order witches to a set
of points (s;, f;), which guarantees t.hat the (z, and b;
will be positive, has been developed as follows. 1f the
sum of p witches

?=]., 2, .
, p

which are linear in the (z, . These equations may be
readily solved for the a;, giving

l II(1+»s ') 3[(—1)'-'" '""' 2 -1 ~ (b )j
j'2.l l

where

(s,', s,', , s, '-') = II II (s,-'—»4'-')

I'=i+I s I

= (Si' Sz )(Sl Sz') ' ' '(» SP )(S'-

X (S —»4~) (S)-—S()~) ' (»()—i —S() )

~f;=(.'i" s '' s )s( f(

(24)

and 5;(b,) is the elementary symmetric function of
degree i of all the bj, except b,:, e.g. ,

5p(b, )=1,
5 (») =»+bz+b4+ +b„
54(bi) = b bz+ +bzbz+bzb4+

+b3b„+ . +b,-lb,„
5„((bz)= b(b.b4bz b„

.~&~ ~'&)~44 ) ~P

+ (»,'-', s.,'-', »4'-', , »~'')szz'fz-
z=0, 1, 2, , P—1

Since the b; occur symmetrically in (22), we assume
without loss of generality that b;& b; if i&j. Similarly,

(2-'j) we assume that s;(s, if z'( j. Since, if we require the b,
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t.o be positive each of the expressions

II (I+»&")

through the four points (s;, f;) I.f (32) is fulfilled then
the complete solution of (28) and (29) is given by:

(—1)
&'- » (s,'-', s

'-' s,'-')

(' —] I' ' g (b; b, 'I—

appearing in (23) is evidently positive, and suicc wc
desire to restrict. the b,. so that a, are positive, we con-
clude that the only remaining expression appearing in
~23) must also he positive:

(—1)*'"+"'+iP!1;5;(b,))0, j= 1, 2, , p. (28)
t=o

YVe have to determine the b„subject to

b, & b..» b„&(),

.l I+b422
hg&bg( ——

l +b4A;1

-'f 1+bg~l g

tj«b &—
-& +b3-&:l

if. 6;1& (~

1 o+ (bi+ bg). 1 i+

blab

4;1
I'~:1(b &— if A;1& (X

.1i+ (bi+bi) A-+ b3biA i

.lp+(b +b3)A, +b b, 4
(bI

.1 i+(b +by)Ai+b b;,:1g

1„+(b +b4). 1 i+6 bi;1

.1,+(bg+b4). I +b b4;1;;
such 1.ha, t (28) is sa, tisfied. The system of inequalities
(28) and (29) has been completely solved for several
small values of p. We give solutions sufficient to satisfy
(28) and (29) (and therefore a;)0) for p=3, 4, 5.

If p=3, the necessary and sufficient condition for
(28) and (29) to have solutions is that the inequalities

if bd(e, and

A 0+ (bi+ bg) A i+ bib'. f «

-(bI
.1,+ (bi+ b,)A,+bib 3A 3

.f. l+f)4, l

bg( ——
l 2+ b4. l;I

(33)

(—1) '+'.4 )0, i = 0, 1, 2

, lI'-' —.'l P. l &0
(3()) l I+b432

if b; (n, and b»—
.'l +b43~

lic satisiie&l. lf (30) is not fulfilled, then (28) and (29!
have no solutions and it is impossible for a sum of three
first-order witches with positive parameters to pass
through the three points (s,, f;). If (30) is fulfilled, then
the complete solution of (28) and (29) is given hy:

.l 1

0(b & ——

-~o+b:I- ~ 1

.1,+ (b;,+bi):I i+ bib4. 1

&bI
1,+ (b;,+b4) A.+b„b4A.

Ao+ (bi+b4)A i+bzbiAi

A,+ (b2+ bi)A «+b2biA;)

=l I+b4. l.
if bg& 0f, and b.(—

1.+b4A g

.l o+6;;.f I ~o+b~:~ i

.'~ 1+b:l-'l 9 3 I+b23 2

-~o+b3 l I

-~ I+b~-l

(31)
. 1,&+ (()g+ b4);1 i+ b;)bi4.

&bg
-1 i+(bi+bi)A +bib4As

-l i+b4~.
if b3& o., and bg&—

~1.+b43 ~,

where o. is the smaller root of the quadratic

If p=4, the necessary and suNcient condition for
(28) and (29) to have solutions is that the inequalities

( 1)i+1,1 )0

.I. ;-'—.l, I.-f;„](0,

.i=(), 1, 2, 3

1 —1 2

he satisfied. If (32) is not fulfilled, then (28) and (29)
have no solution and it is impossible for a sum of four
erst-order witches with positive parameters to pass

(A i'-' —A pA g)+(AiAi —AOA3)x

+ (A g' —.4 iA 3)x'= 0. (34)

If p= 5, the necessary and sufficient condition for (28)
aml (29) to have solutions is that the inequalities

(—1)'A,)0,
3;"—.4; gA;+I&0,
A2( A]

i=0, 1, 2, 3, 4
i=1, 2, 3 (35)

be satisfied where o.; are the smaller roots of the quad-
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ratics

(Ap —A; iA;, i)+(A,A;+i —A; iA;+2)x
+ (A;+i"-—A,A;+2)x'= 0, i= 1, 2. (36)

If (35) is not fulfilled, then (28) and (29) have no solu-

tion and it is impossible for a sum of five first-order

witches with positive parameters to pass through the

five points (s;, f;). If (35) is fulfilled, then solutions of

(28) and (29) are given by:

0&b5& b4& bd& no

n(b, ) &b, &n(b4), n(b, ) &b, & —(A,+b,A3)/(A;, +b A )

-'10+ (b2+ b8+ b5)A 1+(b2bi+b2bb+ b3bg)A 2+ babsbsA i
(bi&

A, +(b +b3+bi)A2+(bibi+bibi+babs)Ai+b. b3bgc. (i

=10+(b +b4+b5):1 i+(b b4+b2b5+bibs)Az+& b4b5 ls-
.1 )+(b2+b4+bi)A. + (b2b4+b. bg+b4bi)Ay+br bib„'1 ~. .

TAarx II. WoIlan's data for neon, fw(s) {obtained by interpolation
from his results), and the fItted functions, fI(s) and f.„(s).

0

2
3
4

6
7

9
10
11
12

10.00
9.58
8.41
6.86
5.50
4.51
3.69
3.08
2.59
2.30
2.10
1.90
1.79

f((s)

10.00
9.49
8.26
6.81
5.50
4.43
3.62
3.03
2.60
2.28
2.05
1.87
1.74

10.00
9.54
8.37
6.93
5.57
4.47
3.64
3.04
2.61
2.31
2.09
1.94
1.82

where o(b5) is the smaller root of the quadratic

[(A )'-' —.10,'it)+ (A iA g
—A pA, ))b5+ (A.'-* —A iA g) bg"-]

+[(AiA.—A pA:))+ (Ag-'—» pA4)bi,

+ (.1 gA g —.1 iA4) bs'-']x+ [(A i' —A iA:i)
+ (~1 A3 1.iA i—)b.i+ (A $ A2A 4) bii—]x"=0 (38-).

The method just described for fitting f(s) by a sum
of witches of order n will in general not yield solutions
for every n since the system of inequalities (28) and
(29) may have no solution. This is another indication
of the restrictions imposed by positiveness since a
solution has been found not to exist in cases where ten
a.rbitrary parameters are available for fitting five
points. %e have found in practice, however, that if ii

is chosen sufFiciently large then a solution can be found.
For convenience n is chosen to be the smallest value for
which a solution exists. In this way an approximation to
f(s) is obtained which is very good except possibly for
the larger values of s and which may be improved as
indicated below. If it is desired to improve the approxi-
mation use may be made of a set of formulas which
permits a witch of any order to be replaced either by a
witch of any other order or by a sum of witches of any
higher order. These are obtained by writing the Mac-
laurin expansion for the given witch and also the
Maclaurin expansion for the linear combination. of
higher order witches chosen to approximate the given

witch. The first few terms in the expansions are l.hen
equated in order to evaluate the coefficients. Typical
examples of these formulas are:

1+bs '(1+'-,'bs') '—(1+'-',bs 'l"-'-

1 i; —(1)18)(6)*

(1+»')' [1+(f—(1/1O) (6) ')»']'

2+ (1/18) (6) '
+—

[1+(5+ (1(1O)(6) -'i)»']"

1 5,~18 sj&s—+
[1+(-,' —(15)'(1O)bs ]"-I 1+-';bs-']'-'

5/'lS I

+
[1+(-',+(15):/1O)b.~-] ]

It can be readily seen that the leading terms in the
Maclaurin expansions of the left and right sides of these
expressions are the same. In these formulas and in

several others which have been derived the parameters
are positive. In order to make efficient use of this
adjustment procedure, it is necessary to have a large
number of relations such as (39) with an evaluation of
the deviation between the left and right sides as;i
function of s. The particular formula (39) which is

chosen is then determined by matching the deviation
of the first approximation to f(s) with the deviations of
relations (39).

By decomposing a given witch into a sufficiently
large number of higher order witches, the given witch
may be approximated as accurately as desired over
any range. This type of approximation is very accurate
for small values of s, but becomes poorer and poorer
as s increases, eventually falling off too rapidly or too
slowly according as we replace the given witch by
higher order ones or by one of lower order. Due to
this property, the method is well suited to adjusting the
initial approximation which is poor only for large
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values of s if at all. Due to the large number of decom-
positions of a given witch this method is very flexible
and with practice should permit adjustments leading to
any desired degree of accuracy.

ERRORS

so

45-

40-
Hartree

The examination of 22 different f{s) curves, each
with characteristic errors of varying magnitudes as
compared to a reference f(s) curve, and their corre-
sponding positive D(r) curves, has permitted an evalua-
tion of the uncertainty in D(r) to be expected from the
uncertainties in an experimental f(s) Tw. o diferent
types of functions were used to represent f(s):

P a;/(1+ b,s')"' (40)

and
Q a, exp( —kjs'). (41)

In both cases the corresponding D(r) are positive if the
parameters in (40) and (41) are positive. It was found
that the nature and magnitude of the error in D(r)
depended essentially upon the nature and magnitude
of the error in f(s) over the interval for which experi-
mental data are obtained, 0&s& so where so ranges from
about 30 to 40. The restriction imposed by the require-
ment that D(r) be positive is indicated by the fact
that the error in D(r) was not sensitive to the form of the
functions used. This is further born out by the fact
that if an experimental f(s) is extrapolated without the
requirement that the associated D(r) be positive, then
no general conclusions concerning the character of the
error in D(r) may be drawn from an examination of
f(s) in the experimental range.

On the basis of our empirical evidence, the following
estimates of the error in D(r) as a function of the error
in f(s) were obtained:
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FIG. 1. The two distributions, DI(r) and D2(r), corresponding
to the functions, f&(s) and f2(s), respectively, and the Hartree
distribution for neon.

be noted that the value and first derivative of f(s)
are known at s=0. In order that the error in D(r) for
r&0.08 be of the same order of magnitude as the ex-
perimental error, it is seen from (42) and (43) that
data are required to s=40 and beyond.

RESULTS

Neon

and

then

and

then

~
bf

~
& g when 0&s& 10

~
bf

~
& e when 10&s&30

bD &2e+2g when 0.15&r&1.0
hD &Se+2g when 0.10&r&1.0
bD (10e+2g when 0.08&r&1.0

~
bF

~
(q when 0&s(10

~
6F ) (e when 10&s(40

(42)

The application of this method to neon concerns the
computation of the electron distribution from the ex-

RS

20-

l5-

D {r) f

IO-

bD &s+2g when 0.08(r(1.0
bD &2e+2g when 0.07&r&1.0
8D &5e+2g when 0.05&r&1.0

The quantity bF is the relative error in F(s), bD is the
relative error in D(r), and 0&g(0.03, 0.01(s&0.10.
It is assumed that as s approaches zero g approaches
zero at least as rapidly as s'. In this connection it should

I i a s l

,4 .5
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FIG. 2. Wollan's computation of the distribution, DN(r),
corresponding to his data, fN(s), extrapolated to infinity using the
function, a exp( —ks), and the Hartree distribution for neon.
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f,(s) =P
~=& (1+k,s')'

(44)

aI = 1.4612
a2= 0.1581
a~ =6.0933
a4= 0.4031
a5= 1.5887
a6= 0.2956

kg=0.000 28
k2= 0.011 00
k3=0.022 60
k4= 0.039 899
k5= 0.058 40
k6=0.065 00

.f (s)=g
i=& (1+k,s~)~

perimental data of Wollan, although little accuracy can
be expected for the inner region from experimental
data which extends only to s=12. These results were
compared with the Hartree distribution for neon. '"
The f(s) data obtained by Wollan are given in the
second column of Table II. The following functions were
fitted to this data:

On the basis of the discussion of errors, it can be ex-
pected that very large errors may occur below r=0.15,
since the experimental data are limited to s&12. This
is in fact the case as may be seen in Fig. 1. The positive
distributions, D&(r) and D2(r), however show a uni-

formly increasing accuracy with increasing r in agree-
ment with the expected behavior of the error. A similar
remark concerning DN(r) in Fig. 2, obtained using the
a exp( —ks) extrapolation, cannot be made. In addition,
a computation of the area under DN(r) shows an excess
above the atomic number, 10, and therefore DN(r) must
become negative for larger r in order that the total area
be equal to the atomic number.

Argon

In order to study the application of the method to a
more complicated atomic structure, a theoretical model
for argon closely approximating the Hartree distribu-
tion was defined by means of an analytic function, "

~a=1 509 839
a2=0.145 649
a3= 7.886 528
a4=0.425 280
a5=0.032 704

k =0.000077 778
k2= 0.013 211
k3= 0.027 400
k4= 0.042 178
k5= 0.111 111.

DA(r) = ayr' exp[ —r/(ky)'"]/2kr'"

3r4
+~2 + +.256k2'l' 256k''f' 256k25~"-

g5

The functions f&(s) and f2(s) are tabulated in Table II.
The two D(r) corresponding to f~(s) and f,(s) are plotted
in Fig. 1 along with the Hartree distribution. The result
obtained from Kollan's data when extrapolated with
the function a exp( —ks), where a and k are determined
by the slope and magnitude of the data at the point of
joining, is shown in Fig. 2.
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+ exp[ —r/(k3) 'a] (46)
384k 36"

cj=1.59
a2= 6.95
a3= 9.46

k&=0.000 144
k2= 0.000 971
k3 ——0.030 999.

TABLE III. A theoretical scattering factor for argon I derived from
(46)j, and the fitted function f3(s).

fA(. )

By means of (2) the f(s) corresponding to (46) has been
computed. Values of this function f~(s) are given in the
second column of Table III. This function was fitted

r, A

l5

0
2
4
8

12
16
20
24
30

18.000
13.651
9.181
6.441
4.696
3.313
2.391
1.839
1.406

18.000
13.652
9.183
6.442
4.698
3.313
2.390
1.842
1.437

FIG. 3. An analytic distribution, DA(r), corresponding to the
assumed scattering factor for argon, fA(s), and the distribution,
D3(r), corresponding to the fitted function, f3(s).
"D. R. Hartree, Reports Prog. Phys. 11, 113 (1946-47).

' Experimental results for the scattering factor for argon have
been neither sufficiently accurate nor sufficiently extensive to
afford very much instructive information.
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with six witches of the 6fth order, giving,

a;
f. (s) =2

'=i (1+k,s'-)'
(47)

ay=0.006
a,=9.436
a3——0.023
a4= 7.217
as=0.003
a6=1.315

kg= 0.041 667
k2= 0.031 033
k3= 0.009 167
k4= 0.001 131
ks= 0.000 833
k6= 0.000 016 667. l5-

[

The function fa(s) is tabulated in Table III. The agree-
ment between the two functions is seen to be excellent
for the smaller values of s. As s increases, the dis-
crepancy increases to two percent at s=30. In I'ig. 3
are shown the theoretical D~(r) and the distribution
Dr(r), obtained from the fitted function. It is seen that
the two distributions agree very closely except at small.
values of r in accordance with the expected nature of the
error.

In Fig. 4 is shown the result of computing an electron
distribution from f~(s) in the range, 0&s&24, and
extrapolating the curve to inhnity by means of the
function, a exp( —ks). Again the parameters u and k
were chosen so that a exp( —ks) would agree in magni-
tude and slope with f~(s) at s= 24. It is seen that the
two inner maxima are not resolved, the error is rela-
tively large, even for large r and a measurement of the
area shows that the curve will eventually become
negative.

CONCLUDING REMARKS

The method presented can be used with x-ray scatter-
ing from atoms. It should also prove fruitful with elec-
tron scattering but may require further theoretical
investigation to improve the atomic scattering formulas.
The application of atomic structure studies by the
diffraction method to atoms in molecules is also an
interesting possibility. It may determine the changes

tp"
i

r, A

FrG. 4. An analytic distribution, DA(r), corresponding to the
assumed scattering factor foi' argon, fA(s), and the distribution,
D, (n), obtained from fA(s) extrapolated from s=24 to infinity by
means of the function a exp( —ks).

that occur in the electron distributions about atoms
when they bind together to form a molecule.

The idea that there are special relationships between
the scattering function and the structure of a scatterer
which may be represented by a function of one sign is a
concept whose usefulness extends beyond the particular
application in this paper. Investigations have been in

progress applying this idea to scattering experiments
involving the determination of particle size and the
structure of crystals. "In all cases the diffraction experi-
ments yield a limited amount of data. The adjustment
and extrapolation of these data consistent with the
restrictions imposed by the positiveness of the function
describing the structure increases the accuracy and
detail of the conclusions that may be drawn.
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