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Theory of impurity Scattering in Semiconductors
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Experiments by Lark-Horovitz and collaborators on the Hall effect and resistivity of germanium semi-
conductors have shown that the simple theory of lattice scattering alone cannot explain the temperature
dependence of the resistivity. Another probable source of resistance is scattering by ionized impurity
centers. This resistance can be calculated by using the Rutherford scattering formula. Evaluation of the
collision terms in the Lorentz-Boltzmann equation of state is made by assuming that scattering of an
electron by one ion is approximately independent of all other ions. This results in a resistivity given by
(in ohm cm):

p=2. 11)&10&~T & lnI1+36z d (kT)me I,
where d is half the average distance between impurity ions and tc the dielectric constant of the semiconductor.

q XPKRIMENTS on the electrical properties of
~ germanium semiconductors yield curves for re-

sistivity as a function of temperature which cannot be
explained by the theory of lattice scattering alone. The
temperature behavior of the mobility indicates the
existence of another scattering mechanism, especially
at low temperatures. ' It was pointed out by Lark-
Horovitzf. that another obvious source of resistance is
scattering by the ionized impurity centers. This contri-
bution to the resistivity is calculated here. Due to their
relatively small density, the conduction electrons in a
semiconductor obey Maxwell-Boltzmann statistics.
Since the electrons have thermal energies and corre-
spondingly large wave-lengths, their motion can be
considered free and their scattering by the impurity
ions is given by the Rutherford formula. The problem
is then one of calculating the resistivity arising from
Rutherford scattering of electrons (or holes) by a
random distribution of impurity ions.

The system of free electrons in a semiconductor acted
upon by a constant external field is in a state of dynamic
equilibrium when a steady current is flowing. This
implies that the number of particles per unit volume of
phase space remains constant in time. From this condi-
tion it is possible to derive the form of the distribution
function when there is an applied field by following
the classical development of Lorentz. '

Consider a small volume of phase space d~ around

x, y, s, ii„ iI„, i;,. Then f(x, y, s, v, ii„, ri,)dr is the number
of particles in d7 at time t. There are two ways in

which this number may change: by acceleration by the
electric field and by collisions. In a homogeneous iso-
tropic medium, with uniform field E, applied in the "
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direction, the rate of change due to the field is given by

(Bfq E,e Bf

tati „;„m as,
'

where BfjBv, is to be evaluated in the particular volume
of phase space under consideration. The rate of change
due to collision is given by:

(itf/~t) collision (2)
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or, using (1) and (2):

E„e
=6—c.

st Bv,
(4)

The calculation of the collision term is simplified by
assuming (1) infinite mass for the scattering center, (2)
perfectly elastic collisions, and (3) that scattering of an
electron by one ion can be treated to a first approxima-
tion as independent of all other ions. As a result of the
second assumption, only the direction of the electron
velocity changes in a collision. It is convenient to
introduce the spherical coordinates v, 8, y instead of
v, v„, v, . According to the third assumption, the electron
is scattered by one ion at a time, i.e., by the one to
which it is closest. If 2d is the average distance between
nearest neighbor impurity ions, then, to this approxi-
mation, an electron is scattered by a particular ion
only when it comes within distance d of that ion. As a
result, one can express the number of electrons scattered
out of unit volume of df in unit time into the solid

3 Reference 2, p. 268.

where b represents the number of particles entering a
unit volume of dr in unit time as a result of collisions
and a represents the corresponding number leaving in
a similar manner. In the steady state:
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8' —8= (8' —8); = 2 arc tanZe'/(emv'd) (6)

This gives the lower limit for integration over O'. Since
this formula and the Rutherford scattering cross section
depend only on the change of direction or 0' —0, it is
possible to choose axes to set 0 equal to O'. The expres-
sion for a is then:

vr 2n

= 7 )I I f(, 8, ) (8')dQ'.
~ =ft min

The term b is evaluated in much the same manner as a.
The final result for b —a is:

2'
b a=tv ~ — „t Cf(v~8~&)

&' =6'min

f(v, 0, pp)]odQ—'. (8)

When substituted in (4) this gives the integral equation:

E,ep Bf q

m Eau, &
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=tv I {f(v, 8', tp') —f(v, 0, pp)]edQ'. (9)
=~ min

The form for the solution of this equation used by
Lorentz and others in conductivity problems is sug-
gested by physical considerations. The effect of applying
the Geld is to superimpose on the random thermal
motion a small net drift of electrons in the direction
opposite to the field (in the field direction for conduction
by holes). This suggests for the new distribution
function the expression:

f=f„—v,x(v) =jp —v cos8x(v), (10)

angle dQ' at 8', q' as:

f(v, 8, qr)Xn(8, 8')vdQ',

where X is the number of impurity ions per cm', a(8, 8')
the Rutherford scattering cross section, ~ the relative
velocity of the electron and the scattering center (which,
by the first assumption, is just the electron velocity).
The term a is the integral of the above expression over
8', y'. From the previous considerations, however, it is
apparent that the integration is not to be carried out
over all O'. The limitation on impact parameter is
equivalent to a limitation on 8' which can be expressed
by the relationship:

tan{ (8' 8)/—2]=Ze'/(Itmv'13), (5)

where K is the dielectric constant of the medium and P
the impact parameter, For the largest possible impact
parameter, d:

n being the number of conduction electrons per cm'
and x(v) a function to be determined.

Since the additive term is much smaller than fp, it
can be neglected in evaluating (Bf/Bv, ) at v, 0,
Integration of b —a is completely straightforward. From
Eq. (9) one obtains the following expression for x:

K m"-v'AE, exp( —mv'/2kT)
X(v) =

x.Ve'kT lnG
(12)

where
G= $+ K2m2v4d2e '. (13)

From x(v) either the mean free path for this type of
scattering or the resistivity can be obtained simply. To
obtain the former, one uses 2

which gives
x(v) = (l/v)eE. L(Bfp)/(8e)]

l (v) = ~'m v4/7rEe4 lnG.

(14)

(15)

To obtain the resistivity, we use:4

2x'm'A t" v' exp( —mv'/2kT)dv
0'=

3Ne'kT~, =p 1 (n1+»' 'm ' vde ')

This integral converges. Since the logarithm is a slowly
varying function, a good approximation to the value
of the integral can be obtained by substituting for the
logarithm its value at the maximum of the function in
the numerator. This maximum occurs at

v'= 6kT/m. (18)

The simpliGed integral is readily evaluated. This yields
a resistivity (in ohm cm) (all constants in c.g.s. units):

p=9X10"7rte'm&2 "'Ir '(kT) *

Xln{1+36~'d'(kT)'e 4}. (19)

When there is no intrinsic* conductivity, n is equal to
lV, the number of ionized impurity centers and hence E
and ts do not explicitly appear in Eq. (19). So the
dependence on the density of impurity centers occurs
only in the logarithmic term, through the factor d'.

Generally the temperature behavior of the resistivity
due to impurity scattering is more strongly influenced
by the T ' in Eq. (19) than by the T' term in the
logarithm, and hence this resistivity rises as the temper-
ature decreases. This increase is due to the decrease of
mean electron velocity with drop in T and the conse-
quent increase in the scattering effect of the impurity

j = a F,= —e '

I v'x cos'8' sin8'dvd8'dy' (16)..=o e'=o" ~'=o

From (16), after integration over 8', rp', one gets

where 4 Reference 2, p. 272.
*Observed at higher temperature, due to electrons in the

fp= A exp( mvs/2kT); A =—N(m/2trkT)t, (11) conduction band equal in number to the holes in the full band.
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ions. On the other hand, for an impurity semiconductor,
the resistivity due to lattice scattering generally de-
creases with decreasing temperature because of the 2
dependence of the mean free path. ' Hence, the im-

~A. Sommerfeld and H. Bethe, IJandblch der Physik XXIU
(1933), Vol. 12, p. 560.

portance of the impurity ion scattering resistivity in

determining total resistivity increases as temperature
decreases. '
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The pulsed ultrasonic method has been applied to the determi-
nation of the stiffness coefFicients for beryllium. The constants
&11=30.8)(10" dynes/cm', C33=35.7 were evaluated from com-
pressional wave velocities in single crystals by extrapolating
a plot of the effective stiffness coefBcient eersls sins8 (8 being the
angle between the hexagonal axis and the direction of wave
propagation) to the points H=s/2 and 0. The values c12= —5.8,
c44=21.0 were derived from an analysis relating the average
effective stiffness stiffness coefEcients for compressional and shear
waves with the shear modulus and Lame's constant. The latter
data Sere calculated from measurements of longitudinal and
transverse body wave velocities in polycrystalline metal. To find

the coefficient cia=0.87, the established values for the other
constants were employed in the general relation for the effective
stiffness coefFicient of the form Ci=f(c;q s, 8).

Several criteria have been used to assess the validity of the c;q
data: (1) The ratio of c»/cs3 is in accord with the c/a ratio for
the hexagonal close-packed structure of beryllium; (2) the com-
pressional and shear wave anisotropy factors of c»/c»=1. 16
and c44/$(c» —c») =1.68, respectively are in harmony with the
observed transmission properties of polycrystalline beryllium;
and (3) the experimental and theoretical curves for the directional
variation of the effective compressional stiffness coefEcient agree
quite well.

1. INTRODUCTION

~ 'HK literature contains the stiGness coefBcients of
only three hexagonal metals, these being mag-

nesium, zinc, and cadmium. ' Some recent work on the
preparation of large beryllium crystals has made avail-
able several adequate-sized single crystals of beryllium
for ultrasonic velocity measurements from which the
c;I, constants were determined. '

It was found that essentially all of the crystal speci-
mens were so oriented that measurements along ideal
directions were virtually precluded. This condition
eliminated any hope of obtaining the best possible
accuracy, and, therefore, redetermination would be
warranted when better crystals could be had. Never-
theless, the values for the c,~ s of beryllium are deter-
minable to the order of accuracy common to the other
hexagonal metals.

The method employed for evaluating the stiGness
coefKicients of bery11ium is unique and has not been
reported previously. It is based upon the following
experimental data:

(1) Compressional and shear wave velocities in
polycrystalline metal.

(2) Compressional wave velocities in single crystal
*This paper is based on work performed at the Metallurgical
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specimens having their crystallographic axes diGerently
oriented with respect to the direction of propagation.
Deriving the coefFicients from this information requires
the conditions, (1) the crystal belongs to classes 21—27
of Voigt s designation, thus having five independent
constants, (2) the crystal is not too anisotropic.

The first of these conditions permits one to consider-
ably simplify the expressions for the various wave
velocities the functions e=f(n, P, y, c,q s, p) can be
reduced to v =F(e, c,~ „p) where e, the angle between
the hexagonal axis and the direction of wave propaga-
tion, takes the place of the three direction cosines n, P,
and y. The second condition makes possible certain
extrapolation and approximations which will be de-
scribed in detail. If the crystal is too anisotropic it
becomes very difIicult to obtain velocity data for poly-
crystalline specimens because of the poor multiple echo
patterns. ' Beryllium exhibited excellent patterns, so it
appeared reasonable at the outset to infer that it was
not a highly anisotropic crystal. The significance of
this feature will be accounted for later.

2. EXPERIMENTAL ASPECTS

Apparatus for the pulsed-ultrasonic measurements
was of the nature already described in a number of

3 H. E. Mueller (private communication).
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