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pendence should also be tested in a differential rather
than in an integral manner.

Two last experimental facts are worthy of mention.
One is that bombardments of copper and lead targets
show that the number of fast deuterons increases with
atomic number less rapidly than the number of fast
protons. ' This may be an indication that the pick-up
process is more con6ned to the surface of the nucleus
than is a knock-out process. The second fact is that fast

tritons have also been observed with perhaps one-
tenth the probability of deuterons. If the pick-up
hypothesis is correct, more complicated rearrangements
are expected also to occur, but, of course, less often.

The authors wish to thank Professors Serber and
Wick for helpful theoretical discussions. We are also
grateful to H. York and K. Brueckner for their aid in
interpreting the experiments. Work described in this
report was performed under the auspices of the ABC.
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The x-ray and gamma-ray reflection properties of the (310) planes of quartz have been investigated over
the wave-length range 500 to 9 x.u. for the Laue or transmission case. The plates mere inhomogeneously
stressed by bending to a cylinder with a radius of 200 cm. The value of the integrated reflection coefBcient
was deduced from the luminosity properties of the curved-crystal spectrometer for seven different wave-
lengths. The data indicate that the integrated reQection coefBcient Rtt for a bent crystal varies as X' over
the range of wave-lengths studied. This behavior is in accord with that of a mosaic crystal. The reflection
properties of the (310) planes of an unstressed crystal plate cut from the same sample were measured over
the range 700 to 120 x.u. by the two-crystal spectrometer technique. These results indicate that the un-
stressed quartz plates behave more nearly as perfect crystals. Data are given on the integrated reflection
coefBcient, the peak value of Laue reflection coefficient, and the width at half-maximum of. the difl'raction
curve for the unstressed case.

INTRODUCTION

~)URING the development of the curved-crystal
gamma-ray spectrometer, ' it became apparent

that a careful determination of the reflection properties
of the (310) planes of the elastically curved-quartz
plates used in the spectrometer would have to be made.
At the same time, a thorough analysis of the intensity
problem of the spectrometer was carried out. This
analysis showed that the determination of the inte-
grated Laue reflection coefIIcient of the curved crystal
was possible from the experimental reflection properties.

While this determination is of particular interest for
the design and operation of the curved-crystal spec-
trometer, it has additional importance because, in the
past, other observers" have noted that the x-ray re-
flections from inhomogeneously stressed quartz plates
show rather marked anomalies not present in unstressed
or homogeneously stressed plates. Our experimental

* This work was supported by funds supplied through the joint
cooperation of the ONR and AEC.
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3 C. S. Barrett and C. E. Howe, Phys. Rev. 39, 889 (1932).

results con6rm these qualitative observations but, in
addition, we oBer some quantitative data which may be
useful for interpreting the observations.

THEORY

The theory of x-ray di6raction has been completely
worked out for a great many conditions. From the
character of the diGraction it is possible to deduce some
information concerning the perfection of the lattice
structure and the nature of its imperfections. A perfect
lattice is one in which there exist no disorders of any
kind in the atomic arrangement throughout the com-
plete crystal. A mosaic structure, on the other hand, is
one in which disorders do exist. It is convenient to
describe a mosaic crystal as consisting of small domains
each with perfect internal lattice structure which are
more or less disarranged in the macroscopic crystal.
The essential efI'ect of the domain structure is to cause
the scattering from separate domains to be incoherent.
For the perfect crystals, two cases are of interest. A
"thick" crystal is one for which the primary extinction
distance is much smaller than the thickness of the
crystal; a "thin" crystal is one for which the extinction
distance is much greater than the thickness of the
crystal. In a mosaic crystal, the situation is somewhat
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The rigorous development of the dynamical theory
of x-ray reflection tends to obscure rather than reveal
the physical interpretation. We, therefore, here give a
brief non-rigorous physical argument leading to the
required results.

The Ewald construction (Fig. 2) of the propagation
sphere inside the crystal lattice serves to determine the
allowable propagation vectors. Except for the dispersion
effectsf the Bragg equation must be satisfied,

Fro. 1. This figure shows the orientation of the crystal planes
and the incident and diGracted beams for the symmetrical I.aue
case.

more complicated because there are two types of ex-
tinction, primary and secondary. "Primary" refers to
extinction in the individual mosaic units while
"secondary" refers to the extinction which occurs in

the macroscopic crystal. The "dynamical theory" of
x-ray reflection has been developed 6rst by Darwin4

and later by Ewald' and von Laue. ' The details of the
scattering behavior of real crystals have been given by
Zachariasen' who follows the developments of Ewald
and of Von Laue. The cases which are of most interest
for this work are: (1) Negligible primary extinction in
the coherent domains and small secondary attenuation
in the crystal plate, (2) large primary extinction but
small secondary attenuation.

In the curved-crystal spectrometer used at short
wave-lengths, only the Laue or transmission case is
employed because it is possible thus to realize much
greater luminosity than with the Bragg or reflection
case. The results of the dynamical theory of x-ray
reflection have been completely worked out for these
cases.~' It is of interest to examine the theoretical
results to see what may be expected when the range of
wave-lengths is extended down to wave-lengths of the
order of 10 x.u. , for at short wave-lengths the effects
of much smaller lattice imperfections manifest them-
selves. The theory leads us to expect that such small
lattice imperfections will be masked at longer wave-

lengths where the diffraction pattern for an ideal crystal
is broader than the angular disturbances in question.

In what follows, the (310) planes of the quartz
crystal lay very nearly normal to the plane of the f-mm
thick crystalline slab (symmetrical Laue case), see
Fig. 1. The discussion which follows refers therefore to
the particular geometry which was employed, namely,
that of the symmetrical Laue case exclusively.

C. G. Darwin, Phil. Mag. 27, 325 {1914};27, 675 (1914).
~ P. P. Ewald, Ann. d. Physik 54, 519 (1917); 54, 577 (1917);

Zeits. f. Physik 2, 232 (1920); 30, 1 (1924); Physik. Zeits. 26, 29
(1925).

6 M. von Laue, Krgeb. d. exakt. Naturwiss. Bd. X, 137—158
(1931); Eontgenstrahl-interferensen (Akademische Verlagsgesell-
schaf t, Leipzig, 1941).

~ W. H. Zachariasen, Theory of X-Ray Bigraction in Crystals
(John Wiley and Sons, Inc., New' York, 1945}.

The Ewald construction is the graphical representation
of Eq. (1). kkk, ko are propagation vectors outside the
crystal for the diffracted and incident beams, respec-
tively, and have identical magnitudes 2n/li; Bkk is a
vector of the reciprocal lattice with magnitude 1/Chk

where dkk is the interplanar spacing for the (H) set of
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Fro. 2. Ewald's construction of the Bragg relation. The vectors
connecting the lattice points of this figure constitute the family
of reciprocal lattice vectors one of which S~ is shown. Ko and K~
are the propagation vectors for the incident and scattered radia-
tions, respectively. Only those lattice points lying on or very near
the propagation sphere will define the allowable propagation
vectors.

planes. We shall only be concerned with the case where
two propagation vectors are present.

In passage through the crystal the primary beam will
suer extinction until the diGracted beam contains
most of the energy. Then, the roles of diGracted beam
and incident beam become reversed. Actually, (see
Fig. 3) there is a periodic exchange of energy between
the two allowed beams; the periodicity in space will be
closely related to the distance in the crystal medium
which corresponds to an attenuation of the primary beam
of the order of 1/e. This attenua, tion will be here as-
sumed to take place entirely by diGraction, absorption
being neglected. The dynamical theory gives for this

f It can be shown that for the symmetrical Laue case when the
incident and diffracted beams make equal angles with the crystal
plate Eq. (1) for the determination of the center of the diGraction
maximum is exact. X is in this case the wave-length in vacuum,
hence there is no correction for refractive index.
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extinction distance the following result' under the
assumption that for Laue

t,=L2rp(
~

FATTI/V)Kdrr

tan8sj ',

reQection the two propagation directions make equal
angles with the face of the crystalline slab. E is the
polarization factor, FTT the crystal structure factor, $
V the volume of the unit cell and r p equals e /(rno'). The
distance t is measured normal to the face of the slab.
See Fig. 3. If it is measured instead in terms of the
number of atomic reQecting planes effective for ex-
tinction, then

1T H t, t——an8TT/dTT

Po

I

e

FIG. 4. This figure illustrates an idealized experiment to deter-
mine the reflection power of a crystal. Po and P~ represent the
intensities, respectively, in the incident and diffracted beams. It
is assumed that the radiation is strictly monochromatic and that
the incident beam is a plane-parallel wave. The curve represents
the fraction of the power which is diffracted as a function of the
angle of incidence in the neighborhood of the Bragg angle 8~. The
equality of angles of incidence and diffraction is true only when
the angle of incidence is 8g in this Laue case.

so
iVTT [2rpK(~ Fe—~—I/V)der'] '. (4)
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This is a good measure of the maximum number of
planes which can at any setting contribute coherently
to the scattered amplitude. It is well known that the
resolving power dlL/lL of a grating in the irst order is
proportional to 1/X where N is the total number of
lines in the grating. In the case of a crystal grating, this
relation is

dX/X = 1/(TFXTT).

From the Bragg relation, we have dIL/X=d8/tan8~ so
d8=tan8a/(TENT). Set the width To of the diffraction
pattern at half-maximum in radians equal to d8, then

To = 2rpK(
~
FTT

~
/V) dH' tan8/TF, (6)

FIG. 3. The intensities of the two propagated beams are shown
by the relative breadths of the corresponding rays. A periodic
exchange of the energy from the one to the other beam takes
place in the crystal. The distance which corresponds to a complete
exchange of the energy from one beam to the other is ~/2t, . t is
the extinction distance. Because of the surface irregularities, the
two beams emerging will on the average each contain one-half the
energy. For this reason, the emerging rays are shown with a
breadth one-half the maximum.

' See reference 7, pp. 123—135.
$ It might at 6rst be thought that for the very short nuclear

gamma-ray wave-lengths whose reflection coef5cients are here
measured, the coherent scattering would be completely negligible,
and since only the coherent part of the scattered radiation can
contribute to the selective diffraction by the crystal, one would
be tempeted to expect no selective reflection whatever. The
Compton shifted scattering is incoherent and plays no role in
selective diffraction.

In order that coherent scattering shall occur, the Gnal state of
the atom after scattering must be the same as its initial state. The
probability that an atom will scatter a photon and return to its
initial state (coherent scattering) is a function only of the change
in momentum of the radiation before and after scattering. So long
as the scattering takes place at the Bragg angle, the change in
momentum is constant independent of the wave-length. In cal-
culating the structure factor F~ no account therefore need be
taken of any variation with wave-length in the probability of
coherent scattering. See A. H. Compton and S. K. Allison, X-Rays
in Theory and Experiment (D. Van Nostrand Company, Inc. ,
New York, 1935), pp. 252-253.

To= rpKdH(I, FTT ~I/V)X/(TF cos8o). (6.1)

This is the same result which follows from the rigorous
theory.

To define the "di6raction pattern, "we must describe
a somewhat idealized but not conceptually impossible
experiment. Referring to Fig. 4, we think of a beam of
extremely monochromatic and extremely parallel x-rays
falling on a set of crystal planes at glancing angle e. We
then vary 8 over a region of values in the neighborhood
of the Bragg angle and we plot the ratio of the PoToer in
the dp'ffracted beam to the Power in the incident hearn as a
function of 8. The resulting curve exhibiting a maximum
at say 8& and falling rapidly on either side to very low
values is called the "diGraction pattern. " The words
"extremely monochromatic" and "extremely parallel"
used are to be interpreted as meaning that these
qualities are pushed suKciently far so that the eGect
of any residual inhomogeneity on the shape of the ob-
served di8raction pattern becomes negligible. The dif-
fraction pattern can be roughly characterized by giving
its width at half-maximum height and the maximum
value of the reQection coefficient at the peak of the
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T +pe

Perfect~

TABLE I. Summary of results for the four cases of
special interest.

Half-width of dif-
fraction pattern

at half-maximum

Integrated reflection
coefBcient

(Laue case)

rg»K(l F»
I IV))

2 cosHg

«02d.K2(I,F~l /V)9. gTO

(cos8~)'

rod»K(
~
F» (/v) x

a cos&g

ln2 & d~

Thick

Thin

tion. Therefore, for the case of a thick slab, the observed
intensity is taken (by averaging uniformly over all
phases) to be half the value occurring at the maximum
intensity of the oscillations. These considerations show
that for a thick crystal the maximum of the diBraction
pattern will be a constant, ~, independent of P. For
this case, only the width m will therefore depend on X.
The integrated reQection coeKcient for the Laue case is:

A =
o orr» = roKd»(

~
F»

~ / V) X/2 cos8.

Mosaic& Primary
extinction
present. Low
secondary
extinction

«~(I F~ I /V)»~~
2 cos8~to

Low Primary r, d Ko(~F
secondary

extinction
(ln4) &

q(ln4) &

This is the value given in Table I.
The distinction between "thick" and "thin" crystals

can only be made in terms of the extintion distance t,.
A thin crystal is one whose thickness To is much less
than t,. In this case, the number of scattering planes is
given by

&»——To tan 8/d„.

pattern. Another very important quantity derived
from the di6'raction pattern is the total urea under the

curve. This we shall call the integrated reflection coef-
6cient. Since the ordinates of the diGraction pattern are
pure numbers (reRection coefficients) and the abscissas
are angles, it follows that the integrated reflection coef-
ficient is an angle. It is generally and will here be
expressed in radians. It is in fact the equivalent angular
range over which at 100 percent e%ciency the same
total amount of reflection would occur. The difI'raction

pattern widths of many crystals of perfect type are so
small (of the order of a second of arc or less) that in

practice x-ray beams are seldom defined in direction
(at least by means of sLits) with comparable homo-

geneity. The integrated reQection coeS.cient therefore
is a very important factor in determining the power
which will be associated with an x-ray reflection since
it essentially determines the usable solid angle into
which an emitting atom in an x-ray source can shine in
order to be selectively reflected by the crystal planes.

If Po and PII are intensities in the incident and dif-
fracted plane parallel beams, respectively, then the
integrated reflection coeScient is defined by

~o=)" JF(8 »8»)/Fpjd8. —

Ewald's theory shows that for symmetrical Laue
reflection in an ideally perfect crystal lattice, the shape
of the diGraction pattern is that of a "witch" or reso-
nance curve if the slab is sufFiciently thick to include a
large number of the intensity oscillations illustrated in
Fig. 3. Since the distance t corresponding to the "wave-
length" of one such oscillation is in most cases ex-
tremely small in comparison to the thickness of the
slab, To, the assumption usually made is that the dif-
fracted beam in diGerent parts of the exit surface
emerges in all diff'erent phases of the intensity oscilla-

IO PLANE

~OP T ICAL
AXIS

Pro. 5. The (31Q) lattice planes of quartz lie so that they are
parallel to the edge of the crystal wafer and normal to the major
faces of the wafer. The crystal was bent elastically so that the"c"or optic axis, and therefore the (31Q) planes, lay parallel to the
generators of a right circular cylinder.

Again dX/X is proportions. l to 1/1V» so

d) /) =kd»/(To tan8),

where k is a proportionality constant of order one-half,
from which it follows that the width of the diBraction
pattern I is given by

w=kd»/Tp.

The theory predicts k=(or ' ln2)». The angular width
of the diGraction pattern is now independent of the
wave-length. The intensity diBracted by the crystal is
proportional to the square of the diGracted amplitude.
The amplitude will be given by

rpK(~ F»
~
/V)&Tp/cos8».

The integrated reflection coe%cient will then be propor-
tional to the square of the amplitude and to the diffrac-
tion pattern width. That is,

Rp or (rpK(~ F» ~/V)XTp/cos8» j d»/Tp.

The dynamical theory predicts the integrated reflection
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scribed by DuMond. ' The plates were polished to an
optically Qat finish on the major faces. When used in
the curved-crystal spectrometer, the crystal plate is
bent elastically so that it has with extremely high
accuracy the shape of a right circular cylinder with a
radius of approximately two meters. This bending is
accomplished by clamping the crystal between two
blocks of stainless steel provided with holes for the
passage of the radiation.

The vise-like jaws so formed are cylindrically pro6led,
one convex, the other concave, with a radius of curva-
ture of two-meters. Only the convex surface is pro61ed
to high precision, the crystal being held in intimate
contact with it by means of a rubber cushion placed
between the crystal and the concave vise jaw.

Figure 6 shows the essential geometry of the focusing
curved-crystal spectrometer. The crystal shown at C&

is elastically deformed so that the crystal planes inter-
sect at the point C~. Since the point 5 lies on the circle
through Cj and C2 having C~C2 as a diameter, all rays
leaving S and striking the crystal will make the same

angle with the atomic planes. In order to have exact
focusing, it is necessary that the crystal lamina lie on
the -focal circle. This condition is not exactly satished
in the present spectrometer but the aberrations intro-
duced by failure to meet the condition are entirely
negligible. The diffracted rays will appear to come from
the virtual source I. It is readily seen that this arrange-
ment affords a tremendous gain in luminosity over the
usual Qat-crystal spectrometer. The aperture angle
available to the source is just the angle which the
crystal subtends at the source.

Figure 7 shows schematically just enough of the
essential elements of the instrument to clarify the
method of measuring reQection coefficients with it. In

Ct P~I P'

COLLI MATOR

COUNTER

Fro. 7. The essential elements of the curved-crystal focusing
spectrometer as used for the study of the reQection properties of
the (310) planes of quartz. The source is placed on the focal circle
at S, and the radiation diffracted by the crystal appears to come
from the point I. The collimator only serves to prevent the
directly transmitted beam from detection by the counter placed
behind the collimator. I'I" is the arc inside of which the source S
can radiate directly through the collimator into the counter.

the gamma-ray case, the source at S consists of a thin
strip of neutron-activated material while in the x-ray
case a thin metal strip at the same point is exposed
(from the side) to primary x-radiation which causes it
to emit its characteristic Quorescent x-radiation. This
radiation emerges from the radiator surface at a small
grazing angle and passes to the curved crystal at C2.
Here the radiation, diffracted at the Bragg angle 8 on
the crystal planes, is deviated through an angle 28 and
emerges as a divergent beam with the image point I as
its virtual source. It then passes through the diverging
collimator whose function is to arrest the strong direct
radiation from S transmitted without deviation through
the crystal. By mechanical means not here shown, both
S and C2 are moved so as to explore the spectrum but
maintain the diffracted beam always strictly aligned
with the collimator. The intensity of the diffracted beam

W
I W3

I. A BERRATION 3.CRYSTAL
DIFFRACTIO N

PATTERN

5.COM POS ITE
WINDOW

Wg

2. SOURCE
PROFILE

4.SPECTRAL 6 .COMPOSITE
L IN E SOURCE
(X-RAY CASE)

Fro. 8. This figure shows the form of the four profiles which
determine the nature of the experimentally observed line profile
in the curved-crystal spectrometer, {1) the assumed focal aber-
ration of the curved crystal, (2) the finite source size, (3) the
intrinsic diGraction pattern of the crystal, and (4) the spectral
distribution of the x-ray or gamma-ray line. The composite
window 5, (fold of 1 and 3) may be considered the tool which is
used to explore the composite source 6, fold of (2 and 4).

is then measured in a special "multicellular" Geiger
counter. ' As Sapproaches I a point I' determined by the
collimator geometry will be reached at which the
directly transmitted beam will start to leak through
the collimator channels to the counter. Beyond this
point, the spectrometer cannot be used as such. How-
ever, by setting the source S exactly atI, a good measure
of the intensity of the entire direct undiffracted beam
can be made and this is very useful in the determination
of reQection coefficients. Such a direct measurement is
so many thousands of times stronger than the reQected
beam that it is necessary to attenuate the direct beam
with a series of absorbing plates or foils. The true unab-
sorbed intensity of the line radiation in question can
then be obtained by extrapolating on a semilogarithmic
absorption plot back to the counting rate for zero
absorber.

It would be a mistake, however, to suppose that the
ratio of direct to diffracted intensities observed in the
way roughly indicated can be taken directly as the

' D. A. Lind, Rev. Sci. Inst. 20, 233 (1949).
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FIG. 9. Source geometry for x-ray and nuclear gamma-radiation sources. The x-ray source is a piece of metal foil ground to the shape
of a thin wedge and placed at the center of the lead source bomb. This foil is irradiated with the continuous radiation from a tungsten
target x-ray tube at the left. The nuclear gamma-sources are metal foils activated by neutron bombardment. These foils are clamped
between the aluminum jaws of the holder to define the source geometry accurately. The surrounding lead defines the angular divergence
of the beam so that it will just fill the crystal aperture. This source assembly is mounted in the lead source bomb in place of the x-ray
scattering source holder.

refLection coeKcient. A number of instrumental factors
in addition to the reaction properties of the crystal
determine this observed ratio as follows:

(1) The bending of the crystal in the profiled vise
never succeeds in focusing the atomic planes with ab-
solute perfection at C~. Instead a small aberration
pattern of 6nite width m~ in the focal circle is formed.
(2) The source is not an infinitesimal line but has also
a finite width wg on the focal circle. Furthermore, (3) the
intrinsic diffraction pattern of the crystal, as we have
already pointed out, has an angular width zo which may
be translated into linear measure m3 on the focal circle,
and finally (4) the spectral line under study has a
natural spectral width 8X which may also be translated
into linear units giving a width m4 on the focal circle.
Figure 8 gives an idea of the shapes of these different
patterns. The "shape" of an observed spectral line is
then explored with the spectrometer by plotting the
counting rate for successive closely spaced positions of
the source 5 on the focal circle relative to the crystal C.
Actually, this process can be thought of as a super-
position of all four of the above patterns. Patterns (1)
and (3) associated with the crystal can be thought of as
folded together to form a composite exploring "tool" or
"window" (pattern 5 in Fig. 8) while patterns (2) and

(4) are folded together to form a composite source
profile (pattern 6 in Fig. 8). As this tool explores across
the source profile, the maximum intensity will be ob-
served when the product integral of the two composite
profiles has its maximum value, i.e., at the point where
all four separate pro6les overlap most advantageously.
Clearly then, the modus of this overlapping is of great
importance in determining the observed intensity
whereas Ry the integrated reQection coeKcient which
we seek to measure depends on only one of the four
patterns.

By an analysis of the four pattern shapes, one of us"
has derived formulas which permit the calculation of
RII the integrated reAection coeKcient of the crystal from
a quantity I'& which is easy to obtain from the direct
observations and which has the following de6nition.
Pz is the ratio of two quantities, in the numerator, (1)
the peak line intensity (counting rate), R&(0), observed
in the diffracted beam as the spectrometer explores
across a given spectral line of wave-Length X with the
source in position S (Fig. 7) and (2) in the denominator
that fraction, &I„of the peak primary intensity (counting
rate), Rn, which is associated with the same line X and
which is observed in the divergent direct beam trans-
mitted through the crystal with the source in position I
(Fig. 7).The spectral composition of the entire measured
radiation in the direct neam must, of course, be known
in order to determine the fraction yy associated with
the line ). The formula for I'& as defined above is then

PI, =R~(0)/(7~Ra). (15)

In order to compute Re from I')„ the following reason-
able assumptions were made regarding the four pro6les
of Fig. 8. (1) The linear extension w~ of the focal aber-
ration pattern and the width m2 of the source on the
focal circle are approximately equal and they are large
compared to the width m3 of the intrinsic crystal dif-
fraction pattern. The focal aberration pattern was
carefully studied by observing with the spectrometer
the exact positions of the centers of Line-profiles formed
by utilizing dBerent portions of the curved crystal
(isolated with a stop), a method analogous to the
Hartmann test in optics. This aberration pattern had a
width** m i= 0.1 mm on the focal circle. The widths, m2,
of the sources were purposely made as nearly as possible

'o D. A. Lind, thesis, California Institute of Technology (1948).
**By improvements in the crystal clamp profiling, we have

subsequently succeeded in reducing m& to 0.05 mm.
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TAsI.z II. Table of data and derived results from Eg,

Sn Kng
Ta KAj
Au Kat
Th Kal
Au"6
Cp60

489.57
214.88
179.96
132.3
30.09
10.578
9.308

B
Mev

0.0253
0.0506
0.0688
0.0936
0.411
1.172
1.332

0.175+0.023
0.050&0.002
0.044&0.004
0.017&0.004
0.0030&0.0001

(4.97a0.50}X 10-4
(4.12+0.50) X 10 4

F /Rg from
theory

2.27
3.20
3.39
3.62
8.33
8.33
8.33

x.u. b

7.70X10 '
1.56X 10~
1.30X10 '
4.69X10 '
3.60X10 4

5.97X10 '
495X10 6

Rg
radians

(3.28&0.43) X 10 6

(6.63&0.27) X 10 '
(5.52~0.50) X10 '
(1.99~0.47) X 10 6

(1.53~0.05) X 10 ~

(2.54~0.25}X 10 6

(2.11~0.25) X 10 s

~ r; is the ratio of the peak counting rate at the line to the counting rate in the incident beam, and hence, represents the fraction of incident quanta
which is selectively diffracted at the maximum of the line profile. I's is not a constant of the crystal but depends on instrumental factors as well.

b In this column the angle Rft which is usually expressed in radians is instead expressed in x units.

equal to the aberration width wq. (2) The wave-length
distribution (spectral line pro6le) of the line of wave-

length X under observation must be assumed to be
known. In the x-ray cases, the spectral profiles can
safely be assumed to be "witches" and the widths can
be found from previous two-crystal spectrometer data.
In the gamma-ray cases, there are good reasons for
believing that the spectral line widths m4 used in
these observations are far too narrow for detection, a
condition which simplifies the calculations of Eg from
Fz. For brevity, most of these calculations and the
derivations of the formulas on which they are based
are here omitted. As an example, however, take the
gamma-ray case of a line of negligible spectral width m 4.

If one focuses attention on an infinitesimal areal
element of the crystal and asks what fraction of the
source will radiate quanta which will pass through this
element so as to make angles of incidence with the (310)
planes lying within the crystal detraction pattern, one
will see that this fraction is proportional to RgDt/t,
where Eg is the integrated reQection coeScient, Df the
focal circle diameter and t=mi=m4 is the linear ex-
tension of the source (and also the focal aberration) at
the focal circle. This follows because EqDf is the width
on the focal circle of that part of the source from which
radiation can be selectively diGracted by any given
element of crystal. This is just the result which is
derived from a more general and exact analysis. Hy a
similar analysis any case can be reduced to give an
expression for I'q in terms of Ey provided the above-
stated assumptions are fulfilled.

To make a reliable determination of I'y, a source of
known spectral composition is needed so that y~ shall be
known. In the x-ray region, the Quorescent E radiation
from an element of high atomic number is satisfactory
since the continuous background from Compton
scattering can be kept very small. Figure 9
shows a schematic drawing of the source arrangement.
The x-ray tube excites in the scatterer its characteristic
fluorescent radiation as well as Compton-scattered
radiation. However, very little of the Compton scat-
tering is directed toward the crystal because the scat-
tering angle is about 110' and the atomic number is
high. Nevertheless, to eliminate all question as to the
eGect of continuous scattered background, a procedure

utilizing the Ross method of "balanced filters"" was
employed. Sy this procedure, the direct beam was
observed with a pair of filters which were designed so
that their E edges bracketed the line under study. The
difference between these readings then represented the
sum of the fluorescent radiation pttts only the Contpton
scattering which lay in the small @ave-length interval
bracketed by the filters At the sa.me time, the peak reading
at the line was also made with the same transmission
filters.
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Fro. 10. Reflection properties of elastically curved-quartz plate.
The full line is a plot of the measured integrated reQection coef-
6cient Rg for the (310) planes of quartz in the Laue or trans-
mission case as a function of the wave-length 'A. The ordinate scale
is in radians and the abscissa scale is in x.u. The experimental
points are shown with their probable errors (vertical heights of the
rectangles). {The probable error of the wave-length is completely
negligible on this plot. ) Curve A represents the theoretical be-
havior of a similar quartz plate if the crystal behaved as a mosaic
with small primary and secondary extinction. The curve B
represents its behavior if it were perfect. In the region of the
intersection P of the curves A and B, the primary extinction
distance is of the same order as the plate thickness. Below this
point, curve B should coincide with curve A.

"P. A. Ross, J. Opt. Soc. Am. and Rev. Sci. Inst. 16, 433
(1928); P. Kirkpatrick, Rev. Sci. Inst. 10, 186 (1939).
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The actual source mounted in the spectrometer was
the scattering foil. See Fig. 9. This was prepared of pure
metal foil 0.004 in. thick by grinding to the shape of a
thin wedge. Foils of Sn, Ta, Au, and Th were used.
Great care was taken to make the sources identical in
projected geometrical width m2 as seen by the curved
crystal. This required mounting them so that their
projected width on the focal circle was 0.1 mm and no
more. The width of 0.1 mm represented also the linear
extent of the focal aberration of the curved crystal at
the focal circle. The foils were mounted on a Lucite
support by means of stopcock grease which was suf-
ficiently tacky to hold them, yet did not dry and distort
their shape. The x-ray tube was mounted so that the
target-source distance remained always at 8 in. Pre-
liminary calculations had shown that a tungsten tube
operating at 150 kvp and 10 ma would generate suf-
hcient fluorescent radiation for these measurements,
thanks to the high luminosity of the curved-crystal
instrument with the source at the focus.

The peak intensity in the diffracted En~ line from
each source and the intensity of the incident beam
were measured with the Ross filters. In the case of
thorium Ka.~, no filter was available but an extrapola-
tion of the corrections to the measurements at gold
showed this correction for Compton-scattered con-
tinuous radiation to be negligible. The relative inten-
sities of the lines of the E spectra have been measured. "
From these data it is possible to determine the factor
y~ in Eq. (15).

In the determination of the values of I"~ for the
nuclear gamma-radiations" "from Au'" and Co", the
only difference from the x-ray measurements was that
in each case the source was a piece of a pure activated
metal foil mounted as shown at 8 in Fig. 9. The foil
was 5 mm wide by 30 mm long by 0.1 mm thick and
was activated by neutron bombardment at Oak Ridge.
It was necessary in these cases to know the decay
scheme so that the values of y) could be evaluated. In
gold, only the 0.41-Mev gamma-line was assumed to be
present while in cobalt it was assumed that the 1.17-
and 1.33-Mev lines were in cascade. f$ In every case the
data were corrected for background counting rate.

In the gamma-ray cases, lead defining jaws were used
to limit the angular dimensions of the beam transmitted
from the source to the crystal. The width m2 of the
source on the focal circle was however determined by
the thickness of the source foil itself.

The experimental determinations of Fq were reduced
to Eff by the expressions relating I'~ and Re which are
found by Lind. "They take slightly different forms for
the x-ray and gamma-ray lines because the inherent
spectral line widths are different for the two cases. The

"Compton and Allison, see reference $, pp. 638—641."DuMond, Lind, and Watson, Phys. Rev. 73, 1392 (1948).
'4 Lind, Brown, and DuMond, Phys. Rev. 76, 1838 (1949).
+Direct measurements on Cos' with this instrument have

conlrmed the equality of intensity of the two lines.

r
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Fio. 11. Schematic illustration of the two-crystal x-ray spec-
trometer employing the (310) planes (transmission or Laue case}
of two identical quartz plates, 1 mm thick. The full lines show the
general position for the parallel rocking curve. The dotted lines
show the position for the antiparallel rocking curve. The slits or
stops are at S and S'. The xenon-filled counter is at C.

spectral line widths for the Eo.~ lines of tungsten and
silver were taken from Compton and Allison. "By linear
interpolation, the values for the other elements were
obtained. The line widths for the nuclear gamma-lines
were assumed to be very much smaller than any other
factors contributing to the diffracted line profile;
hence, it was not necessary to know these values. Table
II contains the data which were obtained, together with
the derived results for Rff.

INTERPRETATION OF THE EXPERIMENTAL
RESULTS

Table II shows the experimental results on the
measurement of F; and their reduction to Rg. In Fig. 10
is shown the plot of the resulting data. The slope of the
curve of R& versus X on a logarithmic plot is slightly
less than two. However, the discrepancy when com-
pared with the curve of slope 2 is not outside deviations
which might be accounted for by experimental errors.
The probable errors which are shown represent only the

statistical errors irI, the observed data. It must be pointed
out that there are a number of other factors which could
inhuence the exact value of Ey. The presence of scat-
tering from certain parts of the instrument when the
intensity of the direct beam was measured would have
the effect of depressing the curve more at short wave-
lengths than at long wave-lengths. The assumptions
involved in the reduction of the experimental value I'),
to Eg introduce, perhaps, the largest uncertainties. It
is believed that the additional uncertainty introduced
by all such factors would probably not exceed plus or
minus 25 percent. On the logarithmic scales shown, this
would not greatly modify the data.

A calculation of the theoretical value of Re for the
(310) planes of quartz is made as follows. From Table I
the value of Eg for a mosaic-like crystal is

Rs re'(
~
Frr i/V——)sIPXsdrr Ts/(costs)' (14).

Because the radiation is unpolarized, the value
(E )A„——s(1+coss28n) is substituted for Its.

'~ Compton and Allison, see reference $, pp. 745-746,
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TABLE III. Observations on the transmission diffraction patterns from the {310)planes of quarts. The factor exp[woto/'ro jcorrects the
speci6ed data for the absorption of the beam in the crystal plate since the crystals are used in transmission throughout.

(A)

{310} (310)

R exp fpptp/yo] X106 (radians)
Obs. Calc.

(310$ or
(3TO)

P(0) exp fg Oto/yo]
Obs.

(310) (810)

Calc.
(310) or

(310) (310) (310)

Wy (seconds of arc)
Obs. Calc.

(310$ or
(310)

0.710+0.0020
0.530+0.0074'
0.320a0.0076'
0.210~0.002 b

0.123&0.0084b

2.58 2.77
2.02 2.12
1.50 1.51
1.30 1.63
0.89 1.04

2.30
1.65
1.00
0.657
0.389

0.172 0.161
0.134 0.136
0.116 0.111
0.123 0.128
0.115 0.890

0.246
0.250
0.250
0.250
0.250

1.1 1.3
1.2 1.2
1.1 1.0
0.73 0.92
0.54 0.88

0.53
0.42
0.26
0.17
0.10

a Molybdenum tube used for the x-ray source.
& Tungsten tube used for the x-ray source.

Again set

Rp rp((FH ~/——V)EXdrr/(2 cos&B).

(It)A,/cosfiB = 1,

(7.1)

we obtain for the result

Rft—3.14X10 9.
This is plotted as curve 8 in Fig. 10.

It should be noted that for the range of X for which

To(t„ i.e., for which the primary extinction distance
is greater than the thickness of the plate, the "perfect"
crystal behaves as would the "mosaic" as far as
integrated reQection is concerned. It is interesting to
note that for every thickness of crystal, the mosaic
crystal will have the higher regectiort coegciertt until the
perfect crystal no longer may be considered thick. The
numerical agreement of the observed results with the
"mosaic model" (curve A, Fig. 10) is quite good con-
sidering the nature of these measurements. The
mosaic-like behavior of the stressed- (curved-) quartz
plates was a source of some surprise. There is no reason
to think that bending the quartz plate introduces any
pernzanent irreversible disorder in the structure since
the crystalline quartz behaves perhaps more nearly
perfectly elastically than any other known substance.

These results prompted one of us (W.J.W.) to carry
out determinations of the integrated reQection coef-
6cients and diGraction pattern widths over a part of

The maximum value of 8~ is about 12' so, one may
set (It )A,/cos'eB 1with——an error of 10 percent or less.
Hence,

Rp=rps(~ Frr
~

/V)s'AsdHTp.

Substituting the following data:

Tp= 1 trtmlt dstp= 1.178A,
i Fstpi = 21.0,

V=112A3, r0=2.82X10 ~A,

hence, we obtain the result

Ry=3.29X10 9.'.

Rq is in radians and X in A. This result is graphically
plotted as curve A in Fig. 10 for comparison with the
experimental results. The corresponding formula for a
perfect thick crystal is

the same range of wave-lengths for the (310) planes of
identical unstressed quartz crystals.

MEASUREMENTS OF THE REFLECTION PROPER-
TIES OF UNSTRESSED-QUARTZ PLATES

The two-crystal spectrometer designed by DuMond"
was used to measure the reQection properties of the
(310) planes of unstressed quartz over a wave-length
range from 0.123 to 0.707A. The great Qexibility of this
high precision instrument a8orded by its four separate
worm-wheel adjustments permitted the easy realization
of many of the requisite conditions which would have
been made much more difBcult or impossible with other
less ffexible designs. The two-crystal method has been
adequately described. " It is well known that the
"parallel" position curves give information concerning
the crystal properties independent of the spectral dis-
tribution of the radiation. Figure 11 shows the two-
crystal arrangement. The usual procedure is to set the
crystal A so that a wave-length X is reQected through
the slit S to the crystal B.The crystal 8 is rocked about
the position of parallelism with crystal A and the
intensity as detected by the counter C is plotted as a
function of the angle. Since this arrangement allows
all wave-lengths to be transmitted, the wave-length
band which is used is controlled by the slit system at 5'
which limits the horizontal (and also the vertical)
angular divergence of the beam incident on crystal A.
It can be shown that the power received by the detector,
as crystal 8 is rotated through small angles, is a function
only of the properties of the crystals and not of the
spectral distribution or the geometry of the slit system.

The quantities which one can obtain are the integrated
reQection coefficient Rg, the half-value width of the dif-
fraction curve and the peak Laue reQection of the
crystal planes. (Peak value of the diffraction pattern of
Fig. 4.) If a plane-parallel beam of monochromatic radi-
ation falls on the crystal, the ratio of the intensity in the
difI'racted beam to that in the incident beam will be the
ordinate of the diGraction pattern of Fig. 4 or the re-
Qection factor. It is the maximum ordinate of this
function and its half-maximum width which one can

"J.W. M. DuMond and D. Mar]os, Rev. Sci. Inst. S, 112
(1937).

'7 See reference 7, pp. 147-155.
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measure. It has been shown that it is impossible however
to obtain the shape of the diffraction pro61e from the
parallel position rocking curve. The two-crystal spec-
trometer results cannot be reduced so as to give exactly
these quantities, unless it can be proved by some other
means that the diffraction pattern sought is sym-
metrically distributed about a central point. The usual
procedure is to observe the ratio of the total power
reflected by the internal planes of crystal 8 to the
power incident upon it. If this quantity is designated
by P(P), the lvoo crysta-l integrated refection coegcient is
defined by

P(e)e

where tl is the angle by which the atomic planes of
crystal 8 deviate from parallelism with those of A.
Equation (16) is analogous to the deffnition for Rg, the
integrated reAection coefFicient for a single crystal. It
can be shown that

exp[ggglg/yg]R'=
1+cos'28o+ 2l gg(1+ cos'28o)

1+cos28o+lp (1+cos 28o)

The terms in lo occur because of anomalous dispersion
and are important only at wave-lengths in excess of
about 400 x.u. The term exp[gggtg/yg] is an attenuation
factor. ggg is the total absorption coefficient while tg/pg
is the true path length in the crystal. yo is the cosine of
the angle of incidence measured with the normal to the
crystal plate.

We, the half-maximum width of the two-crystal
rocking prohle, is given by

Wft = 2m'. (19)

mIt is the half-maximum width of the single crystal Laue
diffraction pattern. ff. Finally, the peak transmission
P(0) is given by

parallel to the plane of scattering and e, normal to said
plane. If other absorption processes are present as well
as anomalous dispersion, then

[&Rg]'+["Rg]"-
R'=

g Rg+ "Rg
(17) P(0) exp[gggtg/yg]

1 1+cos28o+ (3/4) 1g'(1+ cos'28&)

4 1+cos28o+ lp'(1+ cosg28o)
(20)

in the case that the incident radiation may be con-
sidered unpolarized. The superscripts p and n refer to
the orientation of the plane of polarization of the
incident radiation, p refers to the electron vector

It must be noted that if unpolarized radiation is used,
it is impossible from the two-crystal rocking curves to
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Fn. 12. Experimental Laue reflection rocking curves of the two-crystal x-ray spectrometer using the (310) planes
of quartz in the first-order parallel position. P; (given above each curve) is the number of counts in 2 min. for the
"straight through" beam (off parallel setting) used for "normalizing" the curves. The angular positions indicated
below each curve refer to the nominal setting of the spectrometer worm wheels. The points were taken at —,

' second
intervals.

ff The result Eq. (19) follows from the fact that the single-crystal Laue diffraction pattern for the symmetrical case has the
pro6le of a witch or resonance curve. The half-maximum width of the fold of two witches is just the sum of the individual half-
maximum widths.
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Pro. 13. Reflection properties of the (310) planes of the un-
stressed-quartz crystal. The log of integrated reflecting power is
plotted versus the log of the wave-length to determine the de-
pendence of the integrated rejecting power on the wave-length.
These data were obtained on the two-crystal spectrometer. The
widths of the rectangles, where these are used to locate the experi-
mental points, give the ranges of wave-lengths transmitted by the
spectrometer at each wave-length setting. The height of the
rectangle gives the spread in the experimental intensity data. The
position II of crystal 8 was obtained by rotating the crystal
through 180' so that the (310) planes were used.

calculate separately &Eg and "Eg. The usual procedure
is to make an assumption concerning the model and
calculate the two-crystal quantities. R' expLIioIo/&07,

p(0) exp/ppIp/&07 and Wq were calculated for perfect
thick crystals to compare with the experimental data.

The x-ray source consisted of a molybdenum target
tube driven by a full-wave rectified filtered supply, or a
tungsten tube driven by a half-wave rectified supply.
Manual control was used except in the filament circuit
where a saturable core stabilizer was used.

The tv, o quartz plates were carefully mounted so that
both the (310) planes and the large Rat faces of the
slabs were accurately paralleltt tt to the axes of rotation
and so that the centers of the thickness of the plates
were centered on these axes. Great care was taken to
avoid introducing any stress in the quartz by the sup-
porting means. The quartz plates were optically
polished and parallel to several fringes, but the surfaces
were not etched. Subsequent experience has shown that
even with the most careful polishing technique, the
surfaces should be etched to remove submicroscopic
material wedged into the minute cracks. The wave-

length band which the instrument accepts was adjusted
by the setting of the jaws of the defining slit (placed
midway between crystal pivots A and 8, Fig. 11). It
is, of course, easy to ascertain this setting by turning
crystal 8 and the arm supporting the counter through
the appropriate angles to permit study of the anti-
parallel rocking curve which gives the spectrum of the

Qtt The parallelism of the internal (310) planes of the quartz
slab (which exhibit no cleavage or other developed faces) with the
axis of rotation of the pivot was established 6rst by photographing
the reflections from both sides of the planes of crystal I3 at a
distance of 100 cm and adjusting the crystal on its support till
these images occurred at the same height. The 6nal Qne adjustment
was made so as to yield the narrowest possible parallel rocking
curve.

radiation being used. The x-ray beam was 4 mm wide
and 5 mm high at crystal J3. The slits were always wide
enough to permit the Eni —o.2 doublet to pass. Certain
curves were taken using a band of the continuous
spectrum of approximately this same width.

The use of a xenon-filled thin window counter made
it possible to use rather low intensity from the x-ray
tube. The efFiciency of the counter ranged from about
one to 20 percent over the range of wave-lengths used.
The counters, made with a cylindrical copper cathode,
and a 7-mil tungsten wire anode, were filled to a
pressure of 10 cm of Hg with a two to three percent
mixture of petroleum ether in xenon.

The center of the wave-length band was selected by
setting the crystal A. Crystal 8 was then set "ofF
parallel" by a very small angle and the total radiation
transmitted by the plate was measured. This datum
was used to normalize the parallel rocking curve ap-
propriately. The parallel position rocking curves were
made first with crystal 8 as shown and then with 8
rotated through an angle of 180'. Since the reference
datum is the beam transmitted "ofF parallel" by the
crystal 8, the absorption factor expL pprp—/F07 is taken
into account and one can compare R' expLIioto/F07 and
P(0) expt Iioto/y07 directly with the experimental data.

COMPARISON OF THEORETICAL AND EXPERI-
MENTAL DIFFRACTION PATTERNS

Rocking curves were taken for five diferent wave-
length bands from 0.710 to 0.123A. The data are col-
lected in Table III and the rocking curves are plotted
in Fig. 12. Their extreme narrowness is remarkable.
The curves are not entirely reproducible when various
portions of the crystal plate are used. Variations as
large as 30 percent may occur. This may account for the
discrepancy between the points above 0.25A taken with
the molybdenum tube. The smallest incremental setting
available was 4-second of arc. Some of the patterns
were so narrow that difhculty was experienced in ob-
taining good profiles. Figure 13 is a log-log plot of the
data given in Table III. Where boxes are shown about
the experimental points, these represent both the wave-
length band and the probable errors of intensity to be
associated with each point. The theoretical curves are
calculated on the assumption that the crystals are
ideally perfect.

DISCUSSION OF RESULTS

The first result which can be deduced from these ob-
servations on stressed and unstressed quartz is that the
unstressed crystalline quartz behaves more nearly like
a perfect crystal than does the bent crystal. The inte-
grated reQection coeKcient for the fiat specimen falls off
certainly less rapidly than X while for the bent crystal
it falls ofF as X'. For the fiat crystal, the behavior of
P(0) expLyotp/p07 and Wz is in qualitative agreement
with what one might expect if the specimen were nearly
but not completely perfect.
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Let us consider an almost perfect crystal in which
there exist domains over which the lattice is perfect.
Assume, however, that these domains are not perfectly
oriented in the macroscopic crystal, but are randomly
rotated relative to one another through eery sma/I

angles. If very long wave-length radiation is scattered
by this crystal, it can appear to behave as a perfect
crystal only so long as the slight angular misorientation
is small compared with the diGraction pattern width.
Reference to Table I shows that the width m of a
perfect crystal pattern varies as X to the first power.
The e6ect of absorption will be neglected throughout
this discussion. The integrated reQection coefricient Eg
and half-width m for this perfect case decrease linearly
with X. The peak of the single crystal Laue difI'raction
pattern for this case will remain constant (at 50 percent,
as we have already shown).

As the wave-length decreases, the case we have just
outlined is the first of three cases which we may dis-

tinguish in order as follows:
Case I. Angular misorientation q of the mosaic

domains is small compared to the single-crystal dif-
fraction pattern width, m. Ideal crystal extinction
distance t, small in comparison to domain size to. For
this case, w should be proportional to X, P(0) the peak
reQection coefIicient should stay constant at 50 percent
and Eg the integrated refIection coefGcient should be
given by —,xw (witch-like diffraction pattern).

Case II. As the wave-length decreases the ideal single
crystal di6raction pattern width m decreases propor-
tionally thereto until m becomes much smaller than q
the mosaic misorientation parameter. Also, with
decrease in wave-length P the ideal crystal extinction
distance t, increases in inverse proportion to X. (This
can be seen by referring back to Eq. (2) which takes the
form t —[ro(~FH~/V)EX] ', if we substitute X for
2d sine and recall that cos8 is essentially unity for the'

small angles here involved. ) For case II, however, we

shall assume that t, has still not increased to the point
where it is l.arger than to, the size of the mosaic domains.

For this case, m the diGraction pattern width should
remain constant but because of the mosaic misorienta-
tion it should of course be broader than the ideal single
crystal difI'raction pattern width, m, for the same wave-

length. P(0), the peak reflection coefficient of the dif-
fraction pattern, should stay constant at the value
50 percent. Eg the integrated reflection coefIicient should
be greater than it would be for an ideaBy perfect crystal
(because of the broadening of the pattern).

Case III. As the wave-length decreases still more, we

come to the case where both the inequalities g))m and
t, &to hoM so that now complete extinction does not
occur in any of the domains.

For this case we shall tend to have m the width of the
diffraction pattern constant (since it is now fixed by the
mosaic misorientation) but the peak refiection coef-
ficient P(0) should diminish as ) ' because the amplitude

which is scattered will vary as X. Since the pattern
width remains constant R& should also vary as 'A'.

With ever-decreasing wave-length this X' behavior
is then the terminal behavior for the mosaic crystal. In
an ideally perfect crystal, on the other hand, the
transition between Eg~) and Rg~)P would take place
only when the extinction distance became comparable
with the total plate thickness. But, in this case also the
)' behavior is the terminal behavior at short wave-
lengths.

In Fig. 10, the dashed curve, A, represents the theo-
retical behavior of a mosaic crystal. Curve 8 represents
theoretically the behavior of a perfect crystal. All
crystal models should approach in behavior the curve
A below the junction P because below this wave-length
the extinction distance is greater than the plate thick-
ness. It is of interest to note that in the region of about
500 x-units the observed integrated refIection coefficient
for the bent crystal is about twenty times what the
theory for a perfect crystal (curve 8) would predict.
This is in accord with results privately communicated
to us which were obtained by B. E. Warren, at M.I.T.

The diBraction pattern width m should vary as X

down to wave-lengths corresponding to the junction P
in a perfect crystal and then show a constant width. If
the crystal is imperfect, the transition from the linear
behavior with wave-length should take place at longer
wave-lengths (transition between cases I and II) and
the width should tend to become constant at greater
widths. It was impossible to obtain any information on
z for the bent crystal case except at 30 x.u. where the
width of the diffraction pattern appears to be of the
order of 5 sec. of arc.

The results obtained for unstressed quartz are in
qualitative agreement with Parratt's 6nding for the
(110) phnes. '8 There remains a slight uncertainty con-
cerning the eBect of the unetched surface layers. The
extremely narrow two-crystal rocking curves indicate
their e6'ect to be small however. Also, there has never
been any indication that they contribute appreciably to
the scattering in the two-meter curved-crystal case.

For the unstressed crystals, the wave-length range
0.12 to 0.71A of this study may quite possibly represent
the transition from case I to case II mentioned where
the ideal crystal difI'raction pattern width just becomes
comparable with the angular misorientation q. Here the
diffraction pattern width m will remain constant but
the peak refiection coefficient P(0) will start to diminish
slowly with diminishing X in preparation for its eventual
behavior proportional to 'A'.

In the case of the elastically curved crystal, the ob-
served Rr behavior (Fig. 10) over the entire 7oawe length-
range from 500 x units to nine x units is like that of the
predicted terminal behavior at short wave-lengths for
either an ideally perfect or a mosaic crystal.

We have as yet no good explanation for this behavior

' L. G. Parratt, Rev. Sci. Inst. 5, 395 (1934).
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however far smaller even. than the perfection of focusing we have
so far been, able to attain with our best curved-crystal hoMer
would permit us to detect. All. such minor efFects are completely
taken into account in our method of reducing our data (see Fig. 8
and related text for a summary of the factors involved in trans-
lating the observed quantity I'; into the desired reflection coef-
ficient Rg).

We have in a geometrical sense made a certain start. in the
ilirection of a more rigorous treatment of diffraction {by an. ac-
curately bent ideal crystal) which seems to indicate that the
effect of such bending in limiting the domain of coherent inter-
ference in the crystal lattice must he practically quite beyond
iletection. In Fig. 14 the thickness Tp of the bent crystal slab is
enormously exaggerated relative to the radius of curvature for
better clarity. The Bragg angle is also exaggerated for the same
reason and for simplicity the exact focusing instrument is the one
shown {neutral axis of the bent slab coinciding with the focal
circle). The source is at S and the virtual focus for the selectively
reflected rays leaving the crystal is at V. P is the convergence
point of the reflecting crystal planes. Let us construct the image
points of the source S for reflection by difFerent atomic planes in

the bent cryst, al. Simple geometrical considerations show that for
(he plane bb, which coincides with a diameter of the focal circle,
the image of S is at V. For other crystal planes, such as aa or cr,
the images of S lie in variouspositions such as A or C on the circk
SCVAS' whose center is at P, whose radius is PS, and whose
diameter is SPS'. We shall call this circle the image circle. We are
to think then of an arc of this circle {such as A C) as being closely
studded with the image points of S mirrored in each and every one
of the atomic lattice planes of the bent crystal slab. The lines SC
and SA are the normals to the crystal planes projected from S.
Furthermore, this geometry makes it clear that the multitude of
image points of S mirrored in all the reflecting lattice planes of
t.he curved crystal are equidistantly spaced along that arc. None of
the geometrical results so far stated involve any approximation
u hatever. They are rigorous.

For the symmetrical Laue reflection of this type, as alreaily
pointed out in the preceding text, the very slight refractive
bending of the rays at the entry and exit faces of the slab is just
compensated by the change in wave-length inside the slab so
that externally everything takes place as though the refractive
index were strictly unity. It seems reasonable therefore to assume
t.hat the interference effects which will decide the intensity of the
reflected beam leaving the convex side of the crystal will he

essentially the same as though the crystal were removed and a
multitude of coherent and equidistant sources studded along the
arc AC were substituted for it. {This argument, for the moment,
ignores multiple to-and-fro reflections in the crystal. ) It is inter-
esting to note how very different this set of virtual source points
is from the set which would be observedif the crystal mere not bent.
For an unstressed crystal, the image points lie on a straight line,
the common normal dropped f'rom S to all of the (projected' )

lattice planes. Thus, the loci of images for the stressed and
unstressed crystals lie roughly at right angles to each other. For
the unstressed crystal the spacing between adjacent image points
on the straight locus is 2d where d is the crystal grating space.
For the curved crystal the spacing between adjacent image
points on the circular arc AC can readily be shown to be
2d sin8=n) ~ where d is the unstressed grating space, n is the
order of reflection used (in all of our studies n=1) and Xg is the
wave-length satisfying the Bragg condition for reflection at angle 8.

Let us now consider classically how the rays actually interfere
{constructively or destructively) so as to produce Bragg selective
reflection in our curved crystal. Obviously we are dealing here
with Fresnel rather than Fraunhofer diffraction. In order that
reflections from a number of different atomic planes may cooperate
coherently, it is necessary that rays starting from a source point S
(an emitting atom), after reRection on difFerent planes, shall, by
different paths, eventually reunite at an observation point P
(an absorbing atom in the detecting system). The "interference"

{superposition of wavelets) does not in reality occur in the crystal
hut at the point of observation P. Neither S nor P are at infinity.

Let us consider how to construct the different rays arriving at P
from different atomic mirror planes in the curved crystal. Clearly
the fact that these mirror planes have limited extension (because
of the limited thickness Tp of the bent crystal slab) greatly
restricts the number of such planes that can co-operate to senil
rays from S to any one given point P. Each plane will have one
and only one geometrical reflection point R;f for the given source
and image points S and P. That mirror plane dd for which t.he
geometrical reflection point Rp lies on the focal circle (there can lie
not more than one such plane for specified positions of S and P}
will furnish a ray to P directed as though it came from V. It will
in general however not have V as its image point. The point Ip
where the line VP (or its extension) cuts the image circle again
will be the image point. Now for other mirror planes such as ee
or g adjacent to the plane just referred to, the geometrical re-
Rection points Rq or R ~ will lie either inside or outside the focal
circle and the corresponding image points from which the rays
appear to arrive at P will be located as at I~ or I ~ on a short arc
of the image circle on either side of the point Ip. The range of
image points I; and geometrical reflection points R, which can bc
operative to send rays to P is limited then by the thickness of thr
crystal slab, for when the reflection point R; no longer lies insiile
the slab, reflection no longer occurs. The small range of difFerent

Bragg angles covered in this way corresponds to the above men-
tioned variation in grating constant. as we pass through the thick-
ness of the crystal slab resulting from the varying degrees of strain
which the bending stress has set up on either side of the neutral
axis. We have, of course, here selected a very exaggerated lateral
position for P on purpose to cIarify the geometry and as already
stated the thickness of the crystal slab and other geometrical
magnitudes such as the Bragg angle are also greatly exaggerated
for the same reason. Clearly, however, in this idealized geometrical
optical treatment the only specific effect of the bending which
could place a limitation on the number of mirror planes cooperating
coherently in sending wavelets to P must come from the curvature

of the short arc such as I&I & on which the uniformly spaced image
points lie because this is the only effect of bending the crystal
which introduces any important inhomogeneity in the otherwise
uniformly increasing sequence of path lengths measured from the
various image points I; to P. Very simple considerations su%ce
to convince one that in the real geometry of our two-meter instru-
ment the limited thickness of the crystal slab causes the number
of image points clustering around Ip to be far too limited to permit
the accumulation of a phase change of order ~ through the curva-
ture of the image locus. An order of magnitude for the number of
co-operating image points can be found by computing how many
planes a straight ray incident at the Bragg angle 8 must cross in

traversing the thickness of the unstressed slab. This is Tp tan8 jd'

and in our two-meter instrument with a 1-mm thick crystal slalom,

for X =8 x.u. is about equal to 4 X10'. If we consider (see Fig. 15}
the short arc of the image circle (on which the image points are
clustered about Ip with uniform spacing X), then the projections
of these image points on the ray direction furnish a means of
closely approximating the successive path difFerences for the
different paths I;P. The angle ap between the image arc at Ip and
the ray direction can be approximated as x/D where x is the
distance from the center of the curved crystal to the region in
the crystal at which the reflection is occurring and D is the
diameter of the focal circle. The difference of optical path for any

t As C. G. Darwin has pointed out in his remarkable earl's

papers in 1914 on the dynamical theory of x-ray reflection, a
reflection point such as R; is in reality the center of a system ot
elliptical Fresnel zones, 1aid out on the atomic lattice plane anil
the explanation of the mirror reflection in terms of classical
physical optics involves the coherent co-operative scattering of
the entire pattern of atoms studded over these Fresnel zones
which are the loci of points of equal path difference. C. G. Darwin,
Phil. Mag. 27, 325; 675 (1914).
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DIRECTION TOWARD P

Ftf:. 15. To illustrate the gcomct. ry involve(i iii thc flerivation
(~I the (lephasing of the interfcrencc from the array of images Io
to I;, by reason of the curvat. ure of the locus on which they lie.

two image points on thc arc will be P cosa where a is the angle
with the ray direction at that point on the arc. Relative to the
path IOP the cumulative path difference 6; for any image point. I,
is found to be

8 = P Pcosao+cos(ao+p) 1cos(no+2') ~ cos(ao+ ip, ) j,
where p, =2d/D is t,he angular change in the direction of the image
arc between adjacent image points. On the other hand, the cumu-
lative path difference 8 if the image point locus had been a
straight tangent to the arc at Io v ould have been

6, '= P i cosao.

I&y expanding the cosine terms in the expression for 6„ thc dif-
ference 8;—5 can be readily shown to be

I 8 —5.
j
= ) i'd sinao/D.

This formula permits us to compute how many image points i
must be included before

~
8;—8

~
amounts to the order of a whole

wave-length X. The requisite number i~ is i~= D&/(d sinao) & or
since a0 is small and can be approximated by x/D we can write

i„=-D/(~) ~.

For our two-meter spectrometer and with x=4 cm, i~=106.
Thus, 25 times as many image points are required (before de-
phasing from curvature becomes important) than the number
actually available. The value of cosa(i for our assumed case turns
out to di6'er from unity by about 2 10 '.

Now, in order to include in our discussion the case of repeated
to-and. -fro reflections between lattice planes in the crystal, wc
must consider not only the primary image points I; (which we
shall now distinguish as primary by calling them I ) but also the
images of these images I;;" each mirrored in an appropriately
selected restricted set of atomic planes, the tertiary images I;;&'"

of each of these in turn mirrored in another appropriately selected
restricted set of planes, etc.,f obviously only primary, tertiary,
quinary and in general the images of odd ordinal number, I,
I„r,"', I;;r,&

""', etc. {lying on the same side of the central axis,
bp, as the point V), operate as coherent image points to determine
the intensity at P. Now a little thought will convince the reader
tliat all image points, whether they be primary, secondary, ter-
tiary, or of whatever ordinal number, lie somevfrhere on the image
circle. Furthermore, it is not di%cult to prove that all the coop-
erating image points of odd ordinal number lic at points on thc
image circle which belong to the same set. as the primary image
points, namely the set (of which Io' is a member) consisting of
points uniformly spaced along the arc with constant angular
spacing p between adjacent points. Thus, what we have proved
for the primary image points {that the dephasing from curvature
of the locus is negligible) will be equally true for the image points
of higher ordinal number and in fact these will in general not lie
as remote from Io as extreme members of the primary set for it
can be shown that the sum of all subscripts without regard to
algebraic signs, g (i(+ (j(+ (k) for a given higher (odd)
ordinal image point must have an upper bound of order of mag-
»itudc To tan8/d (or approximately 10 tan8 in our instrument)
whereas, for a higher odd ordinal image, the most remote position
on the image arc from the origin Io will be given merely by t,hc
sum of the alternate subscript numbers (i(+ ~k( (with thc
subscript numbers for the even ordinal reQections omitted from
the summation). We arrive then at the conclusion which holds

rigorously, either for primary rejlections or higher ordinal to-and-fro
refection in the crystal, that tlie dephasing egect of locus curvature
cannot place a limit on, the number of planes which cooperate co-
herently. This holds for an ideally perfect crystal slab ideally bent
so that its atomic planes pass through a common point p, so long
as the lateral position of the observation point P from the central
axis of the instrument de6nes an angle no—x/D as small as we
have in our two-meter spectrometer, The conclusion seems
inescapable that, for the ideal crystal case as stated, the above
limitation must be placed by the thickness To of the slab o»l~.

f L'ach subscript after the first indicates thc number of ato»iic
planes traversed between two successive reflections.

$ Note that, save for the first subscript, i, which may be either
positive or negative, the series of subscripts, j, k, l. , must have
terms whose algebraic signs alternate because of the to-and-fro
reflection.


