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It should be added that the discrepancy was calcu-
lated using the value of up/wp measured by Bloch,
Levinthal, and Packard, who found

K= up/up=0.3070126 +-0.0000021. (5)

However, Bitter and Siegbahn, measuring the same
ratio, have found, respectively,

K=0.3070210=+0.0000050 (6)
and
K =0.3070183 4-0.0000015. O]

The result (7) is larger than (5) by about two parts
in one hundred thousand, and would make the dis-
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crepancy (using Nafe and Nelson’s determination of the
h.f.s.) 1.5X 104, which would be hard to account for on
the basis of this calculation alone.

In conclusion, then, we are not yet in a position to
estimate structural effects. In order to do so, we need,
on the one hand, a more accurate value for the deuteron-
proton moment ratio, and on the other a better knowl-
edge of the deuteron S state wave function.
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The average excitation potential of the 2s state of hydrogen which occurs in the Lamb shift, is calculated
numerically and found to be 16.6464-0.007 Ry. This gives a theoretical value of 1051.414-0.15 megacycles
for the Lamb shift, compared with the latest experimental value of 1062+35. It is not known whether the
discrepancy of 10 Mc can be explained by relativistic effects. Simple analytical approximations are discussed
which make plausible the high value of the average excitation potential and give a good approximate value

for it.

N this paper, we are reporting two independent

numerical calculations of the average excitation
potential of the hydrogen atom which occurs in the
formula for the Lamb shift.! The first calculation was
done in 1947 by one of us (J.R.S.) with the help of
Miss Steward, the second in 1949 by L.M.B.

I

The formula for the Lamb shift of a hydrogen level
1o, ! has been derived by many authors® and is for
s states
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1W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947);
75, 1325 (1949).

2N. H. Kroll and W. E. Lamb, Phys. Rev. 75, 388 (1949);
J. B. French and V. F. Weisskopf, Phys. Rev. 75, 1240 (1949);
R. P. Feynman, Phys. Rev. 74, 1430 (1948), and correction in
Phys. Rev. 76, 769 (1949), footnote 13; J. Schwinger, Phys. Rev.
76, 790 (1949).
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c;=1/(0+1) for j=I+1%
aj=—1/1 > (2)

for j=I—3.
In these formulas, Z is the nuclear charge, 7, the
principal and / the orbital quantum number, a=¢?/kc¢
the fine structure constant, Ry the Rydberg energy,
w=mc* and k, the average excitation energy which we
wish to calculate.
This average energy is defined by?

0( 0’
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3H. A. Bethe, Phys. Rev. 72, 339 (1947), quoted as 4 in the
following. The deﬁmtmn is in Eq (6).
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TaBLE I. Oscillator strengths for hydrogen.

Transitions from 2s 2p
to np ns nd
n=1 — —0.138732 —
3 0.43486 0.01359 0.69576
4 0.10276 0.00305 0.12180
5 0.04193 0.00121 0.04437
large 3.664n3 0.102n3 3.257Tn8

where (no}| p2|n) denotes the matrix element of an
arbitrary momentum component p, corresponding to
the transition from the “initial” state no, /, of energy
E,, to the final state %, of energy E,. Note that on the
left-hand side the matrix element from the initial state
1=0 is involved, regardless of the value of ! for which
ko(no, 1) is to be calculated: This definition is necessary
because the sum on the left would vanish (see 4) if we
used /540 for the initial state. For s states, then, & is
actually the geometric average of the excitation energy
E.—E,, with the weighting factor p.*(E.—E,); for
other states, ko is defined in as close analogy to the s
states as possible. The denominator Ry in the argu-
ments of the logarithms could be omitted for s states;
for 120, it serves to make the argument dimensionless
and appears again in Eq. (2); any other constant
energy would serve as well, but Ry is most convenient.

It is convenient to introduce the oscillator strength f
by putting

| (nol| p2| ) |2 =4m(En— Eo)f (nol, n) (4)
and to use the energy change in Rydberg units,
v=(E,— Eg)/Ry. 3)

Then (3) becomes
In(ko(no, 1)/Ry)2_f(1e0, n)>=3_f(no, n)v* Inv. (6)

The left-hand side may be evaluated by sum rules
(reference 3, Egs. (9) and (10)) and gives

2 v(no, 0, n)=16/(3n."). (M
For our case, no=2, therefore
In(ko(2, 1)/Ry)=3_51(2, 1, n)»* Inv. (8)

To evaluate this expression, we need the oscillator
strengths for hydrogen. For transitions to the discrete
spectrum, we have used the formula given by Bethe,*
(Eq. (41.4)) and re-evaluated his Table 16 in which
some numerical mistakes were found, some of which
have been previously pointed out by other authors.
The corrected values are given in Table I. For large
n(=6), we found it sufficient to use

2(2s, n)=3%1(2s, n)»*=0.3436n*(14+3n72) (8a)
2(2p, n)=3%1(2p, n)»*=0.3149n73(1+4.24n%). (8b)

‘H. A. Bethe, Handbuch der Physik 24/1 (Verlag Julius
Springer, Berlin, 1933), p. 273.
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As is seen from Table II, the discrete final states »
contribute only about 2 percent of the sum in (8) for
the 2s state. For the 2p state, their absolute contribution
is similar while in this case the continuum gives an
almost negligible contribution. In either case, no great
numerical accuracy is required for the discrete states.

For transitions to the continuum, we define the
quasi-principal quantum number # by

E.=+Ry/n%. )

Then the oscillator strength for transitions from the 2s
state into an interval dv of the continuous spectrum is

df(2s, n)=4vdv((4/3)+v7)

Xexp(—4n arc cot(n/2))/(1—e2™"). (10)

The summation over # in (8) should be replaced by an
integration over dv. For transitions from the 2p state
to the continuous spectrum

df(2p, n)= (8/9)v—*dv(3+v")

Xexp(—4n arc cot(n/2))/(1—e2™). (11)

These formulas may be obtained from the expressions
for the photoelectric absorption coefficient (reference 4,
Eqs. (47.19), (47.20)), using the general relation be-
tween absorption coefficient and oscillator strength,

7= Na2n2(h/mc)(df/dE), (12)

where N is the number of atoms per cm?, z the number
of electrons in the given shell,® and df/dE the oscillator
strength per unit energy interval, i.e. (1/Ry)(df/dv).
It should be noted that Eq. (47.20) of reference 4, like
the original formula of Stobbe,® is too large” by a factor
of 2; this mistake has been corrected in (11).

In Fig. 1 we have plotted the expression

g=3v'df/dv (13)
/
/
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F1G. 1. The weight functions for the determination of
the average excitation energy.

® Note that », in reference 4 is {Ry.

6 M. Stobbe, Ann. d. Physik 7, 661 (1930).

7 This was pointed out to one of the authors (H.A.B.) many
years ago. It is most easily verified by comparing the oscillator
strength df/dv just above and just below the energy E,=0.
It can also be verified by checking the sum rule analogous.to (7),
2f(2p, n)»?*=0, see Table II.
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vs. logy, for 2s and 2p. The integral under the 2s curve,
after addition of the discrete spectrum, gives unity
(Eq. (7)). The smallness of g for the 2p state is apparent.
For the numerical integration, we have used the
integration variable » instead of v, inserting

y=1+41/n2. (14)

It is easily seen that the integrand in (7) then behaves
as dn for small #, and that in (8) as dn logn. Because
of the singularity of logr at #=0, numerical integration
is not feasible. However, it is easy to expand the

TaBLE II. Results of numerical integration.

2s State 2p State
Earlier Later Later
Integration Integration
Contribution to S:
Discrete 0.02645 0.02645 —0.081366
Continuous 0.9736 0.97340 +0.081336
Total 1.00005 0.99985 —0.000030
Contribution to (8)
Discrete —0.0465 —0.04649 —0.030669
Continuous 2.8593 2.85840 +0.000685
Total 2.8128 2.81191 —0.02998
Total/S 2.8127 2.81233
Adopted In(ko/Ry) 2.812140.0004 —0.03004:0.0002
ko/Ry 16.646 4-0.007 0.9704+0.0002

integrand (apart from the log) into a power series in 7,
which permits analytical integration. This procedure
was used for # up to 0.05, while from there to 0.1 it
was used as a check on the numerical work : The results
agreed within 0.00005 which is beyond the accuracy
attempted (0.0001).

The numerical integration was done by Simpson’s
rule, using in the final calculation for the s state
intervals® as follows:

interval 0.0125
interval 0.025
interval 0.05.

from #=0.05 to 0.1,
from n=0.1 to 0.2,
from n=0.2 tol,

From n=1 to «, we used s=1/x as a variable, choosing
intervals of 0.05 for s. The fourth differences of the
integrand were of the order of 1 percent of the integrand
itself (usually less) so that the error in the result may
be expected to be about 1 part in 10,000. The earlier
calculation was done with twice the intervals; the
results of the two calculations agree within 0.0009 unit,
after correction of a numerical mistake of 0.0031 unit
in the earlier integration, and of 0.0007 unit in the
discrete contribution, both of which were subsequently
discovered. The error in Simpson’s rule is roughly
proportional to the fourth power of the interval used,
so that the result of the second calculation should be

8 The integrand was calculated at the intervals % stated. The
integral from x to x+2k is then $A[ f(x)+4f(x+h)+f(x+2k)].
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high by 0.00006, an error considerably smaller than the
rough estimate of 1 part in 10,000 from the fourth
differences. As a check, the sum in (8) without the
logarithmic factor was also calculated (denoted by S);
according to (7), this should give unity for 2s and zero
for 2p. The deviation of 1.5 parts in 10,000 (Table II)
for the s state indicates the accuracy attained; for the
p state, the error is one-fifth of this. One can be doubtful
whether it is more accurate to use the result (8) as it
stands, or to divide it by the numerically calculated S;
both results are given in Table II, and their mean is
used as the final result. The probable error is taken as
the whole difference between the two results; the main
source of error is presumably in evaluation of the
integrand (or of the discrete contribution) since the
error from Simpson’s rule should be less than 0.0001.
The probable error for the 2p state was estimated from
the difference of the earlier and the later calculation
which was 0.0002.

II

These results can now be inserted into the Lamb
effect formulas (1), (2). In the numerical factor in
front, we should insert the Rydberg constant for
hydrogen, rather than for infinite mass. This can be
seen from the derivation;? the velocity matrix elements
in A Eq. (6) are the same whether the reduced mass
or the full mass is used for the electron whereas the
energy differences E,—E, are proportional to the
electron mass and thus to Ryg. This can also be traced
through 4 Egs. (8) to (11). There is some doubt
whether to use the reduced mass of the electron also in
p=mc? in (1); we shall do so which may cause an error
of 1/1840=0.0005 in the value of the parenthesis in (1).
A larger uncertainty exists because of the neglect of
relativistic corrections in (1) (see below).

For a we take the value deduced from hyperfine
structure®

1/a=137.041+0.005. (15)

Then the constant factor in (1), the “Lamb constant,”
is, when expressed in frequency units:

(of/3m)Ry =135.549+0.015 megacycles.  (16)

The uncertainty arises entirely from that of «. The
first term in the parenthesis in (1) is

In(u/ko(25)) =10.5336—2.8121=7.721540.0006. (17)

The error includes 0.0004 from Table II, and 0.0005
from the questionable use of the reduced mass in p.
The value quoted by French and Weisskopf, 7.6906,
referred to the difference

In(u/ko(25)) — In(Ry/ko(2p)) = 7.7215—0.0295 = 7.6920,

according to our present calculation, the small difference
between this and 7.6906 being due to numerical mis-

°H. A. Bethe and C. Longmire, Phys. Rev. 75, 306 (1949).
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takes in our earlier calculation. The results are given in
Table II1. The error of the shift of 2s includes 0.11 Mc
from the uncertainty of the Lamb constant (16), i.e.
mostly of &, and 0.08 Mc from that of In(u/ko(2s)), of
which only 0.05;5 arises from the numerical calculation.
For the p levels, the uncertainty is all due to the
calculation of ko(2p).

The measured Lamb shift is the difference between
the shifts of 2s and 2p; state, viz.

L(2s)— L(2p;)=1051.410.15 megacycles (18)

in agreement with the calculated values previously
given by French and Weisskopf, and Lamb and Kroll.2
The latest published experimental value!? is

L(experimental)=106245 Mec. (19)

The discrepancy between (18) and (19) is twice the
experimental error, which probably has been generously
estimated. It is possible that this discrepancy is due to
the neglect of relativistic corrections in the derivation
of formula (1). These may not be negligible because
the wave function of the hydrogen ground state has
large Fourier components of high wave number. A rough
estimate' shows that these corrections are of relative
order a, but without the logarithmic factor which gives
the main contribution to (1). Thus the rough estimate
would give a correction of order 1 Mc, too small to
explain the discrepancy. Moreover, superficial reasoning
would lead one to expect a decrease of the theoretical
value. However, an explicit calculation of the relativistic
corrections is now very urgent and may give a different
result.

It has often been pointed out that a higher theoretical
result would be obtained if the vacuum polarization
effect were left out of (1), and that this effect can be
separated from the main part of the Lamb effect in a
relativistically invariant way. The vacuum polarization
is represented by the term —1% in (1) and therefore
contributes an amount

—27.110 Mc (20)

to the Lamb effect. If it were excluded, the result would
be 16 Mc higher than the experimental value so that
the agreement is not improved.

m

In this section, we shall try to give a qualitative
understanding of the very large result, 16.646 Ry, which
we found for the average excitation potential of the
2s state. As was pointed out, Ink, is the average of
In(E,— E,) with the weight factor »*f. If we take the
average of E,— E, itself, rather than of its logarithm,
with the same weight factor v*f, we get infinity. This

0 R. C. Retherford and W. E. Lamb, Phys. Rev. 75, 1325
(1949).
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TABLE III. Lamb shifts.

28 2p1/2 2ps2
First term in parenthesis 7.7215+0.0006  +0.03004-0.0002  +0.0300=0.0002
Total parenthesis 7.6707£0.0006  —0.095040.0002  +-0.0925--0.0002
Level shift in megacycles  1038.53+0.14 —12.88:0.03 +12.54+0.03

is because we have (neglecting constant factors)

Z (En" EO) V2f~z (En— E0)2 ' pOnzl 2'\'2 I (a V/ax)()ﬂ ‘ 2

e
=@V /%)% 00=3((VV)Hoo= %f—4¢o241rr2dr. (21)

This integral diverges at r=0 as dr/7? if ¥, refers to an
s state. If the angular momentum of the state ¥, is not
zero, the integral is finite. Now since the average of
E,—E, is infinite (for an s state), it is understandable
that the average of In(E,— E,) is large.

Further information can be obtained from the
asymptotic behavior of the oscillator strength f, given
by Eq. (10), for large frequencies; this is, considering
(14):

vidf=(8/3m)v3dv=(16/3m)dn. (22)

This shows that already the average of v*~ (E,— E)}
with the weight factor »%df, is infinite. The small
contribution of the discrete transitions (Table II) is
further evidence.

The most concrete picture is obtained from Fig. 1 in
which $»%df/dv is plotted against logy. The maximum
of the curve is seen to come at »=7 which is reasonably
high, and the curve falls off much more slowly towards
higher than towards lower ». The required average
logk, is simply the center of gravity of the curve of
Fig. 1, and a value of 16.6 for k&, looks entirely reason-
able.

It is easy to obtain simple analytic estimates of Ink,.
This can be done by approximating the exact oscillator
strength (10) by a simpler expression which can be
easily integrated. Since we know already that the high
frequencies are the most important, the simpler expres-
sion must be a close approximation to f at the high
frequency end but need not be so for low frequencies.
The simplest approximation is to set

dG=3vdf= (8/w)dne ", (23)

which agrees with (22) for small #, and to choose ¢ in
such a way that the integral of (23) over all # is unity
as it must be according to (7). This gives

(8/7) f dne-on= (8/ra)=1. (24)
0

Then the average of Iny becomes

In(ko/Ry) =(Inv)= — 2(lnn)= — 2afdne‘“" lnn

=2(Ina+C)=2(In(8/7)+C), (25)
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where C is Euler’s constant. Inserting numerical values,
we get

In(ko/Ry)=3.026, ko=20.6 Ry, (26)
which is slightly larger than the correct values
In(ko/Ry)=2.812, ky=16.65 Ry. (27)

This simple calculation therefore gives the correct order
of magnitude for k.

To get a closer approximation, we consider the
asymptotic behavior of f in more detail. Expanding
(10) in a power series in #, but keeping the power series
in the denominator, one gets

(8/m)dn
T tmnt Gr— 2t -
(8/m)dn
T3 14nt 433wt

dG=3»df

(28)

The exponential in (23) gives instead
(8/m)dn
dGE%;ﬂdf: .
1+ (8/1r)n+327r“2n2+ e
(8/m)dn
14+2.55n43.24m24 -+

(29)

Obviously, this expression falls off too slowly with
increasing #. This error is compensated by a too-rapid
decrease for very large #: Actually, g should behave as
dv~n~3dn for n—co, whereas (23) gives an exponential
decrease. It is therefore understandable that (23) gives
too high a value for the average Ink,.

To improve on the behavior for small #, we choose

(8/m)dn
dG=

B (14an)k+ (30)

and determine the two constants ¢ and & so that the
linear term in # in the denominator of (28) is correctly
given, as well as the integral. The latter condition
requires

ka=8/. 31)
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The former condition gives

(k+Da=m. (32)
The solution is

k=8/(m*—8)=4.279, a=(n*—8)/r=0.5951. (33)

The average of —Inn is then

kadn
—(Inn)=1Ina+ f ———— Inan
(1+an)kt

=Ina+¥(k—1)—¥(0) (34)

where ¥(n) is the logarithmic derivative of the factorial
function, i.e. of I'(r+1) (Jahnke-Emde’s definition).
With our numerical values

In(ko/Ry) = (Inw)= — 2(lnn)=2.7818

ko= 16.148. 35)

This is very close to the correct values (27), and
somewhat smaller. Expansion of (30) for small » gives

(8/m)dn
= 1+ (k+Dan+3(k+ Dka*n*+ - - -
(8/m)dn
- 1+1rn:~m’

(36)

which is rather close to the correct expression (28), even
in the quadratic term. (36) is still above (28) for small
n, so that we might still have expected a too large
result for Inko; it seems that the curve of (30) crosses
the correct curve (10) three times.

These calculations make the large value of the
average excitation potential appear plausible. More-
over, they make it likely that ko is nearly independent
of the principal quantum number: The asymptotic
expression for the oscillator strength for small #,
including terms of relative order #, is independent of #,,
except for a factor #y® which also occurs in the sum
rule (7). Therefore, all the information we used in
determining the constants ¢ and & in (30) is independent
of n9, and the estimate (36) applies to all values of #,.



