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ions. On the other hand, for an impurity semiconductor,
the resistivity due to lattice scattering generally de-
creases with decreasing temperature because of the 2
dependence of the mean free path. ' Hence, the im-

~A. Sommerfeld and H. Bethe, IJandblch der Physik XXIU
(1933), Vol. 12, p. 560.

portance of the impurity ion scattering resistivity in

determining total resistivity increases as temperature
decreases. '

s K. Lark-Horovitz and V. A. Johnson, Phys. Rev. 69, 258
(1946). K. Lark-Horovitz, Contractor's Final Report, NDRC
14-585 (November, 1945), pp. 36-41.
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The pulsed ultrasonic method has been applied to the determi-
nation of the stiffness coefFicients for beryllium. The constants
&11=30.8)(10" dynes/cm', C33=35.7 were evaluated from com-
pressional wave velocities in single crystals by extrapolating
a plot of the effective stiffness coefBcient eersls sins8 (8 being the
angle between the hexagonal axis and the direction of wave
propagation) to the points H=s/2 and 0. The values c12= —5.8,
c44=21.0 were derived from an analysis relating the average
effective stiffness stiffness coefEcients for compressional and shear
waves with the shear modulus and Lame's constant. The latter
data Sere calculated from measurements of longitudinal and
transverse body wave velocities in polycrystalline metal. To find

the coefficient cia=0.87, the established values for the other
constants were employed in the general relation for the effective
stiffness coefFicient of the form Ci=f(c;q s, 8).

Several criteria have been used to assess the validity of the c;q
data: (1) The ratio of c»/cs3 is in accord with the c/a ratio for
the hexagonal close-packed structure of beryllium; (2) the com-
pressional and shear wave anisotropy factors of c»/c»=1. 16
and c44/$(c» —c») =1.68, respectively are in harmony with the
observed transmission properties of polycrystalline beryllium;
and (3) the experimental and theoretical curves for the directional
variation of the effective compressional stiffness coefEcient agree
quite well.

1. INTRODUCTION

~ 'HK literature contains the stiGness coefBcients of
only three hexagonal metals, these being mag-

nesium, zinc, and cadmium. ' Some recent work on the
preparation of large beryllium crystals has made avail-
able several adequate-sized single crystals of beryllium
for ultrasonic velocity measurements from which the
c;I, constants were determined. '

It was found that essentially all of the crystal speci-
mens were so oriented that measurements along ideal
directions were virtually precluded. This condition
eliminated any hope of obtaining the best possible
accuracy, and, therefore, redetermination would be
warranted when better crystals could be had. Never-
theless, the values for the c,~ s of beryllium are deter-
minable to the order of accuracy common to the other
hexagonal metals.

The method employed for evaluating the stiGness
coefKicients of bery11ium is unique and has not been
reported previously. It is based upon the following
experimental data:

(1) Compressional and shear wave velocities in
polycrystalline metal.

(2) Compressional wave velocities in single crystal
*This paper is based on work performed at the Metallurgical

Project, Massachusetts Institute of Technology, under Contract
No. W-7405-eng-175 for the ABC.' R. F. S. Hearmon, Rev. Mod. Phys. 18, 409 (1946).' L. Gold, Rev. Sci. Inst. 20, 115 (1949).

specimens having their crystallographic axes diGerently
oriented with respect to the direction of propagation.
Deriving the coefFicients from this information requires
the conditions, (1) the crystal belongs to classes 21—27
of Voigt s designation, thus having five independent
constants, (2) the crystal is not too anisotropic.

The first of these conditions permits one to consider-
ably simplify the expressions for the various wave
velocities the functions e=f(n, P, y, c,q s, p) can be
reduced to v =F(e, c,~ „p) where e, the angle between
the hexagonal axis and the direction of wave propaga-
tion, takes the place of the three direction cosines n, P,
and y. The second condition makes possible certain
extrapolation and approximations which will be de-
scribed in detail. If the crystal is too anisotropic it
becomes very difIicult to obtain velocity data for poly-
crystalline specimens because of the poor multiple echo
patterns. ' Beryllium exhibited excellent patterns, so it
appeared reasonable at the outset to infer that it was
not a highly anisotropic crystal. The significance of
this feature will be accounted for later.

2. EXPERIMENTAL ASPECTS

Apparatus for the pulsed-ultrasonic measurements
was of the nature already described in a number of

3 H. E. Mueller (private communication).
4 W. P. Mason and H. J. McSkimin, J. Acous. Soc. Am. 19,

464 {1947).W. Roth, J. App. Phys. 19, 901 (1947).



STIFFNESS COEFFICIENTS FOR BERYLLI UM 391

publications. ' The data were taken at room temperature
with microsecond pulses at 10 mc. It was found that
the optimum procedure for obtaining good velocity
data required, (1) the use of salol films both for the
longitudinal and transverse modes, (2) recording range
readings on the scope pattern at the first discontinuity
in the linear sweep produced by an echo. The oil film

coupling between transducer and specimen gave rise to
relatively large fIuctuations in the echo intervals,
principally because of its tendency to distort the pulses
and make readings difIicult. Apparently, better repro-
ducibility of the echo intervals is achieved by reading
to the very front edge of the pulse rather than a fixed
db down from the bottom of the pulse.

Two possible ways of arriving at an average value
for the range intervals were employed. For the poly-
crystalline specimens, where a number of good echoes
could be obtained, it was convenient to plot the range
readings versus the echo number and then to compute
the average echo interval from the slope. This procedure
is not practical where a large number of echoes are
observed, whence for the single crystals di8erences in
range for the various echoes were averaged numerically.

Velocity measurements for the single crystals were
limited to compressional waves because of uncertainty
in interpreting the multiple echo patterns for the shear
waves; since two shear modes are excited simultane-

ously, it is difFicult to resolve the pattern into the shear
components, particularly when the velocities of propa-
gation are not widely divergent. *

The orientation of the beryllium crystals was deter-
mined by the mell-known back-refIection Laue tech-
nique, followed by stereographic projection. The angle
between the hexagonal axis and the axis of the specimen
is accurate to about 1—2', a value which is sufFicient
for the over-all accuracy of the final data.

3. RESULTS FOR POLYCRYSTALLINE BERYLLIUM

Data was taken on a wide variety of samples of
extruded Bake, vacuum-cast lump, etc. There did not
appear to be any significant divergence of results, in

spite of the fact that preferred orientation was un-
doubtedly present in some of the specimens. This is
substantial evidence for the relative isotropy of beryl-
lium. In general, better patterns mere manifest for
longitudinal vibration than for transverse vibration;
pulse distortion was more pronounced for the shear
waves, a condition which makes the shear velocity
measurement of lower accuracy.

Some rough estimates of the attenuation for com-
pressional and shear oscillations, indicated that the
latter was somewhat larger. If one interprets this as
"scattering" losses at the crystal boundaries, then it
can be inferred that beryllium has a higher degree of

~ J. R. Pellam and J. K. Gait, J. Chem. Phys. 14, 608 (1946).
H. B.Huntington, Phys. Rev. 72, 321 (1947).

*Mode separation is &a,cilitated when the crystal constants
have been established previously.

shear anisotropy than compressional anisotropy. ' This
conclusion is a useful one for checking the c,~ values as
will be demonstrated.

Table I summarizes all the data one can obtain from
ultrasonic propagation measurements in an isotropic
substance. The compressional velocity is seen to be in
excellent accord with the Sawyer-Kjellgren reported
value the manner in which S-K obtained this value
is not clear, but presumably it was based upon the
composite oscillator technique. Quite recently Squire
et ct. have reported ultrasonic velocity measurements
in beryllium their values agree very mell with the
table values.

The elastic constants were computed by means of
the standard relations of elasticity theory. ' Young's
modulus for the static stress-strain method agrees very
well with the dynamic value. The compressibility value
is in fair agreement with those obtained by the high
pressure technique. ' Considering the difI'erences in
experimental approach, the agreement is much better
than anticipated; very likely, the result obtained by
the ultrasonic method is more reliable.

The values for Poisson's ratio is surprisingly low.
By combining the literature values for the compressional
velocity and the compressibility, the comparative
figures listed were derived from the relation

v= (3—&ppu)/(3+&ppu), (3)
where v& is the compressional velocity, P the compressi-
bjtlity and p the density of beryllium. Thus, it is reason-
ably certain that the Poisson ratio for beryllium is the
lowest for any of the known metals and alloys.

As an item of general interest, it was thought worth-
while to calculate the theoretical value for the char-
acteristic temperature of beryllium for comparison with
the value derived from specific heat measurements.
The relation used is the classical Einstein-Debye
equation

4n V (1/vi')+(2/rtP)

where v „, the characteristic frequency of the crystal
lattice, is related to the characteristic temperature 0
by the relation 0=(h/k)v „. The various symbols
defined and evaluated are

N—atoms per cell= 2
V—volume of unit cell= 16.0)& 19 4 cm'
r~—longitudinal wave velocity= 1.26&10' cm/sec.
v&
—transverse wave velocity=0. 888X10' cm/sec.

h—Planck's constant= 6.64)&10 "erg-sec.
k—Boltzmann's constant= 1.37 &10 "erg j'k.

~%. P. Mason and H. J. McSkimin, J. App. Phys. 19, 940
(1947)~

~ C. B. Sawyer and B. J. Kjellgren, Ind. Eng. Chem. 30, 501
(1938).

g Rice Institute Progress Report N6onr-224 Task Order No. 3,
October 1, 1948.

9A. K. H. Love, j/Iathematical Theory of Elasticity (Dover
Publications, New York, 1944).

~o P. W. Bridgman, Proc. Am. Acad. 68, 27 (1933).Richards,
Hall, and Mair, J. Am. Chem. Soc. 50, 3304 (1928).
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TABLE I. Data for polycrystalline beryllium.

For extruded Rake metal

Compressional velocity
S and K value (method not reported)

Shear velocity
Young's modulus

Lit. value (stress-strain method)
Shear or rigidity modulus
Bulk modulus
Compressibility

Bridgman value (high pressure tech. )
Richard et al. {high pressure tech. }

Poisson's ratio
Based on Bridgman value
Based on Richards value

Lame's constant
Characteristic temperature

From Debye-Einstein rel'n
From specific heat data

1.265X10 cm/sec.
1.26X 10' cm/sec.
0.888X 10 cm/sec.
2.965X 10 dynes/cm2

(4.300X 107 lb. /in. ')
4.26X 107 lb. /in. 2)

1.465X 10 dynes/cm2
1.014X i(P dynes/cm2
0.985X 10 ~~ cm2/dyne
0.874X10 '~

0.95X10 "
0.0122
0,0754
0.035
0.038X 1012 dynes/cm'

1430'K
1000'K

Calculation gives v = 2.96X10"/sec. and 0= 1430'.K
The specific heat value is 1000'K.

v = 1.670X 10'(1/2hy) (4)

which converts the radar scope range readings to
velocity values, 1 being the specimen length and Ay the
range interval. The results for the fourth specimen are
omitted since they were found subsequently to be
questionable when the data were used in arriving at
the c;~ s.

S. BASIC STIFFNESS COEFFICIENT RELATIONS AND
THE DETERMINATION OF cg1 AND c33

The body wave velocities in a hexagonal crystal of
classi6cation D'6I, can be expressed as follows:

( ct) ~ (t;tt'l ~ (ctm't t

Ep)
'

EpJ
'

&p)
'

ctt =
g (ctt—ct2) sin 8+c44 cos 8

ctm —g[(c»+c44) sin'8+ (c&3+c44) cos'8 —st(ct't:, 8)] (5.2)
ct= g[(t'tt+c44) slIl 8+(t:tt+t'44) cos 8+tp(ct't:, 8)].

4. RESULTS FOR SINGLE CRYSTALS

Four single crystals with dimensions of the order of
j. in. diameter and j.—2 in. in length were employed for
the compressional velocity measurements. Data for
three of the specimens are included in Table II.

It is evident that the velocity is comparatively
insensitive to crystal orientation; the values listed were
computed from the relation

It is evident that a plot of c~ versus tt should permit
extrapolation to 8= tr/2 and 0 where ct = ct t and cqt,
respectively. Since only three reliable points were
available, some misgiving as to the reliability of such a
solution for c11 and c» was at erst manifest; however,
several considerations established a modicum of confi-
dence in this approach.

A review of the results for the metals cadmium, zinc,
and magnesium indicated that extrapolation is apt to
be more accurate if one plots c~ versus sin'8. Moreover,
since beryllium is comparatively isotropic c» should
not be too diferent from c» and also the extrapolation
at the end points should be gradual. Figure 1 shows
the c~ versus sin'0 plot with the extrapolation values for
c1& and c» identihed.

If one interprets the significance of the c,I, constants
along the c and a axes of a hexagonal crystal, additional
conhrmation of the derived values for beryllium is
possible. Electively, c» and c» are measures of the
bonding strength along the a and c axes, respectively.
Hence, in hexagonal crystals of similar electronic con-
6guration, it is apparent that the ratio ctt/t, tt should
have some correlation with regard to the axial ratio c/a.
Figure 2 is what may be conveniently termed an
anisotropy plot for hexagonal metals. It is surprising
how closely the four points lie on a straight line. For
the ratio c/a=1.63, corresponding to the axial ratio
for the ideal hexagonal close-packed structure, c»/ct&
=1. This is in accord with the idea that the cohesive
forces along the [001] and [210] directions should be
the same when the H.C.P. structure is truly attained;
where the c/tt ratio is loss than 1.63, c» should be less
than c» which is the state of affairs for beryllium.

Thus, the inference can be made that the greater the
deviation from the ideal c/tt ratio for close-packing the
more anisotropic will the metal be with regard to body
wave propagation. The predicted position for cadmium
not being in very good agreement with the experi-
mental value might indicate errors in the determination
of c11 and c»., it would be of interest to redetermine
these values.

6. DETERMINATION OF c12, c)3) AND c44

In principle, the cross constants should be determi-
nable from Eqs. (5.2) and (5.3). By selecting points
from the curve of t,"~ versus sin'8 in Fig. 1, one might
attempt to evaluate the cross constants c12, cjs, and c44.
This approach, however, is not practicable because of
the transcendental nature of the equations involved.

TABLE II. Data for single crystals of beryllium.

The angle between the direction of wave propagation
and the hexagonal axis is 8. For the function tp(c, t„8)
one has

Length
Specimen (inches)

Range
interval
(yards)

vl )(106 cn )(10&2
cm/sec. dynes jcm2

tp(t:,t;, 8) = I (c»—t;44)' sin48+ (catt c44)' cos48-
+2 sin'8 cos'8[(ctt —t:44)(c44 c33)

+2(t:tt+~44)'] I '. (5.3)

(1)
(2)
(3)

1.714
1.283
1.533

1100
800
990

1.30
1.34
1.29

3.14
3.33
3.09

52'
33'
67'
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from which one obtains

3 50- x/2

t/t(cjkt 8)d8 4 (Cll+C13+2c44) 2—[2 (Cll C12)+C44]
~~p

= 4 (C33+C12). (6.6)

E x per tmerttol

Cg, values for Beryllium

G&&= 3 57 x l0 dynes/cm
l2 2

f Extrapolated)

3 00
0

I

20 30 40 50 60 70 80 90 l 0
SiN' e

Fro. 1. Variation of the values of cE for beryllium
with sin'8 (experimental).

w/2

et 1=— [-', (cl1—c12) sin'8+c44 cos'8]d8,
m~p

(6.2)

ct2 is essentially (6.1), but with a minus sign in front
of the second integral.

Making use of the fact that beryllium is at least
moderately isotropic, we assume that 8&&=8&2 so that
we can write

Cti= Ct2= Cl3. (6.3)

This assumption is vital in the procedure for finding
expressions for c~ and c& in terms of the stiGness coeffi-
cients. Several criteria form the basis of latter checking
the soundness of (5.6), as well as the entire line of
attack. These are:

(l) The theoretical curve for cl based upon the cj3
values should agree with the experimental curve of
Fig. 1.

(2) The cross constants c12, c44, c13 must be small
compared to c~~ and c33 because Poisson's ratio is low.

(3) The transverse velocities must be comparable
when evaluated from the c;I, data.

Proceeding then with the analysis

Ctl= 2[S(C11 C12)+C44]

tr/2

—,'[-,'(cll c12)+c44]=—
Jr [(cll+c44) sin'8

7l Q

~ tr/2

+ (c33+c44) cos 8d8 ——
J 22(cj3, 8)d8, (6-5)

1l p

Now for the polycrystalline data there are the
relations

cg= 2@+), cg= p, (6)

where p is the shear modulus and X Lame's constant.
These average values are related to the c,I, constants
as clearly

~ tr/2

cl=- — (cll+c44) sin'8+ (c33+c44) cos 8d8
2 ~~,

p tr/2

(c,„,8)d8 (6.l)
2 m'~p

(
C11+C12+2 (C33+C44) —4 (2/4+ X)

2 (Cll C12)+C44 2/4.
(6 g)

Putting in the values for ci~, c33, p, and X these become

2C44+ Cl.2 = 1.62
2c44—ci2 ——2.78

which give the solutions

c44= 1.10, cl2 ———0.58.

(6.9)

(6.io)

The remaining constant c~3 can next be calculated
from (5.2) and (5.3), using the values for the identified
c,I, , and selecting some value for c~ and 0. The result is

cg3= 0.87.

'7. DISCUSSION OF DERIVED c;A, VALUES
FOR BERYLLIUM

Table III is a comparison of the stiffness coeScients
for beryllium with those of magnesium, zinc, and
cadmium. The data of Wright, Bridgman, and Gruen-
eisen-Goens were the result of the static measurements
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FIG. 2. Anisotropy plot for hexagonal metals showing
bonding strength variation.

The integral in (6.6) would be quite impossible to
evaluate by direct integration. Clearly, relation (6.3)
circumvents this barrier and permits ready solution of
c&. The relation for c& is accordingly

Cl = 4[el1+C12+ 2 (C33+C44)] ~ (6.7)

From relations (6), (6.4), and (6.7) one can write
down the simultaneous equations
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TAmz III. StiEness coefFicients for hexagonal metals
(c;z values' 10" dynes/cm'}.

Metal c» C38 Source

5.87 1.68
5.94 1.14
S.42 4.00
6.21 4.00
5.13 1.85
4.60 1.56

35.7 11.0

on many crystals; it is evident that the differences
between the various sets is generally much greater for
the cross constants. This would seem to indicate
greater likelihood of error in c44, c~2, and c~3, and is apt
to be the case for the beryllium values. As a rough
assessment of the over-all accuracy of the beryllium
constants, it would be reasonable to believe that they
are of the same order of accuracy as the other data in
Table III.

Conhrmation of the general correctness of the stiffness
coefEcients'is revealed in Fig. 3 which gives the theo-
retical c~ plot calculated from the listed values. The
sin'8 plot if compared with Fig. 1 will be seen to ht the
experimental curve quite gratifyingly; the end points
would, of course, have to match, but the fact that the
entire curve is in accord indicates the validity of the
calculations. The c& versus 8 curve demonstrates why a
better extrapolation for the c~~ and c33 constants is
possible with sin'8 as the abscissa. If the former had
been used, the c33 value would have been found to be
somewhat higher.

Recalling that beryllium is relatively more isotropic
for compressional waves than shear waves, we now
compare the ratios crr/cn and 1/2(c, r—c~s)c44 which are
a measure of the degree of anisotropy —being unity for
complete isotropy. Thus

FIG. 4. Variation of body wave velocity with orientation.

which corroborates the observed transmission properties
of polycrystalline beryllium.

Finally, Fig. 4 shows how the body wave velocities
vary with orientation. The compressional velocity curve
is quite Qat as compared to the two shear velocity
curves. Although the shear waves have velocities which
differ as much as approximately 20 percent for propa-
gation along the u axis, the average velocities agree to
within roughly 10 percent.

8. CONCLUSION AND ACKNOWLEDGMENT

The stiffness coefBcients for beryllium have been
evaluated in a manner which necessitated cross checking
of all sorts. It has been shown that the results are in
conformity with a number of experimental facts and
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of the coe%cients for beryllium is certainly unquestion-
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metals.
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Mg 5.65
S.94

Zn 16.1
15.9

Cd 12.1
10.9

Be 30.8

2.32
2.03
4.32
3.23
4.81
3.98—5.8

1.81
2.03
4.37
4.82
4.42
3.75
8.7

Wright
Bridgman
Grueneisen-Goens
8ridgman
Grueneisen-Goens
Bridgman

APPENDIX

(8j

"K.B. ChristoGel, Ann. di Matematica (2) Sr 193 (1877).

The relation for the body wave velocities in crystals has been
derived by ChristoGel. "Solutions of the cubic equation

C'—I1C'+INC —I3=0
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define the compressional and two shear velocities. Il, I2 and I3
are the invariants

Il= kll+k22+k33
I2 kllk22+k22k33+kllk33 (k12 +k23 +k13 )
l3—kl]k22k33+2kl2k13k23 —(k12 k33+ k13 k22+ k23 k11) .

For the Voigt classes 21—27, the c;q~s are
Cll=C22) C23=C13) C44=C33

C66= 5(C11 C12)

with all other stiffness coeKcients but c33 zero. The k's are then

the direction of wave propagation. Making the substitutions

a = cosy sin8
P= siny sin8
y= cos8

the k's can be written as

kll = pA+B cos2y j sin'8+c44 cos'8
k22= I A+B sin2yj sin'8+c44 cos28

k33—c44 sin'8+c33 cos 8
k12——B cosy siny sin'8
k13 (c13+c44) cosy cos8 sin8
k23 (c13+c44) siny cos8 sin8,

(12)

( '+P'/2) — (0'/2)+ A'
k22= Cl1(a /2+0') —C12(a'/2}+C44P2
k33= C44(~2+P')+C33y2
k12= $(C11+C12)O.P
kg3= (C13+C44)o.y
k23 (C13+C44)PP)

where a, P, and y are the direction cosines for the angles between
the direction of wave propagation and the orthogonal axes
corresponding to the direction L001), $120), and L100j in the
hexagonal system.

Solution of Eq. (1) at this point looks hopeless. If we transform
(11) to Eulerian angles, it can be shown that the invariants will
not contain the azimuthal angle, and that, therefore, the roots of
(8) will only contain the angle between the hexagonal axis and

where
A = g(C1], C12) t B= y(C11+C12) ~

Using relations (13) in (9) one has

Jl = 2A sin'8+B(cos y+sin y)+2c44 cos 8+c44 sin28+c33 cos 8 j
E2 = (sin48) pA'+A B+(B'sin'y cos'y) )+c44 cos'8

+(2A+B)c44 cos'8 sin'8+ (c44 sin28+c33 cos'8)
)& $2C44 cos'8+(2A+B) sin'8j —(B' sin'8 cos y sin2y)

+(c13+c44) cos 8 sin 8; {14)
I3 = ((c44 sin'8+c33 cos'8) t

B' sin'8 sin2y cos'y+ ~ ~ g)+ ~

+(2(c13+c44)2Bcos'8 sin'8 cos2y sin')
—((c44 sin'8+c33 cos'8) B2 sin'8 cos'y sin y)—((c13+c44)' cos'8 sin28t'2B sin'8 sin2y cos'y+ ~ ~ .j), (15)

where the terms in ( ) cancel, eliminating the y terms. Relations
(5.2) and (5.3) follow directly as the solutions of Kq. (8).


