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Nevertheless Roberts was fully justified in obtaining this as a
logical deduction from the only developed theory then available
for his purpose.

The derivation in detail of the relativistic equation given above
will be published later.
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SING delayed coincidence circuits for the measurement of

short radioactive half-lives one has to measure the genuine
coincidence rate N, as a function of an artificial delay time T
deliberately put in either channel. The mean life © has to be
calculated from the delay curve Ny (7) of the experiment.

Such calculations"? are generally based on some assumptions or
knowledge concerning the time delays in the equipment and
concerning the resolving time 7. The result of the calculations is a
theoretical delay curve, which can be compared with the measured
delay curve.

It is easy to show that © can be calculated in a simple way
without knowing the time delays within the equipment, without
knowing 7, and without using any theoretical delay curves.

Our method is based on the calculation of the moments of delay
curves. It will be proved in another paper? that all the moments of
the delay curve N (T) can be calculated from the moments of two
curves:

1. A delay curve »g(7) which is measured under the condition
that the corresponding event (which give counts in the individual
channels) have no time delay between them (e.g., y—y-coincidences
with negligible time delay or a single particle which traverses both
counters). v,(7) is thus the characteristic delay curve of the
equipment.

2. The curve giving the probability p(f)d¢ of the time delay
between ¢ and #+dt of the two events in the actual decay-experi-
ment (e.g., in a decay experiment, where the parent gives counts
in one channel and the daughter with the mean life ©® gives counts
in the other channel, p(#)=(1/0) exp(—¢/0).

Measuring N,(T) and »,(T) we normalize both to the same
area, i.e.,
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where we use the well-known definition:
;\4(»)[_,’(;;)]:]1::3 xnf(x)dx.

Equations (2) are valid under the most general circumstances,?
e.g., when equal or unequal time delays, due to different decay
times, occur in both counting channels. In such cases p(f) is
composed of the different decay functions.
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The use of (2) permits the determination of all the moments of
p(#) and hence p(f) is completely determined.

To show the use of (2) in the simple case given above (parent
gives counts in one channel, daughter with a mean life @ in the
other), we take the first moment:

MO[N(T)]=MO[vy(T)]+106.
Thus:

MOIN(T)]_ M®Ly(T)]
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which states that the ‘“center of gravity” of the delay curve in a
decay experiment will be displaced by the mean life of the
daughter substance. If the delay curve of the equipment in sym-
metric around 7'=0, then O is simply the “center of gravity” of
the delay curve of the decay experiment. It is obvious that ® can
be determined accurately in this way from measurable quantities,
even if the Ny(T) and »,(T) curves overlap appreciably, in which
case one usually says that © is smaller than the resolving time r
of the equipment.

When the counts from the same daughter substance appear
in both channels (e.g., y—y-experiments), we get symmetric delay
curves and use the second moment of the delay curves for the
determination of ©. In experiments, where two or more decay
processes occur, we take more moments for the calculation of the
decay constants.
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RADT and Peters! have obtained recently the intensity of

heavy nuclei in primary cosmic radiation reaching the earth

at 55° and 30° north geomagnetic latitudes. According to their

figures, the ratio 7/I’ of the intensities at these two latitudes is 4

for helium, 3.4 for carbon, nitrogen, and oxygen, and 3.5 for nuclei

of atomic number greater than 10. The difference between these
ratios is not significant and lies within the experimental error.

If one assumes that most of the heavy nuclei in the experiment
of Bradt and Peters reach the point of observation at an angle not
greater than 30° from the zenith, one can attempt to make an
estimate of the energy spectrum of the heavy nuclei, assumed to be
of the form K/E?, using for this purpose the geomagnetic latitude
effect for particles arriving essentially in the vertical direction.

The principle of this analysis has already been outlined.? To
begin with, the geomagnetic effects depend only on the value of the
energy of the particle measured in Stérmers. Therefore, the energy
in Stérmers is first converted into energy in more usual units, say
in Bev, for different values of Z from Z=2 to Z=30. Knowing
these, one can plot curves giving the geomagnetic cut-off at the
two latitudes as a function of the atomic number Z. The results of
our calculation are contained in Table I.

TaBLE I. Cut-off energy.

VA 2 6 8 10 15 20
Cut-off at 55° (Bev) 1.4 4.2 5.6 7.0 10.5 14.0
Cut-off at 30° (Bev) 14 42 56 70 105 140
v 1.60 1.53 1.53 1.53 1.56 1.56




