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Penetration and Diffusion of X-Rays. V. Effect of Sm~ Defiections upon
the Asymptotic Behavior
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The effect of small angular deQections upon the asymptotic trend of the x-ray intensity requires that
the constant ICo in the earlier formula x+o exp( —@pe) be replaced with the eigenvalue of an equation due
to Wick.
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N expression for the asymptotic variation of
x-ray intensity at great depths within a barrier

was presented in the first' of a series of recent papers. ' '
The treatment disregarded the effect of the small
angular deQections which accompany small energy
degradations by Compton scattering. In this note we
wish to correct for this effect. However, we still limit
our treatment, as in I, to the case where the absorption
coefficient increases monotonically as the photon energy
decreases. Progress has been facilitated by the applica-
tion of the methods developed by Wick' for the analo-

gous problem of neutron diffusion.
We consider the spectral energy density' Y(x, X, ~)

for photons of wave-length X (in Compton units) at a
depth x and traveling in a direction m. The Laplace
transform of Y with respect to the variable x obeys an
equation analogous to (3, II):

(a—pcos8)y(p, X, ra)= ~ k(V, X)dV

&&j L)'8(1—oo cu' —X+X')y(p, X', a)')/2x

It has been shown' that the asymptotic behavior of
Y for large x depends entirely on the behavior of F or y
for ) very near ) 0. Therefore the following simplifying
assumptions appear fully justified for a strictly asymp-
totic treatment 2

(a) V-so+so( —&o)

(b) k(V, X) C
(c) aa ra' 1—(aa —u'~2/2

(d) cos8 1—8'/2.

Wick's method proceeds by applying a Laplace
transformation in X and a I ourier transformation in aa.

To this end one multiplies (1) by expL —g(X—Xo)
+ig~a".aa]/2x and integrates over) and ~. The resulting
equation is:

Ipp —p ppL8/8g —1/g —(o/2g)8/Boj
(P/2n)~oI If'(—P, ~ ~)

= (C/q) exp( —o'/2) W
+XoC exp( —o'/2)/2x(po —p). (2)

Still following Wick, we write:

lf (p rl, &)= 2 & (P n) & (o) exP(/1oo'/4P)

where 8 is the angle between aa and the x axis.

* Knolls Atomic Power Laboratory.
t Work supported by an ONR contract.
' Bethe, Fano, and Karr, Phys. Rev. 76, 538 (1949).' U. Fano, Phys. Rev. 76, 739 (1949}.' P. R. Karr and J. C. Lamkin, Phys. Rev. 76, 1843 (1949).' L. V. Spencer and F. Jenkins, Phys. Rev. 76, 1885 (1949}.
s G. C. Wick, Phys. Rev. 75, 738 (1949), especially p. 753 ff.

The functions u„can be calculated by solving first
order linear differential equations. The asymptotic
behavior of F(x, t, ~) can then be determined by

425

+X&k(Xo, X)8(1—cos8—X+4)/2s (po —P), (1)
where U'„ is the e-th eigenfunction with cylindrical
symmetry of the equation:

r(p/io)~lr/2 (/10/P) /g+o1/2
+(C/jco) exp( —o'/2)]U+QV=O. (4)
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TABLE I. Set of values of —Qe'obtained by the various methods An entirely diferent procedure consists of studying
the angular moments

Material Energy
Ky Pertur- Vari-

po/g4 = 0jyo bation ation

(Moment
methods)

Expan- Itera-
sion tion

y„(p, X)= Jl (1—cos8) "y(p, X, oo)dao.
4x

C 5.10 Mev
2.55
1.70

0.19 1.07 0.92 0.92
0.36 1.39 1.08 1.08
0.57 1.77 1.25 1.26

0.92 0.92
1.09 1.07
1.29 1.23

Al 5.10
2.55
1.70

0.25 1.30 1.07
0.40 1.53 1.17
0.59 1.83 1.28

1.07 1.07 1.07
1.17 1.19 1.16
1.29 1.33 1.26

Cu 5.10
2.55
1.70

0.64 2.8 2.00 2.00 2.14 1.93
0.94 1.95 1.41 1.42 1.47 1.39
0.63 1.92 1.33 1.34 1.39 1.31

Sn 2.55
1.70
1.28

0.78 2.6 1.75
0.65 1.90 1.30
0.74 1.87 1.23

1.76 1.87 1.72
1.31 1.36 1.28
1.24 1.28 1.21

Pb 1.70
1.28
1.02

0.57 1.40 0.97 0.98 1.00 0.98
0.56 1.15 0.79 0.80 0.81 0.79
0.60 1.04 0.70 0.70 0.71 0.70

~* The exponent —Qo differs by unity from Wick's because we
deal here with a monodirectional source.

examining the properties of the successive inverse
transformations. One finds the asymptotic formula:

Y(x, X, ~) x oo exp( —pox)f(X, ~) (5)

which is analogous to (11), (12a), and (13a) of II.**
Here Qo is the lowest eigenvalue of (4) when p=po,.
and f(X, ra) is a function whose behavior is immaterial
for our present purpose.

Our main problem lies in the determination of —Qo,
which takes the place that Eo=C/po held in I and II.
The effects of angular deflections are small when po/po
is small; and Qo~ —C/iso in the limit when po/po —o0.

In many interesting cases, po/po lies between 0.2 and
0.8 and one can attack the eigenvalue problem (4) by
a perturbation method starting from the limit po/Po —o0.
(In this limit (4) reduces to the Schrodinger equation
for a two-dimensional oscillator. ) The perturbation
method yields:

Qo Eo+1/—2 n——/2+ Eoo'/n—(n+ o)

+EoV(2n+o)'/n'(n+o)' (6)
Eo=C/io , o=po/io ', n=(1+'4Eoo) .

Alternately one may use a variational method, as was
done by Wick.

These moments obey an inhomogeneous system of
equations which one obtains by multiplying (1) by
powers of 1—cose and integrating over u. The impor-
tant properties of the moments depend upon the
behavior of the associated homogeneous system, which,
in turn, leads to an eigenvalue problem equivalent to
(4). This problem can be attacked either by expansion
into powers of po//1o or by a somewhat more effective
iteration procedure. ***

Table I shows a set of numerical values of —Qo
obtained by the various methods. These results appear
to converge rather satisfactorily toward a common
limit. Nevertheless, none of the methods seems to lend
itself well to the accurate determination of eigen-
functions. Therefore, we may not expect that successive
approximations to the eigenvalue will converge any
better than asymptotically. Moreover, the eigenfunc-
tions are needed to determine the dependence of F on
X and ~.

In conclusion, we are now able to determine values
of the exponent of x in the asymptotic expression for F,
which seem to be unaGected by any approximation
made. However, (5) above, like (5) of I and (13a) of
II, holds only where p, increases monotonically with ).
This extreme asymptotic expression represents the
leading term of a complicated expansion which con-
verges rather slowly. In order to solve problems of
practical importance one must take into account the
various terms of the expansion (3) and employ a more
refined treatment of the inverse transforms. Finally,
one must evaluate the effect of the simplifying assump-
tions made here, among which (b) is particularly
restrictive. Calculations to this end are in progress and
will be the object of a more detailed report.

***The expansion into powers seems to be equivalent to

solving (4) by means of the ansatz U= exp( —potT~/4p) L Z b„r "$,
n=o

successively higher powers in the summation being retained to
give higher approximations to —Qo,


