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The Self-Stress of the Electron
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'I'he diagonal elements of the symmetrical energy-niomentum tensor density of aII electron at rest are
calculated. The covariant formalism of Tomonaga, Schwinger, Feynman, and Dyson is used, and it is shown
that it is necessary to use a relativistic cut-oB in addition to the covariant separation of the infinite renormali-
zations. Therefore "formalistic regulators" are used in the form of additional neutral vector fields. The
integrations are carried out with the Feynman method. The resultant vanishing value for the self-stress
constitutes a proof of the consistency of the relativistic formalism.

It is also shown how the Feynman-Dyson method can be used for the calculation of expectation values of
operators, of which the self-stress calculation constitutes an example.

THE SELF-STRESS PROBLEM

N classical physics the finite charge distribution
~ - attributed to the electron could not be stable unless
additional non-electromagnetic "cohesive" forces were
postulated. The necessity of this requirement was also
exhibited by the fact that a finite electron had a finite
Non-vanishwsg electromagnetic part of its experimental
mass which spoiled the relation between kinetic energy
and momentum. This is true even for the non-rela-
tivistic Abraham electron. For the relativistic Lorentz
electron it can best be seen from the transformation
properties of the energy-momentum tensor. Let O„„be
the energy-momentum tensor density of an electron
moving with velocity v in the x direction; let the index
zero indicate the rest system. Then energy and mo-

mentum transform as follows
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It follows from (1) and from the symmetry in the
rest system that a consistent relativistic theory must
yield

0, (o) —O~ (o) —0~ (o) 0 (2)

It is clear that the Eqs. (1) and (2) remain true in

quantum theory. A direct verification of (2) for con-
ventional quantum electrodynamics, however, so far
led to difhculties because of the inherent infinities.

The recent developments in quantum field theory
enable one to properly deal with these infinities. It is
therefore the purpose of this paper to explicitly verify
the vanishing of the self-stress and thus give a proof of
the internal consistency of our present relativistic
quantum electrodynamics.

' Here and throughout this paper we use natural units, k= c= 1.

In order to carry out this program it is important to
realize that the formalism of Tomonaga, ' Schwinger, '
and Dyson' still su6ers from divergent and undefined
integrals. The covariant separation of these integrals
from the infinite matrix element results in the finite
expectation value of the observable in most cases.
Exceptions are the calculation of self-energies, vacuum-
polarization, scattering of light by light, and the self-
stress. It is therefore necessary to introduce a relativistic
cut-off, for example by the use of "regulators. '" We
shall consider the interaction of the electron field f
with a set of neutral vector fields A„") of mass M, and
coupling constant f, (i=0, 1, 2, ). At the end we
shall pass to the limit' as Mo—+0 and M,—+ ~ (i&0).The
resulting integrals will be finite and well determined if
the f, and M, satisfy certain conditions. In the course
of the calculations the following condition will turn
nut to be necessary and sufricient:

Qf 2 —0

We shall first give a simple argument which shows
that the self-stress is identically zero to all orders and
then carry out an explicit calculation to first order in
n = e'/(4m). '

A SIMPLE ARGUMENT'

The Lagrangian density for the system electron field—neutral vector meson fields is

~ S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946); Koba, Tati,
Tomonaga, Frog. Theor. Phys. 2, 101, 198 (1947); S. Kanesawa
and S. Tomonaga, Prog. Theor. Phys. 3, 1, 101 (1948).

3 J. S. Schwinger, Phys. Rev. 74, 1439 {1948);75, 651 (1949);
76, 790 (1949).' F. J. Dyson, Phys. Rev. ?5, 486, 1736 (1949).

'W. Pauli and F. Villars, Rev. Mod. Phys. 2l, 434 (1949).
References to earlier work on this subject are also found in this
article.' This "formalistic" use of the auxiliary fields is employed since
any attempt at a consistent "realistic" theory leads to Bose-fields
of negative energy and to other difhculties. See also reference 5.

7 In the following we shall use Heaviside-Lorentz units and in
general use th.e same notation as Schwinger and Dyson (references
3 and 4); note however that our Sz(x) equals Dyson's Sz(—x').
We use 8„ for 8/Bx„and a bold letter like A for y„A„.

s This type of argument was first used by A. Pais, Rev. Mod.
Phys. 21, 445 {1949) and led him to the wrong result 8II(0)
=(a/2x)mfa. The reason for this finite non-vanishing result is
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z (x) = g—[&P(x)(I M—f A«&+m) &P(x)

+ 'Il „-"&(x)—(M '/2)A &,
&'&A i&*'&j (4)

from which one finds the symmetrized energy-mo-
mentum tensor density and the Hamiltonian density io
the usual. way. The latter is of the form

3C(x) =3C'(x)+ m&P(x) &P(x)

+P(M '/2)Ag&*'(x)A g&'&(x) (5)

and
ss( 8 8 ) X

(0„)=——
I
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CALCULATION OF THE SELF-STRESS TO
ORDER e

For the rest system we kave, omitting the index zero
from now on

011 -'(0 —044)

The expectation value of Oi~ which we shall designate
by (0») in a state where there is one electron present
and no other particle, is therefore

(Oii) = ——',(m(8/Bm)+Q M;(8/BM;) 1) (3C—)

but since (3C) is simply the self-energy of the electron
we have for dimensional reasons

(3C)=3C,",„=m f(m/M;).
0 ~ t ~ ~ ~ 04 ~ ~
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FIG, 1. Diagrams for the calculation of the interaction of an

electron (full lines) with an external held (dotted lines) to second
order in the coupling between the electron and its radiation held.
For the calculation with regulators the photon lines {dashed lines' )

represent neutral vector mesons. (See Eq. (10).)

found in that he did not take into account regulators. It is vital
to the calculation of the self-stress that the theory be finite.
Otherwise, it would be necessary to circumvent the direct inte-
gration which gives (u/23')mpp by the explicit use of the con-
servation laws 8„0»=0. fhe situation is completely analogous
to the calculations of the photon self-energy (G. Wentzel, Phys.
Rev. 74, 1070 (1948)) were the conservation of charge B„j„=o
has to be used explicitly in order to obtain the result zero.—I am
grateful for a discussion on this point to Drs. S. Borowitz and
%. Kohn who are calculating the self-stress along these lines.

where 3C'(x) does not contain the masses explicitly.
From Kqs. (5) and (4) we obtain

0 „&"&= m&P&P=——m(NC/Bm),

0 &'& = —M 'A&, &'&Ay&'& = —M (83C/BM ;), . (6)

()44= —3C.

We shall use the Feynman'-Dyson' method to write
down the matrix elements from the corresponding
diagrams and evaluate the integrals with the Feynman
method.

We first turn to the evaluation of 0»"———m&P&P. As
is shown in the Appendix, the expectation value of this
operator is identical with the expectation value of the
interaction energy of the &P field with a constant external
scalar field of strength m, i.e., we regard —

m&p&P as the
interaction energy of these two fields. The diagrams cor-
responding to that process for a state of one electron
and no other particles present in first order of n are
clearly these shown in Fig. 1. They are identical with
those for the radiative corrections (Lamb-shift and cor-
rection to electron scattering), except that the external
field is a scalar rather than a vector field. One finds'

(0„„"&(x))= ,'am&r Q——f,& )f &P(x')yiS&, (x' —x)

X.&«(x x")yi&P(x") 5«—& f&(x' x")dx'&f&"—

+,I P(x')»Sp(x' r,")»—
J

XS& (x" x)&P(x) AF&'—& (x' x")dx'&ix"—

XTr(»Sr(x" x)S& (x x"})dx'd—x" (10—)

and in momentum space

((:)„„"(p) )= —(i'/4&r')

p iP ik mq -"— —
xpy" I y(p)»I —, I ~ «p)

E(p k)'+m"J—-k'+M;, '

iP ik m iP m- —
+ I" &P(P) — „4(p)

(p —k) ~+mi p~+m"-

1 ( (ik m) "-)—
+ &(P)»«» ;TrI »I . —., I

—I~4k (»)
M & 5 & k'+m'-')

As explained in the appendix of the second paper of

' R. P. Feynman, Phys. Rev. 76, 749, 769 (1949).
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k&Pd4k

i 0 (ki+a„2)'
= —i7r'- P f 'lna --', {12a)

Feynman, ' we have to introduce the auxiliary variables
x into each integral, shift the origin such that the
denominator depends only on k' and integrate with
respect to d4k. The following integrals occur in the
first term of (11).

FIG. 2. Diagram for the
calculation of the inter-
action of a virtual neutral
vector meson (dashed lines)
with an external field (dot-
ted lines). (See Kq. (17a).)
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i g (k2+a 2)3

tribute. From (13) and (14) the expectation value (11)
becomes

where use was made of (3). The first term of (11)
yields, therefore, after an easy calculation, (1)'."(P))=—mk(p)4(p)Z f*' dx I 2(»—1)

7r i 4p

Six'f(P)P(P)Q f' xdx{]n[(M /m')(1 —x)+x'-'5 X1n [(M, '/m"-) (1—x)+x'-'5

+-,'(1—x+x'-')((M, 'i/m-")(1 —x)+m-"x'-') }. (13!

Whereas we could use the Dirac equation (iP+m)/=0
and p +m'=0 without running into difhculties in the
first term of (11),this is not so for the second term. One
has of course to subtract the renormalization integraI
before the use of the Dirac equation is justified. Fol-
lowing Feynman' and Dyson' we have for the second
term of (11)

1

2ixi dxip(p)[ip(1 —x)+2m)[(ip —rrr)/(p '+rrr. ')'-5'(p 't

—(x' —2x')/((M, %n')(1-x)+x') }.

An elementary integration leads in the limit M,~~
(i/0) (Mo~), since fo 1by d——efinition, with (3) to

(0 "(P))=(~/2 ) tP(p)rP(P)(3l +9/4) (15)

where

l„=Pf i 1 n( M 2/m. ').
i&0

Ke now turn to the evaluation of

X in[(Mp/rrr'-')(1 —x)+ ((p' jm'-')+1)x —(p'/m'")x"-5

f 1

—2i x' dxrP(P) m (1+x)[(iP m)/(P—'+ rrr ')5'-
Xy(p) ln[(M /m')(1 —x)+x'5

= 2zÃ2 dxy(p) I (ip+m)(1 x)[(ip rn)/—(p"+m ')—5-'-
X iP(P) hi[(M, 2/rn') (1—x)+ ((P%rr"-)+ 1)x

—(p'/m') x'5+ m(1+ x)[(ip m)/(p "+—rrr') 5tp-(p)

X in[1+ (P'-'+ m-")x(1—x)/(MP (1—x)+m 'x'-) 5,' .

Ke expand the second logarithm and 6nd after use of
the Dirac equation

I

2in' "dxiP(P)[(-x—1) in[(M, '/m'-')(1 —x)+x'-'5
0

+m(1+ x) (—2m)x(1 —x)/(M2(1 —x)+m"-x') 5$(p). (14)

The third term of {11)is easily seen to vanish;" the
"vacuum polarization" diagram (Fig. 1c) does not con-

~ Actually, the identically vanishing traces of one and three
p„'s are multiplied by divergent integrals. Strictly speaking it
auld be necessary to use a cut-off; e.g., one can add electron
Gelds of m~ ~ aud coupling constants gq. As for the vacuum-
polarilation the conditions on them would be Zg =0; Zg;IHIP=0.

This operator is again regarded as the interaction
energy of the A„&" field with a constant scalar 6eld of
coupling M, . The corresponding diagram is shown in
Fig. 2: The vector meson emitted by the electron is
scattered by the external held and then reabsorbed.
This process is essentially different from the processes
considered in Dyson's papers. It is, however, very
similar to the "Lamb-shift" process, i.e., to Fig. 1a:
Instead of the P brackets of 2 pairs rPrP and 1 pair A„A,
we now have 1 pair rPrP and 2 pairs A„A„. The missing
pair of anticommuting operators introduces a minus
sign in front of the matrix element, " the I' bracket of
the four A„'s yields a factor" 2, and otherwise the
integrals for Figs 1a and 2 differ only by the interchange
of the Sp functions and the h~&" functions. Thus we
find

X yr, iP(x")5r (x' —x)6r (x—x"), (17a)

"See Dyson's first paper (reference 4), Eq. (51).
"P(P( ')P(x)P( )|}t( "))=$q(x', )5 ( ' —x)$g(*, ")5 ( —"),

E(Ae(x')A), (x)A&(x)As, (x ))=2'44&&»~~(x x)~&(x x")
Note that the factor 2 would not occur if A„were a charged field
and we had P(A„~(x')Ag(x)Ay*(x)A„(x")).
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in
& iP i—k n—i

({'-l» '*'(P))= —2 f''flf'' ii" 4(P)~„
(p —k)"-+m'-'

d4k
X~,4(p) . (»b)

(k'+M.;-"l'

Again we introduce the variables x and find after a
shift of origin and application of (12b)

&ZO-"'(p)) = (n/~)mk(P) &f (P) 2 f''~*'

and the extremely profitable time which the author
spent at the Institute for Advanced Study.

APPENDIX

Expectation Values in the Feynman-Dyson
Formalism

Let PH and ApH be the operators representing the electron and
the electromagnetic fields in the Heisenberg representation; let
pH and/or ApH interact with an external 6eld such that the inter-
action energy is X~' '. Let 4 and 0 (0) denote the functionals in
the Heisenberg representation and in the interacting representa-
tion. Then

O(o) = U(0.)4 (A1)
1

X)~ (1—x')ux/t ~ '(1—~)+m-'i j.
0

and any operator F~(x) in the Heisenberg representation is
related to the same operator in the interaction representation, F{x),
by14

We see that for i= 0 we find 0» & '(p) = 0 indicating the
vanishing value of the photon self-energy. The limit of
the other fields gives, because of (3),

F(x}= U(~)F~(x) U-1(~)

such that the expectation value

(I'e(.)&= {~,I:,r(x)~) = {U-I~, I'nU- I+) = (~, I. 1).
Also

(A2)

&2 o. "'(P))=—(3n/2~) m4( P)4(P) (18)

The &{)44) term is simply the self-energy of the vector
mesons and the electron, taken in a state where there
is only an electron present. Therefore

(o44) &Hg4&.)) ~&e)

= (—n/2~)k4( —3f-+5

The last. relation is easy to work out and agrees with
I'eynman's expression" if we use only one additional
field" &i= X and, because of (3) fi2= fa'= —1. —

The expectation value to order n of the self-stress,
Eq. (6), becomes with (15), (18), and (19)

&O (P))=-:(-/2-)-~(P)~(P)
X(3l +9/4 3 3l +—)=—0 (2-0)

Since the l„, terms cancel, the result without regu-
lators would also be finite but would not include the
term (18) and thus yield Pais' result (n/2s)m&PP It. .
should be pointed out here that in the use of regs. lators
one usually adds the matrix elements corresponding to
the auxiliary fields (i=1, 2, ) to the matrix element
which is to be regulated (i=0). This method does not
work here. It would again mean omitting the term (18)
and we would find the same result as without regulators.

In conclusion the author would like to thank Pro-
fessor R. P. Feynman for very helpful discussions, and
Professor J. R. Oppenheimer for his stimulating interest

"Reference 9, second paper, Eq. (21)."If one does not carry out the limiting process iV ~~ this
special case is identical with the proposals by F. Bop', Ann. d.
Physik 38, 345 (1940);42, 575 (2943) and A. Landd and L. Thomas,
Phys. Rev. 60, 121, 514 (1940);65, 175 (1944). It is taf be noted
that this additional vector 6eld has negative energy, since fP= —1.

i{be{0)/ba) = {K&'+Bc'"'le{0) {A3)

where X")=—j„d„and the missing subscript. H indicates the
interaction representation. A further transformation 5(o) leads
to the new functional Q(0) given by'4

Q(tr) =5{0.)e(~T) (A4)
such that

where
i(BQ{o)/her) =5 (o)X' (x)5(c)Q{0'), {A5)

5 {0=)1 +{&)J d—x,JC&'&{x&l

LT &r 1

+(—i)' dxf dxpC( (XI)X ' {x2)+

The expectation value of BCi&~ is

{Xi"')= (Q(a), 5 '(0)3C'"'(x)5(0)Q{o.)).
Consider now an operator OH in the Heisenberg representation.

It follows from (A2) that this operator in the Q representation is

5 'U 'OIIUS=S '05. The expectation value is therefore

(0}=(Q,5 'OSQ).

Apparently, diagrams can only be drawn for matrix elements of
interaction energies, i.e., for expectation values of the type (A6),
and at first sight it seems that the Feynman-Dyson method is
incapable of calculating expectation values of operators in general. ,
i.e., it seems not possible to immediately write down the integral
(A7), because there is no corresponding diagram.

The fact that (A6} actually is only a special case of (A7)
suggests the following simple method. Assume 6rst that 0 is a
scalar operator. Since 0 will always be bilinear in @ and/or A„we
can regard it as an interaction energy between the P and/or the
A „Geld with some external 6eld and solve this equivalent problem
which can easily be put into diagrams. Thus the operator
0~=0~+&~('&= —mP~~ is clearly the interaction energy of the
P 6eld with a constant scalar 6eld. A similar reasoning holds for
o»(') =—mp~„(')~„(').

If the operator is not a scalar we can construct a scalar operator
by multiplication with a corresponding operator. For example, the
expectation value of O~=p~o„g~ can be calculated by finding
the expectation value of 3C~'~t=p~a»I'»&~, where Ii„„' is a
6ctitious external field contragradient to o».

t4 Note that Eq. (A2} in general contains additional terms if I'H(x)
involves differential operators (see Schwinger, reference 3). This does not
effect the arguments given below.


