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On the Effects of Internal Nuclear Motion on the Hyperfme Structure of Deuterium

FRANcIs Low
Department of Physics, Colgmbia

University,

Eem York, New Fork

(Received October 3, 1949)

The effects of internal nuclear motion on the hyperfine structure of deuterium are investigated, using
Dirac theory for the electron and non-relativistic theory for the nucleus. Although the final result is in fair
agreement with experiment:, theoretical and experimental uncertainties are at present too large to allow any
conclusions to be drawn concerning the possible deviation of nucleon magnetic fields from those of simple
dipoles.

vo/v n= -ep(mn/mzz)'pn/Jlp (2)

should be independent of these eGects, as well as of the
natural constants entering into (1), except for the ratios
Jlo/pp and zm&/ nm, the former of which is known from
the experiments of Bloch, I evinthal, and Packard, 4 of
Bitter, Alpert, Nagle, and Poss' and of Siegbahn and
I indstrom. 6 Here mD and mH are the reduced masses of
the deuterium and hydrogen atoms.

Using the value of pz&/pp given by Bloch, I.evinthal,
and Packard, and that of vn/vn given by Na. fe and
Nelson, one finds:

I. INTRODUCTION

~ 'HE accurate measurement of the hyperfine struc-
ture of hydrogen and deuterium by Nafe and

Nelson' is not in complete agreement with Fermi's
formula 9

hv=gs. /3 (2I+1)/I pppP(0) (1)

where I is the nuclear spin in units of 5, po the Bohr
magneton, p the nuclear magnetic moment and P(0) the
Schrodinger wave function evaluated at the origin.
Although there are slight corrections to vD and vH

arising from the intrinsic electromagnetic moment of
the electron' and from the use of the exact relativistic
wave functions for D and H, their ratio

of p may be estimated from the critical electron mo-
mentum, p., at which the electron energy, E, is equal
to some mean nuclear excitation energy, S"~, and hence
at which the frequencies of the electronic and nuclear
motions are equal; since p, turns out to be greater than
mc we may write

E cp, Wp, p, W~/c.

The distance, p, corresponding to p, is then given by

p I'z/p. bc/W~ = (h/mc) mc'/W~ (4. )

It is obvious, from (4), that d«p«ap. The contribution
to the h.f.s. from inside p must be calculated using a
wave function with the electron centered on the proton;
the contribution from outside will be relatively insen-
sitive to where the electron is centered.

In first approximation, then, the proton h.f.s. will
be una6ected by the deuteron structure; the neutron
moment, however, will appear to the electron as a
moment density distributed around the proton, and
therefore its eBect will nearly cancel when the electron
is in the nucleus. Since the h.f.s. interaction is ~1/r',
equal spherical shells in the atom contribute about
equally up to the atomic radius, and one would expect
a relative correction

ep ———(pv/pn) d/up =+1.82 X 10-' (3)
vn/vzz = (mn/mzz)'po/jjpL1+ (1.7 &0.1)X 10—']. (3)

A. Bohr' has shown that most of this discrepancy can
be accounted for by taking into consideration the
structure of the deuteron. He points out that when the
electron is close to the nucleus it moves rapidly com-
pared to the nuclear motion and will therefore be
bound to the apparently stationary proton rather than
to the deuteron center of mass. This will be a good ap-
proximation inside a distance, p, which is large compared
with the nuclear radius, d=(h'/MWp)», but much
smaller than the atomic radius ao. Here 8'0 is the
binding energy of the deuteron. The order of magnitude

' J. E. Nafe and E. B. Nelson, Phys. Rev. 73, 718 (1948).' E. Fermi, Zeits. f. Physik 60, 320 (1930).' H. M. Foley and P. Kusch, Phys. Rev. ?3, 412 (1948).' Bloch, Levinthal and Packard, Phys. Rev. 72, 1125 (1947).' Bitter, Alpert, Nagle, and Poss, Phys. Rev. 72, 1273 (1947).' K. Siegbahn and G. Lindstrom, Arkiv. f. Physik, Sand 1 NR
6, 193 (1949).

7 A. Bohr, Phys. Rev. 73, 1109 (1948).
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which is in very good agreement with the experimental
result (3). Bohr hnds just this number by neglecting the
range nf the neutron-proton force compared with the
deuteron radius, that is.by taking for the nuclear wave
function p= (e s'~/R), and hence d/2 for the average
distance between nucleons. He points out that since E'p
must actually go to zero at 8=0 the average distance
between nucleons will be increased and therefore e will
be larger, e= ep+e', where e' bep/d and b is the range of
the force. For a square well potential one Gnds exactly
e' = bep/d. Since b/d ,', this is an apprecia—ble correction.

Bohr then suggests that this discrepancy might be
compensated by the deviation of the proton and neutron
magneti fields from simple dipole fields within dis-
tances comparable with the meson wave-length (or the
range b) and shows that this might be expected to lead
to a furt. zer correction e" —bep/d.

It appears, therefore, that the h.f.s. experiment might
yield information on the structure of nucleons. In view

61.
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of this possibility it is of interest to evaluate all effects
which do not depend on the nucleon structure as ac-
curately as possible.

In the 6rst place we would like to have a better
estimate of the average distance between nucleons. In
the second place, Bohr's model essentially ignores
nuclear compared to electron excitation energies in the
region where nuclear structure can inhuence h.f.s. ; this
is equivalent to the inequality d&&p. Actually d is not
very much smaller than p, and Bohr's assumption may
not be sui%ciently accurate for our purpose. It is neces-

sary, then, to investigate in more detail the eGect of the
o6-center Coulomb 6eld on the deuterium wave func-
tion near the nucleus, and to compute the h.f.s. using
this wave function. In order to carry out this program
we will use ordinary erst- and second-order perturbation
theory. It will be convenient to start our calculation
using an unperturbed electronic wave function which is
centered on the proton; this wave function will give
Bohr's result, and would be exact if p/d were sufficiently
large. The relative correction to the neutron spin h.f.s.
arising from the finiteness of p/d is found to be of the
order of magnitude

p.v —pp(d/p) log p/d. (6)

II. THE HAMILTONIAN

Ke start from the Harniltonian

H =H,+H,+HD+H~'+Hp'+H J.',

where H, is the Dirac Hamiltonian of a free electron

H, = cy e+Pmc'-.

H. is the Coulomb proton-electron interaction

II,= —e'/( r+R/2 (.

(2)

HD is the deuteron Hamiltonian

IIn =P'/M+ V(R, P.,). (4)

H~. ', HJ
' and H J.

' are the neutron spin, proton spin and

That of the proton spin, in this order, is zero.
Furthermore, the eGects of the deuteron D state on

the h.f.s. correction must be considered. The spin
moment correction will be smaller, since the neutron
spin in the D state is more likely to be antiparallel than
parallel to the spin in the 5 state. Also, since the
electron will see no nuclear motion while it is inside p,
that part of the normal orbital h.f.s. which comes from
inside p will be missing, giving a relative correction to
the h.f.s. of

pr,~—p/ap sin'co —po(p/d) sin'co, (7)

where sin2cu is the fraction of D state in the deuteron
ground state. Although p&d, we shall see that eL, is still
small because the deuteron has so little orbital angular
momentum.

orbital h.f.s. interactions:

Hp'=ee V'„ Xpp,
I r+R!2I

and

Hg'=ee V'„ Xp,v,
/

r —R/2/

g2
IHJ

V' 0.'

c ~r+R/2~

(6)

(7)

and where r is the position vector of the electron relative
to the deuteron center of mass, p is the momentum con-
jugate to r, a, P are the Dirac sixteen component ma-
trices

(0 ~q (0 1q (0 ic-
e= o' = 0&=

E 0) &1 0)
"

&i 0)
(I 0 ) (1 0 ) (1 0)
LO II —(0 —1) (0 1)

R is the position vector of the neutron relative to the
proton, P is the momentum conjugate to R, M is the
neutron-proton mass, or twice the reduced mass of the
deuteron, P„is the coordinate exchange operator.

We will assume for convenience that the nuclear
potential V may be written V=L1—t+tP, ]V(R).
Furthermore it can be shown that the use of the charge-
exchange operator together with an identical particle
formulation for the proton and neutron leads to the
same results as our present simpler treatment.

We have left out the deuteron center-of-mass kinetic
energy which has been shown by Breit and Meyerott'
to necessitate the use of the reduced masses in I(2) so
long as internal nuclear motion is ignored. They have
shown that the higher order corrections will be of order
m/M(e'/kc)' loge'/Itc which we may safely ignore. If,
therefore, we imagine the problem solved in zero order
without internal nuclear motion (as by Breit and
Meyerott), it is evident that the wave function found
may be split up into our wave function (with the true
electron mass) plus a wave function which gives cor-
rections of order m/M. The e8ect on our calculation of
using both wave functions instead of the 6rst will be
of order m/3E(d/ap) which is negligible. Finally, reduced
mass corrections due speci6cally to the internal nuclear
motion are included in the Hamiltonian (1) and can be
shown to have very small eGects.

The interaction of an electron with a vector potential
A is

—c(—~e~/c)e A=en A.

The vector potential of a fixed moment, p, may be
taken as

A„(r)=V'„(1/~ r —R~)Xtp,

s G. Breit and E. R. Meyerott, Phys. Rev. 72, 1023 (1947).
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where R is the position of the moment, x that of the
electron. At distances of the order h/Mc from the
moment this potential must of course be modiled
because of the nucleon recoil. This modi6cation would
lead to a correction of order h/Mcao where ce is the
atomic radius. Since a calculation of eGects taking place
at a distance h/Mc from the nucleon would involve a
relativistic theory of the nucleon, we shall not attempt
to compute this correction.

Ke therefore take for the spin part of the h.f.s.
interaction:

or
U ~ip R/2k

(2)

(3)

(4)

(5)

(6)

U 'H, U=H„

U 'H, U= —e/r,

U 'Hp'U=en '(1/r) Xyp,

U 'HA'U-=en V'„(1/fr —R f) Xpn, ,

U 'Hz'U= —e%(v', n/r),(~)
where

H~'=ee V'„ —Xpg~,
fr+R/2f

L is obviously unitary in the space of R and r. H will
be modified as follows:

H~ =ee.V'„ Xp&.
fr —R/2f

(6)

v'= U 'vU=U 'f-P/M+i/2h(VR R—V)5U
=P/M+y/2M+i/hV„Re'& a'"
=v+p/2M —1/h'V„Rp R+ (7)

The vector potential of the nuclear current is taken
to be

Ac(r) = —(e/c) v/ fr —R f, (9)

where R is the position vector of the source and —v

its velocity. ' "Inour case, Az, = —(e/c)v/f r+R/2
f

and

The second term of (7) involves no nuclear coor-
dinates, and hence will not contribute to the h.f.s. The
third term of (7) may also be omitted; in 6rst-order it
does not contribute to the h.f.s., in second-order it is
zero, and in third-order it is negligibly small.

This leaves v'= v and

v=(i/2h)(HnR —RHn) =R/2. (10) U 'Hz'U= —(e'/c)v n/r.

Naturally, vWP/M if exchange forces are present.
However, if the vector and scalar potentials are to
satisfy the Lorentz condition, and therefore the field
strengths Maxwell's equations, it is necessary to take v
instead of P/M as the source of A. We are thus led to

Finally,

U 'HnU=U —'P'/MU+U '—VU,
-

U 'P'/MU=P'/M+ p P/M+ p'/4M
U 'VU=(V —V„)+V„e'&

=V+i/hV„p R 1/2h'V—„(p R)'+

Hy.
' —(e'/2c)——

fr+R/2f

e (r+R/2)v (r+R/2)

fr+R/2f'

where the second term arises since we are dealing, not
with an electron or a proton in a fixed 6eld but with an
electron-proton interaction; however, since it can
easily be shown to diGer from the 6rst by e dot a
gradient, we may for our purposes simply take

H'= —(e'/c)e v/f r+R/2 f. (7)

Finally, since v and R do not commute, (7) must be
symmetrized.

III. TRANSFORMATION TO A COORDINATE SYSTEM
CENTERED ON THE PROTON

It is convenient, as has already been mentioned, to
start from an unperturbed wave function which centers
the electron on the proton. This can most easily be
done by applying the transformation U, where

Uf(r, R)=f(r+R/2, R)

'A. J. F. Siegert, Phys. Rev. 52, 787 (1937).
'o W. E, Lamb, Jr. and L. I. Schi6, Phys. Rev. 54, 651 (1938).
1 R. G. Sachs, Phys. Rev. 74, 433 (1948).

where
U 'Hg)U=HD+H'+H",

H'=p v, H"= p'/4M —1/2h'V„(y R)'. (9)

Collecting our results (2)—(9), we may rewrite the
transformed Hamiltonian:

H =H,+H,+HD+H'+H" +Hp'+H~'+HI, ',

where

H, =cp e+Pmc', H, = e'/r, Hn=P'/M+V, —
H'=p v, H"=p'/4M 1/2h'V„(p. R)'—,

Hp =ee V(1/r)Xyp HN =ee ~(1/fr —R f)Xp", '(10)

HL,
' (e'/c)(n v/r). —— —

The significance of most of these terms is obvious.
H" is a reduced mass correction due to the centering of
the electron on the proton rather than on the deuteron.
The term of principal interest is H' which expresses the
tendency of the nuclear motion to center the electron
on the deuteron.

We note that the expectation of the orbital h.f.s.
interaction is zero, i.e., (Hz) =0; this is not surprising,
since in a coordinate system in which the proton is at
rest there is no nuclear current and hence no magnetic
moment due to the motion of charges.

Before proceeding to our calculation we note that
since the h.f.s. coupling for an electron 5 state is of the
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form

one must have
8'=ae I

The nuclear wave function consists of an 5 and a D
term:

~'o= 4's+@'L

hW=W(F=I+ ', ) -W—(F=I i)
=2I+1/I W(F=I+~p)

and hence it is only necessary to calculate the expecta-
tion of t/t/' for an eigenstate of F=I+2. The simplest
such eigenstate is the one for which mal=+I and
m~=+ —,'. Since we shall put our results in the form
of relative corrections we may leave out the factor
2I+ 1/I.

(H&') may then be divided into three parts: an S
term, a D term and a cross term. We will consider hrst
the S term.

4 s = cosco/(4pr) «L«t s(R)/R jx,
where x is a spin function and

@ '(R)dR=1.
~o

If we call

Il= (4„V,(1/~ r —&~ ) XpÃ&'. )

=cos'co/4prV, dR@,'(R) ~ dQs/~ r —R~ Xt«nr (2)(& ')=( V(1/)X««)
=A'pp (1)

and make use of the formulaswhere

IV. EVALUATION OF THE PROTON SPIN H.F.S. FOR
THE UNPERTURBED WAVE FUNCTIONS

We have, from III (10):

A= (P„enX V(1/r)Pp).

Making use of the approximation

Pp ——(1+«r 1«/2mc)u(0)«i, (r)

1/~ r—R~ =P R'/r'+'P~(c os') R(r
L,=O

(3)

where

and u(0) = 0
0
0

we have

e r h/mc)
~u(O)p, (r),

2r ap

0.(r) =0(0)e "'",
0

= 1
for spin up, u(0)= 0 for spin down

0

=P r' R/' +P~( coys) R)r
L,=O

r dO sinOd4

J
-=4~/'r R&r

/r —Rf ~ /r —R/ (5)

=4e/R R) rJ

l

P( cps) =47r/2t+1 P Y,.*(t«, q«) I',„(0,C'), (4)

where cosy= r. R/rR, and the V~„are normalized
spherical harmonics, then

andA= e'/Ac(u(0)«t, (r), (e X r/r) XV'(1/r) u(0)$, (r))
=87r/3upg(0)e, 1 t"

B= cos'~V—
ir ~p

(3) dR+ 0,-'/R" s Xt«s
J„and

(6)(ap') =8~/3P(0) u ( «ppe). 1
= cos'a&V — @,-"(R)dRX t«v,

r ~o

(e.««p) =up(1 —-', sin'(o), ) 1l
~

V-
) @ (R)dR.

rl &p
where sin'co is the D state probability.

It is understood that there are corrections of order
(ep/hc)' to (4) which arise from the approximation (2);
however they will cancel in the deuterium-hydrogen
ratio and be negligible in all higher order terms. The
reduced mass corrections to (4) we have already dis-
cussed in II.

we may therefore write, using IV (3):
(H g '), = 8pr/3 cos'ppup(e t«~), «t '(0) 2/ap

e P~ "dr P,P(R)dR (7)
0 Jo

This is Fermi's formula for the h.f.s. of the proton
moment in deuterium. (««p) includes the D state cor-
rection to the effective proton moment in the deuteron: which is of the same form as A in IV except that V(1/r)

is replaced by

V. EVALUATION OF THE NEUTRON SPIN H.F.S. FOR
THE UNPERTURBED WAVE FUNCTIONS

We have, again from III (10):
(H~')=(ee V, (1/~ r—R~) Xt«s).

=8pr/3 cos'co«t P(0)pp(e tp~),

00

X 1=-2/a, ) R«t, '(R)dR . (8)
le
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The erst term in the bracket evidently gives the
Fermi formula for the neutron spin h.f.s. without the
D state correction to the e6ective neutron moment.
The second term, to which we shall return later, is
Bohr's correction. All higher terms are negligible.

%e consider next the D state expectation

4'n —sinpig&(R)/RYn(&ii), JI @ii'(R)dR= 1,
0

where

From the second terms in (8) and (10) a,nd from (11)
and (13) we find a relative correction to the h.f.s. of

p= —iiir/iln 2/ap cos'pi R@s'dR
f}

—5/4ap sin"-co
J

I RgD"-dR
0

—(v2/4ap cospi since t R/D4 sdR (14)
"o

Yn=Sipxi= t (2/20)'xi Ypp

+(6/20) xp Y„+(12/20) x i Ypp])

or

imp'/Jln ' d/apLcos'pi(2nR)e —5/4»n'pi(aR)n
—W2/4 cospp sin pp(nR)ne], (15)

R'
t 3cp Remi R

&ip = I/(32~)'~
I )

where
n = 1/d= (Mwp/5 ) i

In the expansion (3) the only terms which do not
integrate to zero over nuclear angles are the harmonics
of order 0, 2 and 4. Those of order 4 need not be con-
sidered since their gradient will consist of harmonics of
order 3 and 5 which will in turn integrate to zero over
electron angles.

The zeroth-order term in (3) evidently gives an
analogous result to the S state expectation:

(Habit')D
= ——Sir/3 sin'ppP(0)imp(ir tie)D

oc

X 1—2/ap i Ryn'-'(R)dR, (10)

(a.tp;i)D=(Yn, ( v)zI'D)= —-', i x.

The first term in (10) is the D state correction to the
effective neutron moment that was missing from (8).
The second term is a further correction of the Bohr type,
which, as we have already mentioned, will decrease the
entire correction because the D state spin is efI'ectively

pointing against the S state spin.
An elementary calculation based on the expansions

(3) and (4) and on the approximation IV (2) shows that
the terms of order two in (3) add

(H~')n z="-= Sx/3 sin'piiipii vp'(0)

X t R/4a p@D'(R)dR (11}

and that the cross term

(v'-' —u'-') dR
Jo

The constant C is determined by (3):

C=(2n/1 —rpn)l.

If, then, following (3), we put for convenience

(3)

and Wo is the binding energy of the deuteron.

VI. EVALUATION OF a

Ke have available for the determination of the
nuclear ground state wave functions the deuteron
binding energy, which determines their asymptotic form
through the constant n=1/d, low energy scattering
data which determines the "e6ective range, " ro=1.59
X10 " cm," the deuteron magnetic moment which
determines (non-relativistically) the D state probability
and the deuteron quadrupole moment which essentially
determines a cut-o6 for the D state radial wave function.

Our main task is to find a good number for (2nR)e
since the second and third terms of V (15) are quite
small.

The asymptotic form of the S state wave function is:

@,(R)~Ce- a.

Let us define two functions, I and v, such that v= e

and
(2)

then

(Hv')ns=2R(ea (4e&,(1/~r —R~)Xtp~4D)) (12}

(where R indicat. es that only the real part is to be taken)
adds

R(r' u")dR = (rp, '2)'9, ,
- —-

"o

where we expect X~1, we have

(5')

(H~')~a= (Sm/3) sinpi cospiP-"(0)iipiiv

X
J
t (2) i/4(R/ap)@DC& sdR (13)

to (8) and (10).

(2nR)s= gee 2aRdR
0

=I+urp+(1 —)i)(urp)'/(1 —rp )=1+nrp+6. (6)

"H. A. Bethe, Phys. Rev. 76, 38 (1949),
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(2aR)s= 1+aro —0.08,

and for the Hulthen well:

(8)

(2aR)s = 1+uro+0 03. (9)

In calculating (7)—(9) the two parameters available
for each potential were of course chosen so that 0. and
rp remained 6xed.

We have in all, then,

The unknown X should be fairly close to one, so that
the correction term b in (6) may be expected to be
smaller than (nrp)'. We shall find that this is in fact the
case. Unfortunately, (6) is not as accurate as we might
wish. As a check, we have calculated (2aR)s for an
exponential, square well and Hulthen potential, the
latter having properties closely resembling those of the
Yukawa potential.

One finds, for the square well:

(2nR)s = 1+nrp+0. 07,

for the exponential well:

The neutron term is:

(II~')o, oW.o,.o'

sos n+ E E +pl gl

(&«') o, o &o, o'

(1)"—Eo—E„+IV —8'p

where E„+refer to electron energies and 8' to nuclear
energies. Summation over the indices m and e will be
understood, although frequently the indices will be left
out for convenience of notation.

E~ arises from a distortion of the electronic wave
function inside the distance p, which is smaller than the
electron Gompton wave-length. It is therefore reason-
able to suppose that most of E~ comes from electron
energies corresponding to momenta that are greater
than mc, and that the continuum states of the Coulomb
held may be replaced by plane waves.

Using the approximation

~(P) =~(0)( /)-( (P),.(0))/E(p)-E. ,

(2aR)s = 1+arp +0.07 = 137~0.07. (10) where

The remaining two terms in V (15) are so small that
an accuracy of 25 percent in their calculation is suf-
hcient. This may be obtained simply by using the
asymptotic D state wave function

@D= (A(2a)'/a' R')e (1+aR+-',a'R') for R) b'

and (11)
Pg)=0 for E&b.

3 and b are to be found by simultaneously nor-
malizing and matching the deuteron quadrupole
moment. This procedure yields

4 (p) = (u(p)e'p'~«, po(r)),

u(p) is a Dirac spinor amplitude and

(e%)„p——4n.k'/p',
we have:

H,v'=ea &,(I/I r —RI)Xtp.v,

(H+ ) p — i/ke'p —"'«P(0) '(1/r) p

X(u(0), eaXP pu«( )P) +0( 'eA/c), (3)

& o, o'=v o'Pg(P)=P v of(0)(e /r)„o
X( (p), (0))/E(p) —E„(4)

A =0.47, nb= ~,

and an elementary integration shows that

(12) p'vmo
Ev(+) = 2p-"(0)ie'/h p(1/r) 'e'p'"'"

P+ F(p)

sin'co =0.04, cos'cv =0.96. (14)

Finally, inserting the results (10), (13) and (14) into
V (15) gives

(aR)gjs —0.55 &0.15 (aR)n =0.66 +0.15. (13)

Choosing sin ~ so that it will give, in a non-rela-
tivistic calculation, the measured magnetic moment of
the deuteron, we have:

(u(0), eaXp tp«u(P))(u(P), u(0))
X

E(p) Ep+ W Wp— —

p v~o
=2/'(0)ie /h Q(1/r)„o e'p' I"

P E(p)

(u(0), eaXp pNA+(p)u(0))
X (5)

E(p) —Ep+W„—B p

p = —p~d/@Dao(1. 24&0.08). (15)

VII. EFFECT OF H' ON THE NEUTRON SPIN H.F.S.

We note hrst that H'= p v has transitions between
nuclear states of opposite parity whereas BI'=ee

V(1/r) XPP has transitions only between nuclear states
of the same parity. Therefore, in this order, the eGect
of H' on the proton spin h.f.s. is zero.

A'(P) = (eP a+I~'+
I E(p) I)/2l E(p)

=1 for E&0
=0 for E&0,

and where it is understood that the unlabeled nuclear
operators in (5) go from the state 0 to pm. Since the term
we are calculating is only a small correction, we may for
simplicity assume that the nuclear ground state is
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spherically symmetric. In that case, on the average,

(u(0), aXy y~&+(y)u(0)) =ocP'~ yo/3E(P)

(where from now on E(p) is always to mean a positive
number) and (5) becomes:

dp
Ev(+) = —(2/3)e'c/hf' (0)e-to~JI (1/r)'„o

(2ork)o

The last term in (9) is negligible. Dropping it, we

have, from (8):

16i
E~ ————P(0) (e'/hc')

3

2 1 4-P e p~ log +- R v„o (10)
3 p~m, 3- Om

p'p v„,e'o ai" and dividing the logarithm into more manageable

E(p) [E(p)—E,][E(p)—Eo+W„—Wo]
16i

Carrying through the same Procedure for the nega- E yo(0)(eo//co)~,
tive energy sums one finds in all: 3

P d~~dPP V o

Ev —4 3——or+(0)e'ce to~
'

E(p)
-~tp Rjg ~

—ip Rjfga

&a = (E(p) WEo) (E(p) WEo+ W —Wo).

Integrating over angles,

16o R I" pdp
Ev =—P-'(0)coco"yn'veo'—" R., E(p)

1 (pR/k) cos(pR/h) —sin(pR/k)
(7)

(pR!&)'
x +

D+ D—

1 1 2E(p) 1

+
D+ D— c'p' op+ IV —IVO

The integrand is seen to behave as a constant for
small p, as 1/p for p greater than mc but less than h/R,
and as 1/p' for still greater momenta. Relativistic
momenta, therefore, contribute most strongly, as was

assumed. In fact, compared to the energies involved in

(7), the rest energy of the electron is negligible, and we

may set:

2 j' -mc' 5/rac 4i
—

(
log -+- ((R v)

(Wo( & d/2 3&

—(log(2uR)R v)

lV —T4' o—QRo v olog —. (11)

The first two expectations are easily evaluated:

(R v)=(R [P/M' —i/2h(RV —VR)])
= (3/2) N/M(1+ ~~), (12)

where

g = —2M/35'(R' V(R) ).

If the exchange potential is binding, then q&0.
Although q depends on the well shape of I/', it will be
of the order of magnitude of force range divided by
nuclear radius, and since t is probably smaller than one,
their product will not vary sufficiently (corresponding to
different assumptions as to well shape) to affect our
results significantly. We recall that t was defined as the
fraction of exchange force in the deuteron.

One finds for q, by direct calculation:

q=3 for a Hulthen well,
&=5 for a square well.

The second term in (11) contributes
so that

where

E~=32if'(0)(eo/3hc')o to~v o RJ. (a„,),

dx x cosx —slnx
~(a)= '

X+8 X

oo

(log(2aR)R v) =3ho/2M —+ I @,' log2nRdR
3 alp

—2t/3J @
' log2nR(MV/h')R'dR (13)

0

x= pR/h, a
(W„—Wo)

R R/p((1.

Since the parameter u is small, the integral may be
expanded in powers of a; one finds:

J(a)= —)[log(1/ya)+4/3 —(3o /16) a+ ], (9)
y = 1.78 is Euler's constant.

of which the last two terms are negligible.
Finally, the summation

8' —S'p
X=+ Ro v o log

/
W„]

contributes about one-half of E~. Therefore a 10percent
error in K will be cut to 5 percent in E~. It turns out
that to within 10 percent one can approximate E by
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the simple formula

3(1+pe) 1
E 3—ih/2M(1+pe) log +— .

(u'E') 3
(14)

o~ ——(4/zr) (e'/hc) (m/M) pzr/po

mc'2uoz/mc) (u'R') 1
X (1+g&) 1+log

! Wp! 3y(1+1//) 3

which, it is of interest to note, is of order of magnitude

Note also that (u'E') is practically independent of
assumptions about well shape:

(u'Z') = 1/2(1-rou) (15)

From (11)—(14) we find a relative correction to the
h.f.s. of

pression. The factor 0 in (4) appears because only one
of the nuclear particles is charged. It is easily seen that,
as stated, (4) is precisely the normal orbital h.f.s.
interaction.

~e are left with the difference of (1) and (4), which
is a high energy term, and where we may again use the
plane wave approximation. Notice that in deriving (4)
no such approximation was made, or may be made,
since the h.f.s. comes equally from all radii up to ap.

Using the plane wave approximation for inter-
mediate electron states, a straightforward calculation
of the same type as the one in VII leads to

Fr, ' Ez, E——r 4—/3 e——4/mc'f'(0)g u vp XR QH(m),
m

(5)

ov —opd/pt 1+logp/d],

where p is the critical distance defined in I (4).
Numerically,

(17)
+

(1+x') '* —1+5

where
ozz = (pzr/zzo) (d/ap) LO. 155(1+P) +10 percent], (18)

where $= —,
' for a Hulthen well, t= Too for a square well.

so that
VIII. ORBITAL H.F.S.

b„= (W —W,)/mc'»1, ~= p/mc

H(m) = 2/8„Llog2b +0(1/5„')]

We have seen in III that our unperturbed wave
function gave zero orbital h.f.s. Therefore the eGect of
the perturbation II' on the wave function must give
us both the normal orbital h.f.s. and the correction to it
which was discussed in I.

The orbital h.f.s. is therefore given by

Ho, o '(Hz, ') o, o

Er = —2Q .P—
vrs n+ E g +pl

Hnp, om (HL )oa, mo

"—Eo—E„+8' —H o

where
e V

H'= p v, Hc' —(e'/c)——
r

o.vomX Rmp8 e'
E~'=- —0'(0)E

3 c " I~ —~o

2!Wo! (W —Wo)
Xlog (6)

mc' ! Wp!

8e4 vp„XR p
O' —5'p

Ec' —f'(0) Q zr——. — log (7)3c - W„—W, !W!
which is a relative correction to the h.f.s. of

«= (4/~)(pz/uD)(e'/Izc)mcz/! Wol I-,
where

pr, eh/2Mc——

(8)

and since for a constant logarithm the sum would
vanish

The neglect of electron energies in (1) leads simply to and
the expectation of the normal h.f.s. which until now 1 log(W —Wp/! Wp! )
has been missing. To see this, we add and subtract

(W Wp)/! Wp!
I.= gzr Mvo XR p— (9)

Er = —2 2 2 Ho . o '(Hz, ') o, olw —Wo

=2ze'/2cIz(y vR u/r)

= —2e /4hMc((L/2) .H'X u/r) L= RXP

plus terms which do not contribute to the h.f.s.

(2)

(3)

Er = ~(ee V(1/r) XeL/23IIc), (4)

Er (eu V'(1/r) XyL, ), —— (4')

since we are interested only in the real part of the ex-

« is easily seen to be a correction of order

since
oc~—p/Gp sill zo

(~/&c)I'/I wo! -p/oo

and L is of order sin'm.
Since L is small, we do not require high accuracy in

its calculation, which would in any case be dif5cult to
obtain, the eGective uncertainty in the ground state
being much greater here than in VII. We will therefore
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If we take
L= —0.10 sin'co (12)

@D
——(2a) ~A (1+nR+ ', n'R')-

Cl E

~
—PR 1 P' —a"-

(1+PR+ 'O' R') -—c—"(1+PR) (13)
n'E' 6 a"-

calculate L using free intermediate nuclear states. Some
justification for this procedure may be found from
scattering experiments which appear to indicate very
small phase shifts for odd states. Most of the error will

thus come from inside the force range, and may be
estimated by comparing the results for two difFerent
ground states, both of which are chosen to match the
known deuteron magnetic moment and quadrupole
moment, and both of which have the same asymptotic
form.

We have seen in V that the D state wave function is

C n ——sin&o(pn(R)/R) [(2/20) 1xiYoo

+(6/20)&xoVoi+(12/20) x iV„]. (10)
If we take

4tiD ~ (2n)'/n'R'(1+ nR+ n'R'/3)
= (2n)&(B a' R'+Ca'R') R+ 6

(11)

then a simple numerical integration leads to

which are also of order m/M. However, when the terms

(b) and (c) are taken together they practically cancel,
and the high energy difFerence which remains is of
order inc/e'(d/ao)' which is small enough to neglect.

X. RESULTS

We have found, in all, the following effects of the
internal nuclear motion on the deuterium h.f.s. :

From the unperturbed wave function which Bohr
chose as his starting point, the relative correction

o = t4~—d/»ao(1 24 &.0 08). (1)

and, due to a modification of this wave function, the
relative correction

by= yvd/»aoL0. 155(1+$t) &0.015],

where t is the fraction of exchange force and

$=-4' for a Hulthen well,
$= —,', for a square well.

One would expect t to be about —', (Serber) or —,
'

(symmetric), and g to be about —,
' or -', . We will choose

Pt to be 0.16 for the purpose of assigning a number to
our calculation; actually the difFerence between 0.16
and either of the two extremes that can be constructed
using the above numbers is about 0.04 and negligible.

This gives
on = 14ivd!44nibo(0 18&0 02). .

then we find
L= —0.08 sin'cv (14)

From the absence of an orbital interaction inside the
distance p the relative correction

Choosing I. to be the mean of (12) and (14), and
allowing an extra 20 percent error for the intermediate
states, we have:

oi.= tbsp«/»&o(0 05&0 02). .

so that our final correction is

(3)

I = —(0.09&0.03) sin'bo (15) 4+ o~+ oi, ———gib d/»Go[1. 01&0.12]
=+(1.83~0 22) X10 4. (4)

o~ = (4/~) (»/») (&'/&c) (mc'/I F4'o
I )I-

= (44vd/»ibo) (0.05 &0.02).
(16)

which are of order (e /kc)'m/M log(c'/Ac)m/M and
hence negligible.
(b) Higher order corrections of H' on the h.f.s. of the
for Ql

bb P Ho H (H~ ) o/(E Eo) (E Eo)

which are of order m/M, and
(c) Corrections of H" on the h.f.s. of the form

b, &Ho "(Hr') o/E, —Eo—

IX. HIGHER ORDER TERMS

There remain terms of three types which must still
be investigated:
(a) Second-order h.f.s. terms of the form

—P(H„')o„(H„')„o/E„—Eo

It is worth remarking that over 60 percent of the
final uncertainty comes from the calculation of (2nR)s
in VI, so that an improved knowledge of the 5 state
wave function alone would make a much more accurate
theoretical determination of the deuterium h.f.s. pos-
sible.

It must also be emphasized that we were forced to
choose sin'co=0. 04 in order for our non-relativistic
calculation to be self-consistent, although this number
is in considerable doubt, and of course adds to our uncer-
tainty.

Although our result is in fair agreement with the
experimental effect, (1.7 &0.1)X 10 ', the present
accuracy of theory and experiment is not sufhcient to
exclude some deviation of the nucleons themselves from
simple dipoles. An efFect of order

L1.83+0.22 —(1.7—0.1)]X10 '=0.45X10—4

is in fact large enough to allow corrections due to a
nucleon structure extending over distances of the order
of the range of the nuclear forces.
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It should be a,dded that the discrepancy was calcu-
lated using the value of pz/pp measured by Bloch,
Levinthal, and Packard, who found

X=pD/pal=0. 3070126&0.0000021.

However, Bitter and Siegbahn, measuring the same
ratio, have found, respectively,

crepancy (using Nafe and Nelson's determination of the
h.f.s.) 1.5X10 ', which would be hard to account for on
the basis of this calculation alone.

In conclusion, then, we are not yet in a position to
estimate structural sects. In order to do so, we need,
on the one hand, a more accurate value for the deuteron-
proton moment ratio, and on the other a better knowl-
edge of the deuteron 5 state wave function.

E=0.3070210&0.0000050 (6)
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Numerical Value of the Lamb Shift
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The average excitation potential of the 2s state of hydrogen which occurs in the Lamb shift, is calculated
numerically and found to be 16.646&0.007 Ry. This gives a theoretical value of 1051.41&0.15 megacycles
for the Lamb shift, compared with the latest experimental value of 1062&5. It is not known whether the
discrepancy of 10 Mc can be explained by relativistic effects. Simple analytical approximations are discussed
which make plausible the high value of the average excitation potential and give a good approximate value
for it.

N this paper, we are reporting two independent
- numerical calculations of the average excitation

potential of the hydrogen atom which occurs in the
formula for the Lamb shift. ' The first calculation was
done in 1947 by one of us (J.R.S.) with the help of
Miss Steward, the second in 1949 by L.M.B.

The formula for the Lamb shift of a hydrogen level

np, l has been derived by many authors' and is for
s states

8Z' a' ( p 5 1q
~E( „0)= —RyI l —l 2+——

~
(1)

no' 3pr 4 ko(no, 0) 6 5i

' W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947};
75, 1325 (1949}.

~
¹ H. Kroll and W. E. Lamb, Phys. Rev. 75, 388 (1949};

J. B. French and V. F. Weisskopf, Phys. Rev. 75, 1240 (1949};
R. P. Feynman, Phys. Rev. 74, 1430 (1948}, and correction in
Phys. Rev. 76, 769 (1949), footnote 13; J. Schwinger, Phys. Rev.
76, 790 (1949).

and for states with //0
8Z4 oP ( Ry 3 ci;

~Z(n„ t) = —RyI ln +- I, (2)
no' 3or 4 ko(no, l) g 21+1j

where

c~, ——1/(l+1) for j= l+ ~~

c~;= —1/l for j= l (2a)

kp(np, l)
ln PI (npOI P, In) I'(E„E,,)—

Ry n

=XI ( ~l p. in) I'(E.-E.»n
Ry

'H. A. Bethe, Phys. Rev. 72, 339 (1947},quoted as A in the
following. The deinition is in Eq. (6}.

In these formulas, Z is the nuclear charge, pip the
principal and l the orbital quantum number, n=e'/kc
the fine structure constant, Ry the Rydberg energy,
p, =mc' and kp the average excitation energy which we
wish to calculate.

This average energy is de6ned by'


