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Nuclear Dipole Vibrations and the Surface Symmetry Energy
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The frequency of nuclear electric dipole vibrations of the type suggested by Goldhaber and Teller is
tlerived on the basis of the semi-empirical nuclear model. The resulting formula, taken together with the
(y, n) and (y, f) cross-section data of Baldwin and Klaiber, determines a lower bound for the term in the
surface energy depending on E—Z (surface symmetry energy). This is close to an upper bound estimated
by Feenberg, and one may tentatively assume that the nuclear surface tension contains a factor
1—0.4(X—Z)':1 '.

centers of the two spheres, where
~
$

~

is small compared
to the radius R=roA& but large compared to the effec-
tive thickness of surface layer ( ro). The volume of
extruded neutrons is zR'~$~ and the change in the
volume symmetry energy is readily found to be

AE =z.R'~$~ pa,. I1—(X—Z)'A '-'} (2)

In the extruded regions (px —pz)/(pe+ pz) =&1, and
it may seem questionable to use the binding energy
formula for such an extreme departure from normal
densities; in particular, higher powers of (p~ —pz)/
(p~+ pz) in the energy density and of (1V—Z)/A in the
binding energy formula would seem to be required.
This objection is not, however, serious, since (1) the
idealized picture in which pg drops from a uniform value
in the overlap region a,bruptly to zero in the extruded
neutron layer is an approximation to an actua, lly con-
tinuous change of density; and (2) the kinetic energy of
the statistical model expanded in powers of (iV —Z)'.4 '-'

diGers from the first two terms in the expansion by only
two percent as Z—4, and the potential energy in the
"equal forces" approximation contains no higher power
of iV Z than (X—Z)'. —

The change in surface energy is readily seen to be

DE, =47rR'(0' 0)+2+RO
i $ i

—
) (3)

HE symmetry properties of the nuclear volume
energy have been extensively treated but it has

been customary to neglect the symmetry dependence
of the surface energy. Recently, attention has been
drawn to the possible dependence of the surface energy
on isotopic spin, and an upper bound for the surface
symmetry energy has been estimated from experi-
mental data on isotopic abundances. ' It is the purpose
of this note to point out the connection between the
nuclear electric dipole vibrations proposed by Gold-
haber and Teller' and the semi-empirical nuclear
model, and to show that this leads to a lower bound
for the surface symmetry energy.

Ke consider first a slightly diGerent derivation of the
vibration frequency from that already given, ' which
eliminates part of the uncertainty in the nuclear
constants and is also somewhat more general. The
dipole vibration involves a relative displacement of the
centroid of the protons from that of the neutrons. A

varying gradient of the proton density is accompanied
by a neutron density gradient in the opposite direction.
The problem has been idealized in reference 2 to the
relative motion of a homogeneous, incompressible ball
of protons and a similar sphere of neutrons overlapping
each other. Using this same approximation, we estimate
the potential energy of the displacement from the
change in the volume symmetry energy and the surface
energy. The nuclear model used is based on the semi-

empirical binding energy formula

Ez=AI —a.+a—(X—Z)'A '-}

+A&Iu, a„(iV Z)'A '}—+a Z'A—'
(1)

where the term in a„ is the surface symmetry energy
and the other terms have their usual significance. The
energy terms in a„and a, (Coulomb) do not change in

the type of nuclear distortion considered. ' The density
of the volume symmetry energy is taken to be
u-pI(px —pz)/(p~+pz)}' where p~, pz and p are the
particle densities of neutrons, protons and nucleons,
respectively. Consider a relative displacement $ of the

' E. Feenberg, Rev. Mod. Phys. 19, 239 (1947).' M. Goldhaber and E. Teller, Phys. Rev. ?4, 1046 (1948).' To the extent that a proton density gradient is set up in the
vibration, there will be an accompanying change in the electro-
static energy. This is neglected. EBects due to the 6nite com-
pressibility of nuclear matter are also neglected.

where 0 and 0' are the surface tension of the undistorted
nucleus and of the extruded region, respectively, and 0'
is independent of P. The second term represents the
energy of the extra area in the equatorial belt and
leads to a small correction of the vibration frequency
by a factor (1+PA t)& where P=2a, /3a„=0.5. This
will be omitted in the following. Since the effective
potential in a pure neutron Quid is very much less than
(about one-fourth) -that in normal nuclei, the surface
tension 0' is evidently considerably smaller than 0.Vfe
set 4R'»(r0 —0')=A&6 and defer the analysis of 8 in
terms of the parameters of Eq. (1). The potential
energy of deformation for

~
$~&)ro is then given by

3E,„+DE,=DE„—A&6. The potential energy for small
displacements

~ f ~

~ ro can evidently be written as kP/2,
and the two expressions are to be joined continuously
and with continuous derivative at a displacement

~ &~
= e. The values of k and ~ are obtained by solving

these two equations simultaneously. The derivative
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equation yields (after substituting A/(4prR'/3) for p)

k= (3Aa,„/4') I1—(iV —Z)'A —'}. (4)

Equating the energies and using Eq. (4), one obtains

p=(8rpb/3a, „).I1—(iV —Z)'A '} '. (5)

Thus ~ is independent of A except for the small de-

pendence through the curly bracket. The latter is

nearly canceled by a similar variation of 6 (see below);
hence e may be considered independent of A and Z.

The vibration frequency depends on the reduced
mass of the two spheres:

p=4nE'1»f pzpN/3p= (MA/4) I 1—(cY—Z)';1—-"}, (6)

where JI is the mass of a nucleon. Combining (4) and

(6) gives
Au) =k(k/p)»= (3h'a ./O1»Irp)» A 'i' (7)

This is the same formula as that given by Goldhaber
and Teller, although the interpretation of the constants
is difI'erent. In comparing with the experimental results,
we have included the small correction introduced by
the second term of Eq. (3). The maxima in the (y, I)
and (y, f) cross sections observed by Baldwin and
Klaiber' come at values of Ace=30, 22, 18 and 16 Mev
for C, Cu, Th and U, respectively. Averaging the last
two results, the experimental ratios are: (bc')o/(has)c„
= 1.36 and (4y) cp/(Aced) Th—u = 1.29. The theoretical
ratios are 1.37 and 1.27; the agreement is better than
the experimental and theoretical uncertainties would
warrant. Recent measurements' on Ta show a maxi-
mum cross section at 15 Mev; this value is anomalously
low when compared with the preceding data. It is

worthy of note that the inclusion of an additional
term' in the energy density containing j pN —p g~

and corresponding to a volume symmetry term ill

~.V—Z~/A in Eq. (1), yields a dependence of Ace on .1

at variance with the experiments. In this case the
frequencies are multiplied by an additional factor
which is approximately } 1+8(Z/A'))» and the ratio
(Iiop)c/(Euo)c„ is increased to 1.53.

In order to confirm the absolute magnitude of bc'

predicted by Eq. (7), it is necessary to know the value
of p the joining distance (the semi-empirical value of
a„=20 Mev is well known'). Obviously p is of the
order of magnitude of r0=1.4X10 " cm, but a more
precise estimate would seem dubious. Turning the
problem around, we can determine ~ from experiment
and then use it to obtain further information about the
nuclear surface energy. The data of Baldwin and
Klaiber give o=(3/4)rp=1. 1X10 " cm; this can be
inserted in Eq. (5) to determine b. The relation between
8 and the constants of Eq. (1) will now be considered.

4 Q. C. Baldwin and G. S. Klaiher, Phys. Rev. 71, 3 (1947);
73, 1156 (1948}.

&McElhinney, Hanson, Becker, Duffield, and Diven, Phys.
Rev. 75, 542 (1949).

6This term is discussed in R. D. Present, Phys. Rev. 72, 7

(1947}; footnote 7 of this paper is relevant to the application
to C~.

7 H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

a„3o li-' 1 —(iV Z)'A '—
D ~

a,„grp x' 1—(g/x)P(iV —Z)PA —P
(10)

The factor in brackets is nearly independent of f' an(1
may be neglected. Hence for a&1

a„/a, „=0.28(0.86)'x '& 0.21.

An upper bound for a„/a, „has been found by Feen-
berg. ' The most stable value of A for each Z is estimated
from nuclear abundance data and a,„calculated. The
resulting values of a,„are not strictly constant but
show a small monotonic variation with Z, which is
attributed in part to the surface symmetry term. In
this way Feenberg finds that 0&a„/a,„&0.6. On intro-
ducing certain specific assumptions about the semi-
empirical constants, the upper bound can be reduced
to 0.4. One may tentatively set a„/a„„=0.3 so that
a.,=6 Mev. Since a, =15 Mev, it follows that the
nuclear surface tension undergoes a decrease of about
two percent from one end of the periodic table (AT= Z)
to the other (U~p) because of symmetry eifects. This
justifies the previous neglect of the surface symmetry
term in Eq. (1).

' E. Feenberg, Phys. Rev. 59, S93 (1941).* It is assumed that a~' and Oz' are constant over each hemi-
sphere and that their values are exchanged at the equator.

9 E. Feenberg, Rev. Mod. Phys. 19, 239 (1947).

The surface energy of the undeformed nucleus is (from
Eq (1))

E,,=a,A» —a„A»(iV—Z)'A '
=a.A»I 1—C~(iV —Z)'A '-'

=a.A'I 1—C.(ON
—oz)'(ON+ og) '} (8)

where 0~ and 0-g denote the surface densities of neutrons
and protons in the undeformed nucleus. Because of the
electrostatic repulsion, the proton density must increase
from the center to the surface of the nucleus, hence
(oN 0'z)/(oN+0 z) =X(1V—Z)/(iV+Z) with ii &1. The
departures from uniform density have been calculated
by Feenberg his results lead to a value of X (inde-
pendent of Z and A) of 0.86. Hence C~= (0.86)'C, for
the undeformed nucleus. The surface energy of the
deformed nucleus is then*

F.,'= a,A»I1 C.(ON' —og')'(oN—'+og') '}

neglecting possible higher powers of x= ~oN' — o~g/

(ON'+oz'). Hence

& = a,C.I (ON' oz')'(O—N'+oz') '
(ON o—z)'(ON—+oz) '-'}

= a„(x/X)'}1—P /x)'(1V —Z)'A '} (9)

The idealized model of Goldhaber and Teller implies
that t = ~=1 since the proton density is uniform and
the extruded layer of neutrons contains no impurity of
protons. In this case e is exactly independent of A and
Z and we obtain from Eqs. (5) and (9) with p= (3/4)rp
the result that a,„/a,„=0.28. Actually, one would
expect a value of a somewhat less than unity and in
that case one obtains


