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From the calibration of the gamma-ray counter and the
coincidence rate at zero absorber thickness it is esti-
mated that (12&2) percent of the total beta-radiation
lies in the inner beta-ray group which is coupled with
the 1.08-Mev gamma-ray. This is to be compared
with previous estimates of 20 percent obtained from
spectrometric data and 33 percent as indicated by an

absorption method. ' Absorption of the radiations of
Rb' in aluminum and lead confirmed the conclusions
of the Indiana group as to the energies.
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An analysis of the high energy (40 and 90 Mev) experimental neutron-proton scattering results is pre-
sented. It is shown that there is good agreement with the theoretical predictions based on a potential model

having a $(1+8,) exchange dependence and a "long-tailed" radial dependence. There is evidence, further-
more, from the scattering for the inclusion of a tensor force. A comparison of the predictions of square
well, exponential, and Yukawa radial dependences is included to illustrate the e6'ect of different shape
characteristics.

INTRODUCTION

HE purpose of the present paper is to ascertain
if it is possible to determine a phenomenological

description of the neutron-proton interaction in terms
of a potential. A further aim is to determine with what
uniqueness this potential can be determined from the
present experiments, particularly those at high energies.
The program will be to assume a number of potential
models so adjusted that they Gt the low energy region
and attempt to correlate the high energy scattering
with the various features of each model.

It is well known that the experimental results in the
low energy region can be described by an interaction
potential; however, for su6iciently high energies rela-
tivistic corrections may be expected to be of major
importance. Detailed scattering calculations, using a
Geld theory, show that the use of relativistic momenta
corresponds to calculating the kinematical aspects rela-
tivistically, but that the dynamical corrections depend
on the specific theory employed. Scattering deduced
from a field theory' has, in general, relativistic correc-
tions proportional to (v/c)', for example, at 90 Mev
(v/c)' is 0.05 while approximately 10 percent corrections
are found by application of the Mgtller method to the
scalar and vector meson theories. ' Thus a choice can-
not be made between two models both of which agree

'L. Rosenfeld, Xgdear Forces (Interscience Publishers, Inc. ,
New York), Vol. 2, p. 311 ff. It might appear at first sight that
corrections due to spin orbit coupling are of order e/c. Actually,
in a Geld theory calculation corrections which introduce this
coupling include also a gradient of the potential (e.g., the Thomas
term for the hydrogen atom) which in scattering produces an
additional factor of o/c.

~ H. Snyder and R. E. Marshak, Phys. Rev. 72, 1253 (1947).

within 10 percent with the experimental results at
90 Mev.

The experimental results of the low energy region
(including some derived quantities) are summarized in
Table I. None of these experiments give information
concerning the explicit radial dependence of the forces
or of the forces in other than S states, and, in fact even
the ranges are determined only approximately. In
the triplet state there is a further uncertainty in the
relative central and tensor ranges. This latter uncer-
tainty would be removed considerably if it were as-
sumed that the magnetic moment gave a measure of the
D state admixture due to tensor forces. Unfortunately,
because of uncertain relativistic corrections' this forms
an unreliable restriction. The depths of the various
potentials, i.e., singlet and triplet central and triplet
tensor, are, however, accurately determined for any
specified combination of ranges.

The high energy experimental angular distributions
are shown in graphical form in Fig. 1. The expansion
(in Legendre polynomials, P„(8)) for the 90-Mev dis-
tribution is

4v" 0 (8) = 0 (1—0.14Pg(8)+0.73'(8)
+0.0SPg(8)+0.17P4(8)g,

with an estimated error of +O.i for the coeKcients of
P~(8) through P4(8). The most noteworthy result is the
near symmetry about 90'. We have therefore assumed
that the 40-Mev angular distribution, which has been
determined only in the range 60'—180', is symmetrical

R. G. Sachs, Phys. Rev. 72, 91 (1947); H. Primako8, Phys.
Rev. 72, 118 (1947); G. Breit and I. Bloch, Phys. Rev. 72, 135
(1947).



R. S. CHRISTIAN AND E. W. HART

Thar.z I. Derived quantities

Quantity

Singlet scattering length

Radius of deuteron

Triplet scattering length

Triplet effective range
(shape-independent approx. )

Singlet effective range

Electric quadrupole moment

Percent D state

Notation

'rd

Magnitude

—23.7'0~0.10X10 "cm

4.332+0.025X10 "cm

5.26+0.12X10 "cm

1.53+0.20X 10-13 cm

(3X10 "cm

2.73~0.05X 10~~ cm2

3.9 percent

Source (with error)

Ortho-parascattering' (+0.03X 10 "cm)
Crystal scattering (+0.05X10 "cm)
Zero energy cross section' (+0.06X10 "cm)

Binding energy~

Ortho-parascattering (+0.09X 10 '3 cm)
Crystal scattering (+0.15X10» cm)
Zero energy cross section (+0.03X10 ' cm)

From a (+0.17X10 "cm)
From rd {+0.03X10 "cm)

Scattering between 0 and 6 Mev

Directly determined'

Magnetic dipole moment, neglecting rela-
tivistic effects

& Sutton, Hall, Anderson, Bridge, DeWire, Lavatelli, Long, Snyder, and Williams, Phys. Rev. 72, 1147 (1947).
b Shull, Wollan, Morton, and Davidson, Phys. Rev. 73, 842 (1948).
e W. B. Jones, Jr., Phys. Rev. 74, 364 (1948); Melkonian, Rainwater, and Havens, Phys. Rev. 75, 1295 (1949).
& R. E. Bell and L. G. Elliot, Phys. Rev. 74, 1552 (1948); W. E. Stephens, Rev. Mod. Phys. 19, 19 (1947); W. E. Stephens, Phys. Rev. 76, 181 (1949);

Tollestrup, Jenkins, Fowler, and Lauritsen, Phys. Rev. 75, 1947 (1949).
4 A. Nordsieck, Phys. Rev. Sa, 310 (1940).

about 90' with the consequent expansion

4xa (8) =~(1+0.26P2(8)+0.02P4(8)),

with an estimated error of &0.1 for the P2(8) and
P4(8) coeflicients. The experimental total cross sections
are tabulated in Table II. The low values for the total
cross sections appear to be further corroboration of the
lack of odd harmonics in scattering.

A unique analysis into phase shifts of the experi-
mental angular distribution is impossible due to the
presence of the mixture of singlet and triplet states
as well as the complication of the tensor force. Neverthe-
less, on the simplifying assumption of scattering with
no spin dependence, the 90-Mev angular distribution
may be analyzed to give the order of magnitude of the
phase shifts. The results of this are: S wave, 53'~5',
I' wave, —1'&1'; D wave, 5'&1'. Since the I' and D
phase shifts are so small, we may conclude that at 90
Mev the 5 scattering accounts for about 90 percent of
the total scattering cross section. The high energy cross
sections, therefore, determine the S scattering fairly
unambiguously. The potentials usually considered show
significant differences in 5 scattering above 30—40 Mev
when adjusted to have the same low energy properties.
The comparison then of the S wave cross sections
provides one method of detemining the potential shape.

The angular distribution at a particular energy yields
information primarily concerning the exchange char-
acter of the forces. For example, theories such as the
"charged" or "neutral" which predict large scattering
in odd states may be immediately discarded as un-
acceptable. The low values of the high energy cross
sections also favor theories without large scattering in
odd states.

Finally, comparison of angular distributions at two

or more high energies enables one to distinguish shape
features of the various potentials. This final comparison
is a critical test of the potential shape since, while it is
possible with any shape, by a proper choice of range,
to fit the angular distribution at 90 Mev and the low
energy data simultaneously, it will not, in general, be
possible to also fit the 40-Mev angular distribution.

COMPUTATIONAL METHODS

Various approximate methods were employed to
avoid the many tedious numerical integrations required
for a comprehensive investigation of the efI'ect of the
many parameters. These are principally concerned with
the integration of the radial equations to yield phase
shifts or eigenvalues.

Most of the calculations were done by iteration of
trial functions in the integral form of the equations.
In order that this procedure might converge rapidly,
it was necessary to have good initial trial functions,
especially in the case of potentials with a deep hole at
the origin. Suitable trial functions were provided by
the WKB approximation (explicitly using one-third
order Bessel functions as the asymptotic representa-
tions). ' This approximation has been further extended
to the case of coupled equations as follows.

Let the diBerentia1 equations to be solved be:

e"+A(x)u+B(x)w= 0
w"+C(x)w+B(x) I,=0.

The desired representation of the solution is then

I=cosy (S/S')&Z&~3(S)
w=sinq (S/S') &Z~~3(S).

4 R. E. Langer, Phys. Rev. Sl, 669 {1937).
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Where
1

f A+C~[(A —C)'+ 4@7]t}t,
2&~.1

tanIt = [(S ')' A]—/8,
with xI being a turning point of (S+')'. The + and-
signs correspond to two independent representations.
The Z's are Bessel functions of order one-third. The
usual phase integral condition for the bound state is
replaced by the similar condition,

Mean
energy

Mev

41a4
40a4
83+7
90+3
95W5

Total cross section
with statistical
error 10 2' cm

0.174&0.010
0.202a0.007
0.083W0.004
0.079&0.007
0.073&0.002

Detection
method

Proton recoils
C (n7 2n) C
C's(n, 2n) C"
Proton recoils
Bi 6ssion

Average
sin286

0.67a0.11.
0.76%0.11b
0 66%0 08'
0.68a0.08.
0.66&0.06'

Tmx, E II. High energy total cross sections. The error in the
mean energy arises from uncertainties in detector efficiency,
neutron beam distribution, and variation of cross section with
energy. The "average" sin'8, is determined by subtracting the
contributions of the higher partial waves as derived from the
angular distribution on the basis of no spin dependence in scat-
tering.

where xl and x2 are the turning points and 5„is a root of

(d/dS)(S) [JIy3(S)+J IgI(S)]=0.
These representations have been found to yield close
approximations to the wave functions at all energies,
the 5 wave phase shifts being, in general, in error by
less than 6ve degrees, and the wave functions exhibiting
the correct general behavior. %hen applied to the
bound state, the phase integral condition yields poten-
tial depths that are within 10 percent of the correct
value.

The bound deuteron state was numerically iterated
using the variation-iteration' method, using as a trial

' Hadley, Kelly, Leith, Segrh, Wiegand, and York, Phys. Rev. VS, 351
(1949).

b R. H. Hildebrand and C. E. Leith, Phys. Rev. 'TO, S87 (1949); also
private communication.

e Cook, McMillan, Peterson, and Sewell, Phys. Rev. 72, 1264 (1947).
d DeJuren, Knable, and Moyer„Phys. Rev. 70, 589 (1949).

function the approximate %KB functions above. Three
iterations yielded an eigenvalue and wave functions
with an accuracy of about one percent. The accuracy
was essentially limited by the numerical methods used
(intervals corresponding to one- to two-tenths of the
etfective range were used).

For the 'SI+IDI scattering state, the appropriate
%KB functions furnished trial functions for the
coupled integral system

t
V

'0

IA IO-
O
IL'

V

40 MEV

X

X. x
x x

90 ME V

'X

x

r

'xxi
I

Xr

x
x x

/
/

~ x
~'

4

I
/

x

u= A sinkx+M/k'~I Go(kx, kx')
0

X[V,(x')u(x')+ 2IT VI(x') w(x') ]dx'

w=B
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X I [U,(x') —2T V, (x') ]w(x')+ 2IT V,(x')u(x') }dx',

where A=1, 8=0 corresponds to the choice of the
positive sign in (S+')' and

M
A =—' coskx'[V, (x')u(x')+2IT V, (x')w(x')]dx',

A'& 0

8=1 corresponds to the negative sign. Further,

GI(kx, kx') = (1/k) sinkx& coskx&

GI(kx, kx') = (1/k)'g7(kx) &k'g 7(kx)&. ,

0 I I I I I I I I

0 20 40 60 60 IOO I 20 i%0 I60 I60
SCAT T E& ING ANGLE

FIG. 1. Experimental angular distribution. The crosses are the
counter data (see Table II, reference a); the horizontal lines at
90 Mev are the coud-chamber data. t See Brueckner, Hartsough,
Hayward, and Powell, Phys. Rev. 75, 555 (1949).jThe normaliza-
tion chosen agrees with the total cross section as given in Table II.

s N. Svartholm, The binding energies of the lightest atomic
nuclei, University of Lund {thesis Phys. Inst. 86 pp. (1945)). J.
Schwinger, Phys. Rev. 72, 742(A) (1947), and hectographed
"Notes on nuclear theory, "Harvard (1947).

where x& means the lesser of x and x', and gI(kx) and

g 2(kx) are the regular and irregular spherical Bessel
functions of order 5/2.

The potential has been written in the form

V(r, 0) = V,(r)+TSI7V((r).

The iteration of the integral equations above was car-
ried out numerically with the normalization of the trial
functions so chosen that the iterated functions matched
the trial functions in the region where the kernel of
the integral system is largest. Three iterations for the
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20

IO
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INTRINSIC RANGE I IO' cm)

Fro. 2. The triplet effective range for the Yukawa (7), exponen-
tial (E), and the square well (5) potentials. The intrinsic range is
2.12 R, 3.54 R, and R for the three potentials in the order named
above. R is the usual parametric range that occurs in the radial
dependence, i.e., exp( —r/R)/(r/R), exp(-r/R) for the Yukawa
and exponential potentials and a constant potential extending a
distance R for the square well potential.

5 dominant mode (i.e., with 2 =1, B=o) and one for
the D dominant mode yielded phase shifts with an
accuracy of about two percent.

The phase shift in the 'D2 state was calculated using
the variational procedure with the 'D2 component of

the plane wave as a trial function. The phase shift in
the 'D~+'F~ state was computed using the same pro
cedure as for the 'Sj+'Dj state. One iteration yielded
an accuracy of two percent.

The Born approximation was used to eGect the
inclusion of the angular momentum states for /&4 in
the scattering sum. The sum was, in general, done by
actually summing the individual terms for /&3, using
calculated phase shifts, and adding the Born cross
section from which these states had been suitably sub-
tracted. The angular distributions so derived are ac-
curate within two to five percent.

CENTRAL FORCES

We shall consider in this section the results of scatter-
ing from a model which consists only of central forces
since, as will be seen later, it is possible to make a
state-by-state comparison of the scattering from a
central force model and from one which includes tensor
forces.

The details of low energy scattering will not be
treated here, but, rather, the reader is referred to the
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FIG. 3. Low energy triplet scattering on the assumption of a 3.0&10 "-cm singlet effective range. This plot yields
5.51+0.16' 10 "cm and 1.98&0.26X 10 "cm for the triplet scattering length and effective range, respectively. The
experimental peints I open circles, (Bailey, Bennett, Bergstralh, Nuckolls, Richards, and Williams, Phys. Rev. 70, 583
(1946)), solid circles (Professor J. H. Williams has kindly communicated to us more recent values of the experiments
of Lampi, Freier, and Williams, Phys. Rev. 76, 188 (1949). Further experiments are still in progress. )j are from the
data of the Minnesota group.
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review of Blatt and Jackson. ' One result of their work
is that in the expansion (the notation is explained in
Table I)

k cot'hs ———(1/'a)+-', ('r) k' —'Tk'+

the shape dependent coeS.cient, T, is sufficiently small
that below 6 Mev it can be neglected, and, in interpret-
ing the experiments, the shape independent approxima-
tion may be used. The effective range in the triplet
state is determined, therefore, by the approximate
relation

(1/'a) = (1/rd) L1—-', ('r/r )).
Substituting the experimental values from Table I, we
obtain

'r= 1.53~0.20X10 "cm.

Figure 2 is a plot of effective range versus intrinsic range
for the triplet state of the various potentials. The
singlet effective range is not well determined by the
present experiments, as can be seen by reference to
Figs. 3 and 4.

To simplify the analysis of the high energy data, it is
convenient (and reasonable) to assume exact symmetry

of scattering about 90'. This means that the potential
is assumed to be zero in odd parity states. The experi-
mental results are actually compatible with a small
repulsive potential in odd states, but this shall be con-
sidered as a small perturbation which will not essentially
alter any of the following conclusions. The factor
—.', (1+P,) will, therefore, be included as a factor in the
potential and will have as one consequence that the
total cross section computed for any radial dependence
will be the minimum possible over any other choice of
exchange dependence. The main effect of any admissible
odd wave phase shifts is the interference with the large
S wave phase shift, which is in evidence only in the
angular distribution, and its actual effect on the total
cross section is negligible.

In order to compare different potential shapes, the
effective range has been taken as a common parameter.
For example, we have plotted (Fig. 5) the S wave phase
shift at 90 Mev for the various potentials versus the
efFective range. This device insures similar low energy
behavior for the same abscissa.

In Fig. 6 are plots at 90 Mev, for the various poten-
tials, of the total cross section and of 4m times the

"l2—

-.l 4—

-.20—
O
C3

.22—

-.24

ENERGY (MEV)

FIG. 4. Low energy triplet scattering on the assumption of a zero singlet range. This plot yields 5.14+0.16X10 "cm and
1.77+0.26' 10 '~ cm for the triplet scattering length and effective range, respectively.

' J. M, Blatt, Phys. Rev. 74, 92 (1948); J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).



R. S. CH R I ST I AN AND E. %'. HART

di8erential cross section for scattering at 90' and 180'
as functions of the effective range on the assumption
of no odd parity interaction. For the plots of complete
total cross section, i.e., the sum of triplet and singlet
scattering, it is necessary to make some choice of a
singlet range corresponding to a particular triplet range.
The low energy region implies only loose restrictions on
the singlet range; we may, therefore, choose the singlet
range so that the singlet and triplet intrinsic ranges are
equal. The results for the complete cross sections are
also shown in Fig. 6. From these plots it is possible to
make further limitations on the allowable triplet
ranges by a comparison with the experimental values
of ~(18O')/~(90').

Kith the Yukawa or exponential potential, a range
adjusted for the 90-Mev ratio predicts a 40-Mev ratio
within the experimental limits. However, with the
square well potential, the range required at 40 Mev
is considerably larger than that required at 90 Mev.
This di8erence in behavior results primarily from the
more rapid decrease in 0 (90') with energy increase for
the "cut-oG" potential than for the "long-tailed"
potentials. This, in turn, can be interpreted in terms of
the destructive interference between the 5 and D waves
at 90'. In detail, the 5 wave phase shift decreases more
rapidly (as a function of energy) for the cut-off poten-
tials (Fig. 7). Further the D wave phase shift is nes, rly
a linearly increasing function of energy for the long-
tailed potentials, while the increase with energy is much
more rapid for the cut-off potentials (Fig. 8).

For potentials which have a "deep hole" at the origin
(e.g., the Yukawa and exponential), the long-tail is
necessary to give a sufficiently long effective range.
However, as the energy increases the contributions to
the S wave phase shift come from regions closer to the
origin, and, consequently, at high energies the deep
hole (and, therefore, long-tailed) potentials yield larger
phase shifts than the cut-off potentials (e.g. , the square
well or Gauss potentials). These remarks are further
illustrated by reference to Figs. 5 and 7.

%bile it is impossible to define the limits of the

OS
m

I
O

0+

I I I I I

04 OS l2 IS 20 20
TRIPLET EFFECTIVE RANGE IIO erne )

FIG. 5. Triplet 8 wave scattering at 90 Mev.

singlet eGective range with any accuracy, for 'r&1.7
X10 "cm, the best fits for the angular distribution are
obtained with the singlet effective range between
2.5—3.0&10 "cm.

The complete angular distribution is shown in Figs. 9
and 10, for the Yukawa and exponential potentials
with ranges chosen such that they are both good fits of
the angular distribution at 90 Mev. From this the su-
periority of the Yukawa angular distribution at 40 Mev
is apparent. The total cross sections, however, are in
much better agreement with the exponential potential.

The only partial waves contributing appreciably to
the cross sections are the S and D waves, consequently,
the angular distribution can be expanded in terms of
Legendre polynomials Po, P2, and P4. The coefficient
of Po is identical with the total cross section, that of
P2 arises primarily from the interference between the
S and D states, and that of P4 arises primarily from the

0 3- 4
40 MEV

o*-

SI
G
Vr

N
0

Z0
O

Vl
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0 3

Vl
O

oz
Q

I t I

5 ~o t5 to
J

R5 5 lo l5 RO 2$
i3

RANGE {to cm )

I

5 o

FIG. 6. Central force scattering at 40 and 90 Mev. The first
column gives the triplet scattering; the second, the singlet scatter-
ing; and the third, the complete scattering (assuming equal
intrinsic ranges). The 6rst row is for the square well; the second,
for the exponential; and the third, for the Yukawa potential.
In each 6gure the upper set of three curves is for 40 Mev; the
lower, for 90 Mev. For each set of three curves the uppermost
is 4m" 0.(180'); the middle curve is the total cross section; and the
lower is 4x'~(90'). (Illustrated in the 6rst 6gure by A, 8, and C,
respectively. ) In all cases the exchange dependence is assumed to
be —,'(1+8 } t therefore, 0(180')=0(0')j, and the depths are
chosen to fit the deuteron and the zero energy scattering.

combinations of the various D states. These coefficients
allow a rapid comparison of theory and experiment and
are therefore tabulated in Table III for all models
mentioned explicitly.

If we consider the Yukawa and exponential potentials
of Figs. 9 and 10, we see that the only discrepancy with
the experimental values of the coeKcients occurs in the
magnitude of the P4 coefficient which is perhaps a
factor of two to three too large. This is manifested in
the angular distribution by a theoretical prediction
that is somewhat too flat in the region about 90'.

Figure 9 and Table III show the eGect of adding a
small repulsive potential in the odd parity states. This
modification may be expressed by a potential factor,
(1—o+oP ). The best fit for this type of exchange
interaction is @=0.55+0.05.
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where R(r) is the ratio of the D wave to the S wave.
E(r) will be, in general, a slowly varying function of the
energy (at least in the region where the potential is
large). Its form may then be estimated from considera-
tions of the bound state solutions. lt is found then that
E(r) is zero at the origin, increases to a maximum value
(about 0.2 or 0.3) somewhere between the maximum
of the 5 wave radial function and the tensor force range,
and decreases a symptotically to a small value (sorne-
where under 0.1). Then if we consider the ratio of the
equivalent potential "V(r)" to the central potential
V,(r) (the latter adjusted to give binding by itself),
we would ind the ratio to be less than unity at the
origin, greater than unity in the neighborhood of the
range, and again less than unity asymptotically. Thus
the equivalent potential will be shallower at the origin
and asymptotically, and will be deeper in the neighbor-
hood of the tensor range.

This can be further illustrated in terms of the %KB
approximation. In this approximation, E(r) is inde-
pendent of energy and decreases asymptotically to
zero. The equivalent potential in this approximation is

3 ( 3)'"V"=V.—vV~ ——+
~

vV~+ —(+8(vV~)'
r2i

Since the centrifugal potential is usually large com-
pared' to the tensor potential, this may be simpliied to

"V"=V,+r4r(yrVg)2,

which is clearly in agreement with the preceding
remarks.

The analysis of the low energy scattering is again
conveniently carried out in terms of the expansion of
the phase shift in powers of the energy. ' Since the shape-
independent approximation is valid for Yukawa ranges
less than 1.4)(10 " cm and for all square well ranges
considered, the eQ'ective range is essentially determined
from the triplet scattering length. (The explicit value of
the shape-dependent coefBcient as well as the effective
ranges are shown in Table IV for a number of cases. )
Ke have chosen, therefore, in order to relate the
scattering characteristics of a potential with its ability
to produce a quadrupole moment, to plot 1/y versus the
scattering length (Fig. 14) with the range indicated
parametrically along the curves. From this plot we can
conclude that with the accepted value of the scattering
length, the proportion of tensor potential must be
quite large, the actual amount being lower for the long-
tailed potential.

The low energy constants for the case in which the
tensor force range is increased relative to the central
force range are given in Table IV and Fig. 15. From the
equivalent potential we see that the main eGect is to
increase the long-tailed character of the potential.
This is evident by the decrease in the percentage D
state and by the increase in the shape-dependent
coeScient.
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FIG. 9. Scattering at 40 and 90 Mev from an exponential po-
tential, exp( —r/R), (R=0.7)& 10» cm for both singlet and triplet
states) without tensor force. The solid lines are for a (1+I'~}/2
exchange dependence; the dotted curves illustrate the effect of
increasing the amount of exchange forces. The total cross sections
for this potential are 21.7)&10 ~ cd and 7.9X10 ~ cm2 at 40
and 90 Mev, respectively. The experimental points (see Fig. 1)
have been normalized to Gt the theoretical angular distribution.

40 60 80 IOO 120 I40 I60 ISO
SCA&TERING ANGLE

Fro. 10.Scattering from the Yukawa potential exp( —r/R)/(r/R)
at 40 and 90 Mev for a range R=1.35&(10 "cm for both singlet
and triplet states without tensor force. The total cross sections
are 22.9 and 9.3&(10 ~ cm' at 40 and 90 Mev respectively.

' R. Christian, Phys. Rev. 75, 1675 (1949).
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TABLE III.High energy scattering behavior of various models. The range (R}is the same in singlet and triplet states. For all cases where
y/0, y is adjusted to Q=2.73' j.0~' cm~. r is the total cross section, the difFerential cross section being

4ma(8) =0"Za~ (8), where ap= i.

Exchange
dependence

Model
Radial

Range de-
(10-» pend, -
cm) ence

(10~
cma)

90 Mev

aa
~(180)
cr(90)

~(0)
~(90)

(10~
cma)

40 Mev

~(180)
~(90)

(1+Px)
(1+Px)

~ ~

(1+Px)
(1+Px)

(0.37 +0.63Px)S1a+

(0.24+0,76Px)S18
0.45 +0.55Px
0.4+0.6Px
J (1+Px)
0.45 +0.55Px
0.4+0.6Px
$(1+Px)

) (0'1 '0'a) (Tl 'Ta)—$(o'1 ea)(s.t a'a)
Experimental value

1.18
1.18
1.35
1.35
1.35
1.35
1.35
1.35
0.7
0.7
0.7
0.75
2.0
1.8

F
Y

Y
Y
F
F
F

F
S

0
5.6
0
1.9
1.9
1.9
1.9
1.9
0
0
0
1.8
0
0

9.0
9.9
9.3

10.2
10.7
12.0
10.3
10.4
7.9
7.9
8.0
8.7
7.1
7,4

7.9&1.0

0
0
0
0—0.20-0.35-0.16-0.32
0-0.10-0.20
0—0.86—0.61—0.14&0.10

0.77
0.75
0.98
0.78
0.70
0.66
0.78
0.77
0.99
0.99
1.00
0.92
1.13
0.63

0.73 &0.10

0
0
0
0
0.12
0.24-0.02—0.05
0—0.07—0.16
0—0.34—0.19

0.08 &0.10

0.39
0.04
0.57
0.14
0.12
0.06
0.15
0.16
0.39
0.39
0.41
0.03
0.12
0.05

0.17 %0.10

3.25
2.91
4.6
3.20
3.04
2.61
3.52
3.78
4.00
4.33
4.68
3.8
9.57
3.50

3.6 &0.6

3.25
2.91
4.6
3.20
2.95
2.46
2.84
2.48
4.00
3.69
3.39
3.8
1.59
1.30

3.0&1.0

23.1

22.9
23.1

0.15

0.21
0.24

1.26

1.45
1.46

21.5 0.17 1.30

21.7 0.18 1.33
21.3 0.11 1.42
22.2 0.04 1.14

19.4&2.0 0.26+0.10 1.55&0.20

~ The exchange dependence for the central force is $(1+Px).

3. High Energy Scattering 6
re@ 2&& y y2 y

r2'Vile will attempt in the next paragraphs to gain a
qualitative understanding of the relation between
central and tensor scattering. Then we will consider the
result of various models, the calculations being carried
out by the methods previously described.

As in the case of central forces we must adjust the
ranges so that only the S and D partial waves contribute
to the cross section, Ke would then expect that if the
tensor force were a weak effect we could add the tensor
scattering which would be present in Born approxima-
tion. Actually, as we have seen, the tensor force is far
from weak and the approximation can only be expected
to give the general trend. The characteristic peaking of
the Born approximation cross section around 45 and
135' (the exact angle depending upon the model, range,
and energy with a maximum occurring roughly where
2k' sin8j2 1) is, in fact, the type of correction
needed to explain the discrepancy between the shapes
of the experimental. curves and the central force curves
shown in Figs. 9 and 10, i.e., such a correction could
convert the U-shaped central force curves into the more
V-shaped experimental curves.

For a somewhat more detailed comparison we will

again use the %KB approximation to approximate the
equivalent central potentials, "VL,~," for each of the
states I and J, with the result

13 p7 3 y' )12
"Vm"'= V —~v~ ——+ I

—+-~v~ I+3I —v~
Ir' .Er' 7 ) E7

4 3 (12'' 6
= v,—-&v,+—I

—
I hrv, ) ——.

7 14i 7) r2

3 -(3
"vo"'= v.—v« ——+ I

—+vv~ I+gh'v~)'
r'

,
I r'

= V,+ (yrV, )', —
3

3 -t3
«v, »=v. „v, —

I

—+,v, I+a(&v,).Er2 i
4 6

= V,—2yv, + (prV()'—
3 r2'

In the approximation where we neglect the asymp-
totic amplitude of the coupled mode, as above, in the
evaluation of the phase shifts there will be no difFerence
between states of different magnetic quantum number,
ns„. however, the %KB approximation yields angular
distributions which agree with the results of a more
accurate calculation within 10 to 20 percent.

As can be expected on the basis of the "equivalent
potentials, " there is only a small difference in the total
scattering from the 'S1 state. Further, we can surn-
marize the behavior of the various D states in the
following: ('D~) Increasing the tensor depth (i.e., y)
decreases the equivalent potential and for strong tensor
forces the resulting potential will be strongly repulsive.
('D2) Increasing y increases the potential depth to such
an extent that for y~~1, the depth is three to four times
as deep as the depth on the central force modeL ('Ds)
The potential decreases for increasing y such that for
y~1 the potential will be just barely repulsive. (Ap-
proximately the same effects can be achieved by in-
creasing the tensor range instead of the depth. )

To illustrate these remarks we will consider the high
energy scattering from two extreme examples (calcu-
lated exactly): (1) The central and tensor depth are
approximately equal with the square well radial de-
pendence of range 2.7X10 " cm; (2) the tensor depth
accounts for practically all the binding with a Yukawa
dependence and range of 1.2X10 "cm. In Table V we
have summarized the contribution of each state to the
total cross section and indicated the sign of the phase
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TABLE IV. Properties of selected Yukawa potentials. 'p is the effective range as determined by using the deuteron wave function. 'T,
the shape dependent coeScient, has been determined from the approximate relation 'T=~('r)s('p-'r), and checked by neglecting in the
exact expression for 'T all terms involving the coupled D state. All the above potentials gave a value of 0.28 (within two percent) for
the ratio of the cross sections for photo-magnetic to photoelectric disintegrations of the deuteron for the 2.76-Mev Na y-rav using a value
of 2.23 Mev as the binding energy of the deuteron. (For experimental values see Woodward and Halpern and Meiners. )

Central range
(10» cm)

1.18
1.18
1.18
1.18
1.18
1.35
1.35

Tensor range
{10 1$ CIT1)

1.18
1.69
1.98
3.91

(No tensor force)
1.35

(No tensor force)

5.6
0.8
0.5
0.16

1.91

5.3
3.2
2.8
1.7

4.2

gp
(10» cm)

1.56
1.71
1.76
1.90
1.67
1.71
1.85

(10» cm)

1.48
1.49
1.50
1.45
1.54
1.58
1.63

gT
(10» cmg)

0.3
1.0
1.2
2.1
0.6
0.55
0.96

ga
(10» cm)

5.22
5.29
5.30
5.35
5.29
5.32
5.39

a See reference 9.
b W. M. Woodward and I. Halpern, Phys. Rev. 76, 107 (1949); E. Meiners, Phys. Rev. 76, 259 (1949).

increase in the total cross section. These limits are
estimated to be @=0.6&0.1.

The principal change in the high energy scattering
with increase in tensor range, is according to the WEB
arguments, similar to an increase in the long-tailed
character of the potential. The high energy scattering
results are shown in Fig. 19 for the cases listed in

Table IV. There is an increase in scattering from the
higher states which may be interpreted as the increase
in the long-tailed character or alternatively as showing

that the characteristic Born approximation tensor

peaking is displaced to smaller angles.
We wish to note here that all of the models seriously

considered (because of the smallness of the odd state
potentials) predict nearly isotropic distribution at 14
Mev in agreement with the recent experiments of
Barschall and Taschek" who 6nd isotropy within their
statistical accuracy of six percent.

CONCLUSIONS

1. Exchange character. If the potential has approxi-
ma, tely the same radial dependence in all states (i.e.,
even and odd parity, singlet and triplet) and the range
is chosen within acceptable limits, we may conclude
that for a good fIt, a=0.55&0.05, or, more generally,
allowing for a different exchange character in single
and triplet states, the depths of odd potentials, V,dd,
must satisfy the approximate relation

0& s( &odd)+s( &ooo)) s( &even).

2. Radial dependence. The (1+8,)/2 potentials,
when compared for equal effective ranges differ by at
most a factor of two in the total cross section or in the
ratio o(180')/o. (90'). However, these differences may
be correlated with general shape features. Further, the
experiments are adequate to distinguish among the
potential shapes.

(a) A long-tailed potential is necessary to explain the
large scattering from the higher angular momentum
states at 40 Mev without violently affecting the 90-Mev
scattering. On this basis the square and gauss potentials
are unacceptable while the exponential and Yukawa
potentials are allowable.

Q ~ ~~~L

IQ

20
I 5
25

R f10 cm)

I

2 0 f YUKAWA)

5 0 )SQUARE) 02-

FIG. 13. Ratio of central well depth to tensor well depth for
quadrupole moment equal to 2.73)C 10~ cd. The binding energy
6tted for the Yukawa (Y) case is 2.183 Mev and for the square
well (S) case is 2.23 Mev.

' H. H. Barschall and R, F. Taschek, Phys. Rev. 75, 1819
(1949).

52 54 56
TRIPLET SCATTERING LENGTH I IO cm)

FIG. 14.I ow energy scattering with tensor forces for the Yukawa
(Y) and the square well (S}potentials. The range, R, is indicated
(in units of 10 "cm) parametrically along the curves. (Depths are
adjusted to Gt the binding energy and the quadrupole moment of
the deuteron. )
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State

Square &veil

Tensor Central
forces forces

(10 ss cm2) (10 I cms)

Yukawa
Tensor Central
forces forces

(10 2s cms) (10 ss cms)

Thar, z V. Comparison of contributions of various states
to total cross section.

yields only the requirement that the singlet range be
less than 3)&10 "cm.

4. Triplet range. The low energy limits on the e8ec-

20

3g
D1

3D
3D

2.95+
0.35
5.87+
0.72+

3.25+
0.95+
1.58+
2.21+

8.82+
0.55
1.82+
0.14

9.58+
0.14+
0.24+
0.33+

ill
E
V

N'0

(b). The Yukawa potential, because of its singular
nature, predicts high total cross sections (approximately
20 to 30 percent higher than the best experimental
value) for any combination of ranges. The exponential
potential for approximately the same angular de-
pendence predicts cross sections 10 percent to 20 per-
cent lower, however, the detailed Gt of the angular
distribution is poorer. Both are acceptable, however,
with the present experimental uncertainties.

The best fit for these potentials is (assuming the
same range for all the forces)

8=0.75X10 "cm (exponential)
2=1.35&(1 -0" cm (Yukawa).

(For calculations, where the tensor force is unimpor-
tant a central force model with a YuIt;awa range of
1.18&&10-"cm can be used. )

(c) The shape of the angular distribution about 90'
is evidence of a tensor force in scattering. Here, with a
2(1+8,) dependence, a purely central force yields a
flatter distribution than an interaction including tensor
forces. The latter distribution agrees signifIcantly
better with experiment.

3. Singlet range. The total cross-section measure-
Inents imply a singlet effective frange greater than
2X10 " cm. A long singlet range is further favored
by the angular distribution. Low energy scattering
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FIG. 16. Effect of increasing the tensor depth (at 90 Mev) with
constant binding energy illustrated for a Yukawa potential
(E= 1.18)&10 " cm}. Curve I: y =0, triplet cross section
=9.9)& 10 s cm'. Curve II: y =0.5, triplet cross section
=9.6&(10 ~ cm~. Curve III: y =6, triplet cross section,
=11.1)&10 'e cm~.
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FlG. 15. Variation of deuteron fitting parameters for increase of
tensor range. The interaction is that of the Yukawa well for which
the central range is 1.185&&10 " cm. O'D is the percentage of D
state; b is the dimensionless central well depth equal to MVjP/If;
pb is the tensor well depth. The binding energy fitted is 2.183 Mev.

FIG. 17. Scattering from the Yukawa potential (R= 1.35X10 "
cm) at 40, 90, and 280 Mev with inclusion of tensor force. The
total cross sections are 23.1&10 cm', 9.8&(10 cm and
2.7)&10 cd. (The 280-Mev angular distribution and total
cross section are in agreement with the preliminary results re-
cently re orted. ) (Kelly, Leith, and Wiegand, Phys. Rev. 76,
589 (1949 .)
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Fxo. 18. Scattering from the exponential potential (R=O.?5
& 10 '3 cm) at 40 and 90 Mev with inclusion of tensor force. The
total cross sections are 21.7)C10 cd at 40 Mev and 8.?X19
cm' at 90 Mev.
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FrG. 19. Effect of increasing the tensor range (at 90 Mev) with
constant binding energy and quadrupole moment illustrated for a
Yukawa potential (central range=1. 18)(10» cm). Curve I:
Tensor range= 1.18' 10 "cm, complete cross section=9. 9X 10 '
cm~. Curve II: Tensor range=1. 69X10» cm, complete cross
section=10. 5X10 '6 cm~. Curve III: Tensor range=3. 91X10 "
cm, complete cross section=10. 7)&10 '6 cm2.

tive range are 1.53+0.20&(10 "cm. The determination
of the limits on the range from high energy scattering
depend upon the explicit model used but for all models
considered it has been found to be within the above
limits.

5. Tensor force range. The tensor range may be in-
creased relative to the central range by as much as a
factor of two without adversely aGecting either the low
or high energy results.
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