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The dynamical or wave-mechanical theory of electron
diffraction is extended to include several diffracted beams. In
the Brillouin zone scheme this is equivalent to terminating the
incident crystal wave vector at or near a zone edge or corner.
The problem is then one of determining the energy levels and
wave functions in the neighborhood of a corner. The solution
of the Schrodinger equation near a zone corner is a linear com-
bination of Bloch functions in which the wave vectors are
determined by the boundary conditions and the requirement
that the total energy be fixed. This leads to a multiplicity of
wave vectors for each diffracted beam giving rise to inter-
ference phenomena and is an essential feature of the dynamical
theory.

At a Brillouin zone edge formed by boundaries associated
with reciprocal lattice points S and G, the orthogonality of the
unperturbed wave functions in conjunction with the periodic
potential requires that another reciprocal lattice point \ be
included in the calculation. The indices of A must be such that
(M1N2X3) = (515253) — (2122¢3). The perturbation at the zone edge

results in non-zero amplitude coefficients Cg, Cs, and Cy for
the diffracted waves irrespective of whether or not the
structure factor for X, s or g vanishes. This is the basis of the
explanation of the (222) reflection and since it arises through
perturbation at a Brillouin zone edge or corner, the term
‘“perturbation reflection’ is advanced to replace the commonly
used ‘‘forbidden reflection.”

The octahedron formed by the (222) Brillouin zone bound-
aries exhibits an array of lines due to intersections with other
boundaries to form edges. This array of lines is called a ‘‘per-
turbation grid”’ and the condition for the occurence of a (222)
reflection is simply that the incident wave vector terminate on
or near a grid line. Numerical intensity calculations are
presented which show that a strong (222) can be accounted
for by the dynamical theory.

An impedance network model is briefly discussed which
may aid in qualitative considerations of the dynamical theory
for the case of several diffracted waves.

INTRODUCTION

INCE the discovery of electron diffraction some

twenty years ago a number of examples of the
occurrence of ‘“forbidden’” Bragg reflections have
been reported. This, of course, has also been true
for x-ray diffraction although not to the extent
found in electron diffraction. An outstanding
example has been the occurrence of a relatively
strong (222) reflection from elements crystallizing
with the diamond structure. It is the purpose of
this paper to show that on the basis of the dynamical
theory a (222) reflection is to be expected from
diamond.

The term “‘forbidden’’ has generally been used to
denote the appearance of Bragg reflections for
which the structure factor is zero, thus leading to
a zero intensity on the basis of the kinematic theory
of diffraction. On the basis of the more general,
dynamical theory, however, the term ‘‘forbidden”
as applied to a reflection associated with a zero
structure factor is not correct in the sense that zero
intensity is no longer predicted. As will be seen, the
term ‘‘perturbation reflection” would be a more
accurate description applicable to the case of a zero
structure factor in the dynamical theory.

It is perhaps advisable to consider very briefly
the kinematic theory of diffraction and then men-
tion some of the attempts to account for a per-
turbation reflection using the simple theory. The
kinematic theory is actually a first-order approxima-
tion to the dynamical theory and amounts to
assuming that the various diffracted and trans-
mitted waves in a crystal are completely inde-
pendent, i.e., no interactions. This approximation

does not arise through the use of the Ewald con-
struction in reciprocal space. The Ewald construc-
tion is a perfectly general method of predicting the
directions of diffracted beams and is shown in Fig. 1;
the approximation arises in the calculation of the
intensities of these beams. The kinematic theory
assumes that the amplitude of a wavelet scattered
by an infinitesimal volume dxdydz of the crystal is
proportional to Vdxdydz where V is the potential
inside dxdydz. The amplitude of the wave scattered
by the entire crystal in the direction RG is then

S=fffV(x,y,z)e“’""")dxdydz;

(g-7r)=gix+gy+gsz, (1)

with the integral being over the whole crystal. If V
is expressed as a Fourier integral,

+o
V=fff 0,627 P Ndpidpodps,

with v, =vp1peps and (p:7) =px+p2y+psz, the scat-
tered amplitude becomes

+o
Szf f f {f f f Vet ¥ P dpidpadps

Xe? e -Ndxdydz. (2)
In (2), the only terms of consequence are those for
which the exponents wvanish or (p-r)=—(g:r)

which requires that g1 = —p;, g2 = —p2,and gs= — ps.
The amplitude S thus becomes proportional to v,
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the Fourier coefficient of potential, and the intensity
proportional to |v,|2. When the Ewald sphere
touches some other reciprocal lattice point, say Q,
the kinematic theory assumes that the intensities
of the two beams are independent and are propor-
tional to |v,|? and |v,|? respectively. As will be
seen, this is not so in the dynamical theory where
the weight of a reciprocal lattice point such as g is
influenced by other points Q, etc., lying near or on
the Ewald sphere.

F16. 1. Ewald construction in reciprocal space for diffracted
wave vector. Ko/2r=O0R is incident crystal wave vector.
Sphere of radius |Ko/27| centered at R touches reciprocal
lattice point G giving rise to diffracted wave vector
K,/2r=Ko+27g/2r=RG. If |K,|?*=|K,4|? the Laue con-
dition is fulfilled. 6 is the Bragg angle. The plane of the paper
can be viewed as a section through the Ewald sphere where
it touches the reciprocal lattice point G so that K, and K,
are projected wave vectors.

It would appear at first sight that the interaction
among reciprocal lattice points near or touching
the Ewald sphere would be of the nature of a minor
correction to the kinematic theory and not likely
to produce a large effect. That a large correction to
the kinematic theory is necessary is demonstrated
in the electron diffraction patterns of Fig. 2. Figure
2(a) shows a very strong (222) Laue spot in the
pattern from a single crystal of silicon. Over a
narrow range of orientation, the (222) is the strong-
est reflection in the pattern. Figure 2(b) shows a
Debye-Scherrer pattern obtained from an evapo-
rated germanium film illustrating the high average
intensity of the (222) ring. Figure 2(c) is a reflection
pattern from a ground germanium surface in which
the crystal size is sufficiently large to produce
grainy rings. Local variations in the (222) intensity
due to favorably oriented crystallites can be seen.
From these and other patterns it is evident that any
theory of the (222) reflection must account for a
reasonably high intensity. It turns out that the
interactions in the dynamical theory can be likened
to resonance with coupled oscillators which may
produce large responses even though the interaction
or coupling is a first-order correction.

The (222) reflection in diamond (and other for-
bidden reflections) can be viewed as a result of
a multiple reflection process. For example, a (222)

R. D. HEIDENREICH

could be considered as compounded from a (113)
and a (111). In general, compound reflections are
those of indices (kkl) arising through diffracted
beams of indices (kikil1), (hsakals) such that k=h,
—hy, k=ky—Fky, and I=Il—/. This coupling or
interaction condition relating the indices of primary
and secondary reflections (to be considered here in
detail) was recognized by Renninger? and used by
him to explain observed (222) and (002) x-ray
reflections in diamond. Renninger’s conclusions are
about the same as those arrived at in this paper,
but the general treatment to be given here is con-
siderably different and is based on the concept of
Brillouin zones and perturbation of the energy
levels at a zone corner. Raether! early attributed
the forbidden (005) reflection observed in electron
diffraction patterns of pyrites to dynamical coup-
ling. Numerous other examples appear in the litera-
ture.

An alternative to the above discussion is the pos-
sibility that the accepted diamond lattice is not
correct and that the structure factor is not zero for
the (222). This alternative would seem preferable
to the compound reflection theory in some cases.
A weak (222) has been observed in x-ray patterns
of diamond single crystals although apparently not
from all crystals examined and is attributed to the
configuration of the valence electrons. A (222) ring
has not to the knowledge of the author been found
in x-ray powder patterns of diamond, silicon, or
germanium. However, this can be interpreted to
mean that insufficient path length is available to
build up the intensity as required in the dynamical
theory. The contribution of the valence electrons to
the electron scattering process is likely very small
and not capable of accounting for the large inten-
sities observed experimentally.

The conclusion would seem to be that a satis-
factory explanation must be found in the dynamical
theory. It has been demonstrated®? that the wave-
mechanical theory of electron diffraction is ap-
proximately correct and capable of explaining in
a straightforward manner many experimental ob-
servations. The remainder of this paper will be
concerned with demonstrating the capabilities of
the theory.

I. GENERAL FORMULATION

Although the dynamical theory of electron dif-
fraction has been developed? in terms of Brillouin
zones, and the calculations carried out in detail for
the simple case of a single diffracted wave, it seems

s M. Renninger, Zeits. f. Physik 106, 141 (1937).

1 H, Raether, Zeits. f. Physik 78, 527 (1932).

2 R. D. Heidenreich, J. App. Phys. 20, 993 (1949).

3 R. D. Heidenreich and L. Sturkey, J. App. Phys. 16, 97
51943).2 References to earlier work will be found in footnotes

and 2.



ELECTRON REFLECTION

advisable to briefly state the problem and develop
the general theory.

The problem to be considered here (the Laue
case) assumes a slab of perfect crystal the front
face of which is the x—y plane (Fig. 3). Incident
from the left upon the front face is a monochro-
matic plane vacuum wave, ¢,=4 exp[4(K,-r)], at
approximately normal incidence. Inside the crystal
the wave function is a linear combination of the
various reflected and transmitted waves consistent
with the total energy. At the back face, the crystal
waves join up with vacuum transmitted and re-
flected waves. It is assumed that all waves travel in
the positive direction of the z axis so that no
reflected beams enter the vacuum from the front
face.

Before undertaking the mathematical analysis, it
is worth while to summarize the pertinent results
of the mathematics to aid in understanding the
fundamental features of the dynamical theory and
to indicate the direction of the calculations. Since
the kinematic theory is the first-order approxima-
tion to the dynamical theory, it is convenient to
begin with the simplest case and show its relation
to the more general one. This can be demonstrated
schematically by considering the wave vectors in
reciprocal space as shown in Fig. 4. In each illus-
tration the wave vectors at the incident vacuum
side, the crystal interior, and the exit vacuum side
are shown. The incident vacuum wave vector K,
(|K,| =2m/)\) is the same in each case. If the
crystal is oriented such that the Bragg condition
is not realized for any crystal plane and if the
inner potential is neglected, then there will be an
incident crystal wave vector K, and a transmitted
wave vector K, both of which are the same as K,

Fi1c. 2. Examples of the
“forbidden’’ (222) reflection in
electron diffraction patterns
from silicon and germanium
(40-kv electrons). (a) Strong
(222) Laue spot from an
etched single crystal of silicon.
(Courtesy of K. H. Storks.)
(b) Transmission pattern from
an evaporated germanium film
on a silica substrate. (c) Re-
flection pattern from a ground
germanium surface showing
grainy rings.

(a)
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as shown in Fig. 4(a). If the incident vacuum wave
is a plane wave, then the crystal wave and the
transmitted wave are also plane waves joining at
the crystal-vacuum surfaces. If now the incident
crystal wave vector K, terminates on or near a
Brillouin zone boundary, there will be a diffracted
wave vector K,=Ky+2rg which can be drawn in
either of the ways shown in Fig. 4(b). There is a
transmitted vacuum and diffracted vacuum wave
in this case. Figure 4(b) represents the kinematic
case in which the waves are still plane waves. If K,
has its terminus on the Brillouin zone boundary,
then the Laue condition |K,|2=|K,|? is realized.

As will be seen later, the crystal waves which are
solutions of the Schrédinger equation for the
periodic potential inside the crystal are Bloch
functions which have the form

ei=21 Cii exp[i(Kii-r) ],

with K;7=Ky'4+2#xl and C;/ the amplitude coef-
ficient. When K, terminates on a Brillouin zone
boundary, it turns out that the wave function
inside the crystal is a linear combination of two
Bloch functions ¢¢ and ¢;. There are consequently
two incident crystal wave vectors K,° and K,!
and two diffracted wave vectors K,° and K,! since
¢o and ¢; must have the same energy. K,° and K,°
form one Bloch function while K¢' and K, form
the other. The boundary conditions require that
the crystal wave vectors have tangential com-
ponents which are equal to that of the incident
vacuum wave vector or differ from it by the tan-
gential component of a reciprocal lattice vector.
Consequently, K¢* and K¢ have equal tangential
components as do K,° and K, with the normal
components differing by a vector AK normal to

= (555
(220)

(1)
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F1G. 3. Representation of the Laue case of the dynamical
theory where no radiation emerges from same surface into
which it enters. Electrons are incident from the left onto the
front surface of a crystal slab bounded by the planes z=0 and
z=2. The various transmitted and diffracted wave vectors are
shown. In the case to be considered in detail, K, is approxi-
mately along the [110] crystal axis of germanium (Fig. 6).

the surface as shown in Fig. 4(c). K,° and K,' are
out of phase at the incident surface so that the
amplitude of the diffracted wave is zero at the
surface and increases with penetration into the
crystal.

The essential feature of the dynamical theory is
the multiplicity of wave vectors such as K,° and
K ! associated with a single diffracted wave. It is
here that the interference phenomena arise with
AK being the beat wave vector. The multiplicity
of diffracted wave vectors can be viewed as multiple
refraction (the crystal is doubly refracting in the
case of Fig. 4(c)).

The extension to any number of diffracted waves
is evident. The incident crystal wave vector may
terminate at a Brillouin zone edge or corner and
give rise to several diffracted waves. At a zone
edge, however, formed by reciprocal lattice points
S and G (Fig. 4(c)), the mathematics require that
another reciprocal lattice point A be considered.
The indices of A must be such that

(M1A2hs) = (515253) — (g18283).

The solution in the crystal for this case consists of
four Bloch functions with the same energy and
hence four wave vectors for the transmitted and
each diffracted beam. There will now be three
distinct beat wave vectors as shown in Fig. 4(d).
Of particular interest is the case when the structure
factor associated with one of the reciprocal lattice
points S, G, or \ is zero. If the structure factor for
S vanishes, it turns out that the amplitude coef-
ficients C,’ do not vanish and may be comparable
to C,7, for example. Thus, at a zone corner it is
possible to produce a diffracted beam corresponding
to a zero structure factor. This is the basis of the
theory of the (222) reflection to be advanced. The
following sections are concerned with the mathe-
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matical analysis leading to the calculation of inten-
sities. The procedure is that commonly used in
perturbation theory and is concerned with deter-
mining the energy levels at a corner, the amplitude
coefficients, and finally the intensities.

A. Crystal Wave Functions

The general motion of an electron of total energy
E in a region where the potential is V(x, y, 2) is
described by the Schriodinger equation,

2

Hyo=E¢p with H= — Vi+Vix, v, 2).

87im

In a perfect crystal, the potential can be repre-
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F16. 4. Relations among wave vectors in reciprocal space for
several approximations in diffraction theory. The representa-
tion may be taken as projections of the vectors onto the plane
of the paper. The incident plane wave is from the left and the
emergent plane waves on the right. (a) Zero approximation.
No interaction with crystal. (b) Kinematic or first approxi-
mation. Single diffracted wave vector K,=K,+27rg. The
diffracted wave in the crystal is a single plane wave. (c) Dy-
namical theory, single diffracted beam. The diffracted wave
in the crystal now consists of two plane waves with wave
vectors K,° and K, 1. The wave function in the crystal is a
linear combination of two Bloch waves, one with wave vectors
K and K,° and the other width K¢ and K, . The boundary
requirement for the tangential components is shown. (d) Dy-
namical theory, three diffracted beams (Brillouin zone edge).
The structure factor of any one of the three reflections may be
zero and still give rise to a non-zero amplitude for that
reflection. (In (c) and (d), the beat wave vectors. AK, are
normal to the crystal surface.)
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sented by a Fourier series?
Vix,y,2)=—(Vot+ 22, v,e2i"), 4)

where g=gb1+g:b2+gsbs is a reciprocal lattice
vector and v,=9,,,,s, for brevity. The prime on the
summation over the triple indices means that
g1=g:=g3=0 is excluded since it is written as V)
(the inner potential).

In field-free space, V=7V, the solution of the
equation

HO® 0 =F;®,.0 with HO=

2

v+ Ve (5)

8mm

is a superposition of plane waves. Assume that the
solution of (3) can be expanded in terms of the
unperturbed wave functions ¢;° of (5) or

(6)

with the ¢;'s to be determined. Substituting (6) into
(3) and using (5) obtain

2i(Vei O +Bie;?) C;=0,
where 8;=(E;® —E) and
E;O=h%K;|*/87m.

e=2_5¢ivs,

Q)

Multiplying (7) on the left by ¢.** (the complex
conjugate of ¢,° and integrating over the unit
cell, Q,

2

f%“”*Vw(“)dv—!-ij ‘Pm(o)*¢j(0)d7]Cj=0'
Q e (8a)

If the expression (4) for the potential is placed in
(8a) and if the subscripts j and m of (8a) are
identified with reciprocal lattice vectors,® there is
obtained upon integration

Co= ¥ (8b)

‘Um_,"Cj.
JojFEm .

B

The Fourier coefficient 9,—; occurs in (8b) as a
result of the orthogonality of the unperturbed wave
functions ¢,(?. Equation (8b) is the desired relation
between the amplitude coefficients, the Fourier coef-
ficients and the energy and is sometimes called the
“/dispersion equation.” In (8b),
h?|K;|*
= (———————E)
8mim

b Reference 1, Appendix I.

¢ If K, denotes the incident wave vector and m a reciprocal
lattice vector, then K,,=K,+27m is a diffracted wave vector.
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rather than [|K;|?— (87*m/h*)E] as employed in
reference 2.

Suppose now that the Ewald sphere passes in the
neighborhood of reciprocal lattice points g and s.
In (8b), j and m then take on the values, 0, g, and s.
The Fourier coefficient v,,_; will take on not only
the values v,, v_,*, v, v,* but also v,_, and v,_,*. If
A=s—g, C» must be taken into account if the
reciprocal lattice point A\ lies near the Ewald
sphere. The set of Egs. (8) for the case of amplitudes
Cy, C,, C,, and C\ with A\=s—g then becomes

[ Bo —v,* —ﬂ,* ‘—‘U)\* ] Co

— Y Be —un¥  —u*| ) Co| _

—v, =0 Bs —v, c.[=0 ©)
—U  —Un—g —U,F Ba Ca

The roots of the secular determinantd of (9) are
the eigenvalues from which the possible crystal
wave vectors and energy gaps are determined. The
amplitude coefficients C,, C;, C» are obtained from
(9) in terms of Cy, the Fourier coefficients and the
eigenvalues. The solution is thus a one-electron
Bloch function reducing to a plane wave when the
Fourier coefficients of potential approach zero.

There will be one Bloch function for each root of
the secular determinant (9) which, for a given K,,
will have different energies corresponding to the
different roots. It is possible to choose a set of
distinct vectors K% Ky, K¢% and K¢ (one for each
root of the secular determinant) which have the
same tangential components as the incident vacuum
wave vector and correspond to the same total
energy. (The total energy is fixed in a diffraction
experiment.) With the tangential components
fixed, the normal components are adjusted to
satisfy the requirement for fixed E so that Ky, for
example, can be written

K =K"+AKq,

where AK; is normal to the surface. The various
wave vectors and AK'’s are illustrated in Fig. 4(d).

A Bloch solution exists for each allowed wave
vector K% K, etc., so that the possible solutions
are

o= 2 Cplexp[i(K,"n)],
. »=0,g s\
(10)
es= 2 Crlexp[i(K,* )]
p=0,¢g 5.\

and the crystal wave function is a linear com-
bination of such solutions

(11)

where the a's are coefficients to be determined by
the boundary conditions.

Ye=aopot+ai101+a202+a303,

d The matrix in (9) is Hermitian and hence the secular
determinant possesses four real roots.
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From the linear combination of Bloch functions
(11), the transmitted and diffracted waves associ-
ated with K% K, K? and K¢® can be sorted out
according to the subscripts and written separately
as

Fe= 2, aiColexp[i(Kot-r)],
- 1=01.2,3 -
: (12)
O= 2 aiC\lexpi(Katr)].
1=0,1,2,3

Here ¢, is the transmitted wave amplitude and ¢,
¢a O are diffracted amplitudes. In this case a dif-
fracted wave, say {,, is now characterized by four
wave vectors (Fig. 4(d)) rather than the single one
of the kinematic theory, and consists of a series of
terms, one from each Bloch function.

The amplitude coefficients, @, in Eq. (12) are
determined by the boundary conditions at the
incident crystal surface (z=0). If 4 exp[¢(K,.r)]
denotes the incident plane wave, then the following
equations apply at z=0.

[Coo Col C(]2 C03 Qg A
Co G G Gl Jo 13)
e Ct Ce CJJ az[ 10
PG G G G Las LO

Equations (13) are immediately obtained from (12)
at z2=0 where ;=4 and {;=¢.=H=0. The ex-
ponentials do not occur since the tangential com-
ponents of all wave vectors are equal or differ by a
reciprocal lattice vector at z=0. The same boundary
conditions apply at the exit surface but need not be
considered since all the coefficients and amplitudes
are determined at the incident surface and by the
potential inside the crystal.

B. Intensities

Having obtained explicit wave functions (12) for
the transmitted and diffracted beams, the calcu-
lation of the intensities is straightforward. If I, is
the intensity associated with the indices #, then

Iﬂ = fnfn*
= ¥ {0a,*ColCot* expli(Kni— K ) 7]

1,5=0,1,2,3

+a*a;Cot*Cr® exp[ — (K, ' —K,*)-7r]}. (14a)

Since the coefficients of the exponentials are com-
plex conjugates, the intensity is real and (14a) can
be simplified and written

I.,= [aoC,.°+a1C,.’+azCn2+aan3l 2

=2 Y a1 *ClCy* sin?3(kot—ko*).2, (14b)
l,§=0,1,2,3
#s

where the term I=s has been removed from the
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summation and (ko' —£k,*), is the z or normal com-
ponent of Ko'—Ky°.

The fine structure of a Laue spot can be obtained
by evaluating the intensities for each of the wave
vectors K9 K,!, etc. The angular spread between
K,"and K.}, etc. is of the order of AE/E where AE
is the energy gap at the zone boundary and is about
10~* rad. for 40-kv electrons. Such a procedure may
be necessary in interpreting diffraction patterns
where high resolution is obtained.

The first term on the right of Eq. (14b) vanishes
for all but the transmitted beam as seen from (13).
The intensity of a diffracted beam thus consist of a
sum of sin? terms such as is obtained in treating
interference phenomena in light optics. The argu-
ments of the sin? terms in (14b) can be written
L(ko'—ko*).2=%|AK .|z where AK,; is determined
from the secular roots® and is the beat wave number
or ‘“‘anpassung’’ in Bethe’s original theory.*

In using (14b) it must be remembered that the
following assumptions are incorporated :

(a) A perfect crystal in which the potential is represented
by a Fourier series.

(b) An abrupt discontinuity in potential at the crystal-
vacuum interface. Laue® has shown that this assumption is
valid for fast electrons.

(c) No attenuation due to inelastic scattering. The possi-
bility of including inelastic scattering into the dynamical
theory using Slater’s® complex potential method has yet to
be investigated.

II. EQUIVALENT CIRCUIT FOR ELECTRON
DIFFRACTION

The foregoing discussion is equivalent to an
extension of Bethe's treatment,® the difference
being chiefly one of terminology and the explicit
use of energy levels as a means of determining the
permissible crystal wave vectors. In the Brillouin
zone scheme, the Laue conditions are equivalent to
requiring that the incident wave vector, K,, ter-
minate on a Brillouin zone boundary. The existence
of one or more diffracted beams is determined by
the details of the energy discontinuities at the zone
boundary. A single energy gap allows one and only
one diffracted beam and is realized when the
terminus of K, is not near a zone edge or corner.
The multiple energy gap arising in the vicinity of a
zone corner gives rise to two or more diffracted
beams; in the case of Eq. (9) there will be four
energy levels at the corner and three diffracted
beams. The number of diffracted beams is always
one less than the number of roots of the secular
determinant. However, the relative intensities of

e For example: If E; and E; are two of the secular energy
roots, then AKo is determined by Eo(K¢)=E;(Ko)
=FE(Ko®+AKq1). |AKo1|? can be neglected as can (AKg-g)
for most approximations.

4+ H. A. Bethe, Ann. d. Physik 87, 55 (1928).

8 M. von Laue, Phys. Rev. 37, 53 (1931).

8 J. C. Slater, Phys. Rev. 51, 74 (1937).
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the possible beams is not simply related to the
magnitudes of the energy gaps at the boundary. A
detailed calculation is necessary to obtain the
intensities as will be demonstrated in a later section.
Although the use of Egs. (9), (13), and (14b) is
sufficient to determine the energy levels at a zone
corner and the intensities of the diffracted beams,
the model is strictly formal and does not appeal to
the intuition. For this reason, the use of a coupled
oscillator model in the form of an equivalent circuit
will be mentioned which presents a relatively simple
physical model for the dynamical theory.

The impedance network model for the diffraction
problem is obtained directly from the energy matrix
(9) for the specific case of a periodic potential and
is not as general as that employed by Kron.? If the
energy matrix (9) is viewed as an electrical network
matrix whose meshes contain inductance and
capacitance, the off-diagonal terms represent the
elastances of the coupling condensers. If the cor-
respondence is carried out it is found that the
Fourier coefficients of potential in (9) behave as
couplings between the various beams which cor-
respond to the meshes of the network. The condi-
tion for resonance between two meshes (identical
natural frequencies) is just the Laue condition in
the diffraction case.

A network can be drawn for the matrix (9) only
if one or more of the Fourier coefficients vanish.
If »4=0, the network is that shown in Fig. 5(a).
If 9 =0, in addition, where A might be (222), the
network is that shown in Fig. 5(b). Mesh A is no
longer directly coupled to the incident or driver
mesh 0 but still may be driven through the coupling
condensers , and v,, providing that A=s—g. If
A=(222), then a possibility is g=(111) and s = (113).
If mesh g is detuned sufficiently that its response
can be neglected, the matrix of the system can be
reduced in order from four to three. This reduction
in order through neglecting the response of one
mesh (or beam) greatly facilitates the calculation
of intensities when such an approximation is valid
as will be seen. No computational advantages are
gained from the network analogy unless a network
analyzer can be used. A more detailed consideration
of the analogy is not justified at this time.

III. (222) INTENSITIES

In order to compute the diffracted intensities, it
is necessary to know the details of the reciprocal
lattice geometry and the Brillouin zone corners. All
the numerical calculations in this paper will be
made for germanium (a,=S5.65A), but either dia-
mond or silicon would do as well. Since the (222)
reflection is of primary interest, it is convenient to
consider a plane section of the reciprocal lattice

7G. Kron, Phys. Rev. 67, 39 (1945).
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normal to the [110] zone axis as shown in Fig. 6.
The reciprocal lattice points are located to scale
and the Brillouin zone boundaries drawn as the
perpendicular bisectors of the respective reciprocal
lattice vectors.® The zone boundaries of interest are
parallel to the [110] crystal axis. The edges influ-
encing the (222) reflection are then those such as
4, B, C, D of Fig. 6. In the first example to be
considered, the incident crystal wave vector, K, is
drawn from the origin so that it terminates at the
(111)| (222) zone corner.! K,?/2x is the projection
of the incident crystal wave vector on the plane of
the paper (containing the labeled reciprocal lattice
points). The third reciprocal lattice point involved
must be such that A=s—g. Thus, if g=(111),
s=(222), then A=(113). If a circle of radius
| Ko?/2m| is drawn with C as center, it will be seen
that the reciprocal lattice point A =(113) lies some
distance off the circle. The point (220) lies some-
what nearer the circle but does not interact since
the indices do not satisfy the condition A=s—g.
Since (113) is considerably off from the Laue con-
dition, its amplitude is assumed sufficiently weak
that it can be neglected as a first approximation.
Neglecting C) and setting »,=0 in (9) gives, for

point C,
ﬁo —‘1)"* 0 Co
—Y B, —WA*]{Cg}=0.
0 — U ﬁs Cs

Since |K,|?=|K,|?=|Ko|% Bo=B,=8. and the

(15)

Vi a vg Bo Vg V& -w
Vs Vg Bg W o
A
sl (134
9 /S) VA -Vy, o _Vgi- V-
(a)

* *

/6) L v Lo Vg Vs

Vs Vg Bg O
7\) K /Q)_L Vs 0 Bs V
I VQ:I_: s) ]\ 0o o V¢ pa

F

(b)

F1G. 5. Equivalent networks for dynamical theory based on
the matrix (9) for the periodic potential. (a) wx_,=0.
(b) va—,=v7=0. The coupling condensers are labeled with the
Fourier coefficients to which they correspond. Mesh 0 is taken
to be the “driver.” In (b), mesh X\ corresponds to the case of
the (222) reflection which responds through the couplings v,
and v, even though not directly coupled to the driver.

8 See L. Brillouin, Wave Propagation in Periodic Structures
(McGraw-Hill Book Company, Inc., New York, 1946).
. 'The symbol (hiki1)|(heksd2) will be used to denote the
intersection of zone boundaries (hikil1) and (hzkals).
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secular determinant yields the cubic
‘Bolvxlz—ﬂo|vg]2=0. (16)
Mmmwmmw=mw=+wm+mmhwaa

Bo*= —(]v,|2+ | o\ |?)}= — AE. The energies are then®
E'=h?|K,|%/87m,
L Y L
= ————— =__—_A
St (lvg]2+]oa]?) Srm ro7)
LIk I
Et="—" 4 (Jo,|*+| 0| )} =———+AE.
8rim 8mim
Y r o(113) 0.062A"
e(222)

(222) BRILLOUIN
ZONE BOUNDARY

e (331)

®(337)

Ae(113)

FI1G. 6. Plane section through germanium reciprocal lattice
drawn to scale with Miller indices of reciprocal lattice points
given. The plane of the paper is normal to the [110] crystal
axis. Brillouin zone edges 4, B, C, and D are all common to
the (222) zone boundary. K,?/2r is the projection of the
incident crystal wave vector_on the plane of the paper and
terminates at the (111)[(222) corner. The circle of radius
| Ko?/2m| passes through reciprocal lattice points (222) and
(111) but misses (113). The edges are as follows

..(113)](222). Couples with (331).
..(331)](222). Couples with (113).
.. (111)] (222). Couples with (113).
.. (113)] (222). Couples with (T11).
..(113)|(331). Couples with (222).

MO0

The permissible incident wave vectors are found by
equating the roots (17) with K¢ =K"+AK,
K2=K,"+AK, so thath

& Since Bo=[(?| Ko|?/8x*m)—E]=[E"—E].

b The approximation (AK-K)=~|AK||K] is employed for
the case of nearly normal incidence where the direction cosines
of the incident wave vector is nearly unity. Otherwise, the
expressions (18) will contain the direction cosines in the
denominator.
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AE 8rm wAE
AKM_'\_’K()I—KOO& = y
2 k'K, \E©
AE 87'm TAE
AKogﬁ’Koz‘—Kooﬁ"“— = — , (18)
2 kK, AEO®
8rm 2rAE
AKlzg —Kolﬁ —AE - .
h2Ko° AE®©

It is not necessary to calculate the crystal wave func-
tions explicitly when using (14b) to compute the inten-
sities. The boundary Eqgs. (13) are for this case (¢;=0),

Coo Co1 C02] Qo A
C Cp Cp2 {al ={0 }
C‘(J C‘] ng, (42 0

Writing Cy=a,Co, Cs=a,C,, etc., the constants a,,
ai, and a; are found to be

ala,?—ala,!

ap=A4A Colcoz;
lel
(eslag® — as’e,”)
ar=— Co°Co?;  (19)
el

(es%ag' — as'ar”)

ay=A——————C°Cy},

le
with
1 Cl = COOCQICoz[(asla‘ﬁ— a,zag’)

— (s, — a,"’aao) + (aaoaol - aslago) ]

The o's are easily found from (15) to be

Bsvy—Bovr* BoBo— Z’a(va*+vk)
BaBo—2*(v,*+12) ' Byﬁs—vk*(va*'*'v)\)
Since Bo=8,=048s, there is finally obtained the rela-

tions

a,"=0; (80°=0), a®= —v,/n¥*,

aﬂl = Bﬁl/va*y = Z))‘/vg*, (20)
=8e/v, = —a,!, al=a,.
By (19) and (20)

1 ]4|® o la, 0%

aod1*= _—
2 COOCol* |0£3 — Qs '
1 |47 ala*

doaz*’: —_— ) (21)
2 Co°Co2* |a,‘——oz5°|2
1141 |af?

Qoay* =+~

4 C01C02* |a 1_a0|2

with a¢*a1= (aa1*)* etc. The relative intensities
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are found from (14b) to be

Lot |?] 00|

I3 = [4 sin23(AK 012)

3 |(131—C¥3 ]

—sin?}(AK 2) ],
]aall | s OI

Iamy= sin?3(AK 102),

g ot — a0 (22a)

2(as o, + o, *a,?) )
I,=1+ sin?3(AK 012)
[t — ]

le|?

in2l
0|2 sin Z(AKQZ).

1

las —

Introducing numerical values for the Fourier coef-

ficients (Appendix I), the final result is

I 293y =0.23[4 sin’rz/20—sin?r2z/32 ],
T111)=0.59 sin’n2z/3,
I,=1—-0.90sin?rz/29—0.37 sin?r2z/2,,

where, by (18),

2AE©®
= (AE=(|vy|24 |or|2)¥=10.5 volts).

(22b)

Z0=

Figure 7 shows a plot of the intensities (22b) as a
function of penetration in the crystal, z, for 40-kv
electrons (A=0.061A). The intensities averaged
over thickness or path length in the crystal are
found by setting sin?=3% in (22b) or (Z11)a=0.30
and (I (223 )a=0.32. Hence, not only is there a (222)
reflection at the (111)|(222) zone corner, but the
intensity is about the same as that of the (111)
intensity. It will be noted that the intensity of the
reflection builds up more slowly than does that of
the allowed reflection.

The energy as a function of wave vector along
the vector K, to (111)](222) is of interest. Re-
turning to (15) with By £ 8, +8, and writing 8,= 80
+4, and B,=B¢+A,; where

Ag=(n*/8n*m) (| Ky |*— | Ko|?)
and
A= (n*/8x*m)(| K,|*— | Ko|?)

the secular determinant is (g=(111), s=(222),
A= (113) as before)

60 —Ug* 0
—v, Botd, —u*|=0 (23)
0 -0 ﬂo"*"Aa

yielding a cubic. The roots are most conveniently
evaluated by numerical calculation for various
values of |K,|2% The deviations, A, and A,, can be
found from Fig. 6 by measuring the projections of
K,, K,, and K, and computing the differences of the
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squares. The energies so obtained are in the form
of that for a free electron, E‘® =h?| K,|2/8n*m, plus
a correction term. Two of the roots possess a
positive correction and one a negative correction.
A plot of energy versus wave number along K, is
shown in Fig. 8 using the reduced zone scheme.

If the amplitude coefficient Cx (A=(113)) had
not been neglected, the secular determinant at
point C would have been

Bo —p,* 0 — ¥
— Be - —n "

0 — N Be — (24)
-~y —%" B

rather than (23). The Fourier coefficient v\, = 9003
now occurs as a coupling between meshes g and A.
The plot of energy vs. wave number | K,| (along Ky)
to the corner will now appear as in Fig. 9 as com-
pared to Fig. 8. The retention of C» has increased
the perturbation.

The cubic approximation demonstrated for point
C of Fig. 6 can be applied at corners 4, B, and D
along the (222) zone boundary. The intensities
obtained at corners 4, B, and D are as follows:

Corner A : (113)](222); B
s=(331); g=(113); A=(222); wn,=vus.
Cin neglected: AE=(|v,|24 |vA_4|2) =7 volts.
T 203, =0.14[4 sin?rz/2,—sin?r23/20 | ;
20=2AE/AE = T00A,
I(113) =0.93 Sil’lzﬂ'ZZ/Zo,
I,=1-0.56 sin®rz/2,—0.76 sin®w2z/z,,
22w =0.21; (T13)a=0.46.

Corner B: (331)|(222); B
s=(331), g=(113), A=(222).
Cuis neglected; AE=(|,|24|v,|%)¥=7.3 volts.
I(22) =0.17[4 sinrz/2zo—sin?r23/20 ],
1(331) =024 Sil’l21l'22/Zo,
I,=1-0.68 sin®rz/2,—0.06 sin®*r2z/z,,
(L229)n=0.27; (I (33)n=0.11.

Corner D: (113)](222); ~
s=(113), g=(111), r=(222).
Car neglected: AE=(|o,|*+ [0,]3)1=10.7 volts.
T (223)=0.23[4 sin’rz/20—sin®r23/20 ]; 20=450A,
I(11§) =0.36 Sin27l'22/20,
I,=1—-0.93 sin?*rz/2,—0.13 sin’r2z/2,,
(T2 )n=0.35; (T(113))w=0.18.

The values of I(ss3 can be computed for points
along the (222) zone boundary other than the
corners (Appendix 1I). I3 will generally decrease
upon leaving a corner and moving along the (222)
boundary. A strong (222) reflection is thus obtained
only from restricted regions of the (222) boundary.

Having investigated the behavior at zone corners
formed by Brillouin zone boundaries, one of which
has a zero structure factor, the question arises as to
the behavior at a corner where both structure
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F1G. 7. Intensities of the (111) and (222) reflections as a
function of depth of penetration in crystal. Incident crystal
wave vector terminates at (111)|(222) boundary (point C,
Fig. 6). Amplitude of (113) reflection neglected. The (222)
mte(x;solt)ll Eullds up more slowly than the (111). 40-kv electrons,
A=0.061A.

factors are non-zero. Point F (Fig. 6) or the
(331) | (113) corner will serve as an example. Here
s=(331), g(113) and A=(222). Since »=0 and
|Kx|2> | K,|? the amplitude coefficient C can be
neglected. The intensities are found to be

T 113 =0.77 sin’rz/2, with z0=AE/AE;
AE = (5] %+ [v.]9)},

1(331) =0.23 SinZZ/Zc.
Both intensities possess the period zy=AE/AE in
contrast to the mixed periods found at points 4, B,
C, and D. The reason lies in the matrix since the
root Bo°=0 requires Co®=0. There are thus only
two incident crystal wave vectors, K¢ and K. If
K, moves away from the corner (331)](113) along
the (113) boundary, I(13 becomes

1(113) =Siﬂ2772/20 with Zo=)\E/(I/'1]3).
Along the (331) boundary away from the corner,
)\E/(Uaal).

Thus, at the corner, not only is the intensity par-

I(331) = Sirl2Z/Zo with zo=

.
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~an
\\
\\
- — \\
\\\\\\\ ~
\\\ \\
~~e N
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[ ~ \4.—.
ﬁ[J \\\ AE
z T AAC = 2 2
& - FAE=VIgP H I
e
// ]
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L |
!KOIE: IKglzz IKsl? [Kol

F1G. 8. Plot of energy vs. incident wave number | K| along
the wave vector K, to the (111)] (222) Brillouin zone edge in
the reduced zone scheme. C) is neglected here to yield the
cubic approximation (Eq. (23)). The solid portions of the
curves are calculated from (23) while the dotted regions are
schematic since the solutions hold only in the neighborhood
of a zone edge. For this case, AE=10.5 volts.
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titioned between the two diffracted beams, but the
period 2, is reduced to a lower value than it would
be for either reflection alone. This suggests that the
values of 2, measured from electron micrographs of
regular crystals % ? should be interpreted cautiously.
In the case of MgO crystals, the calculated value
of 2ot is 410A for the (200) reflection. The value
measured by Hall® is about 300A (although an
observed value of 420A was reported by the
author? it has since been found that an error was
made in the measurement and the value in this
case is also about 300A). It seems likely that for
the orientation of electron beam and MgO crystal
at which the effect is observed, the incident crystal
wave vector is near the (200)|(220) corner. In this
case 3o=2320A for 60-kv electrons or a value much
nearer the experimental value than the 410A. Thus,
in interpreting experimental observations on the
basis of the dynamical theory, it now appears that
the simple results for only one diffracted beam may
often be inadequate.

Only a fraction of the Brillouin zone edges in-
volving the (222) boundaries have been considered.
The ones shown in Fig. 6 are typical but not
complete even for the (222) boundary. The
(331) | (222) boundary occurs between 4 and B, for
example, and couples with (111).

If the structure factors for two of the indices
satisfying the relation A=s—g are zero, a ‘‘for-
bidden’ reflection does not occur. For example, if
s=(222), g=(220), and A=(002), a step matrix

results
( /30 —V)g* 0 0 ]
— Y Bo 0 0 |
0 0 B, —v,;
0 0 —u,* B
e
\\
________ \\\
-— ~
- <
] e
% N 10VOLTS
x —+ 6VOLTS
z
e //,//"_Jrnvov_‘rs
g i
Rl
- ‘
o
IKol®= IkglP=IKs]® Ko} —

F16. 9. Plot similar to Fig. 8 for the (111)|(22Z) zone corner
with C) not neglected yielding the quartic approximation (Eq.
(24)). The quadratic approximation (Fig. 2 of reference 1)
gives two distinct energy levels and a single gap far from a zone
edge. The cubic approximation at an edge results in_ three
levels and two gaps while the quartic gives four levels and
three gaps. The perturbation increases as the order of approxi-
mation increases.

9C. E. Hall, J. App. Phys. 19, 198 (1948).
Using the quadratic approximation (reference 3).
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and the only reflection that will occur is (220) since
there is no perturbation at the (220)|(222) corner.

The dynamical theory seems to be at least in
semiquantitative agreement with experimental ob-
servations on the intensity of the (222) Laue spot
obtained from single crystals of silicon and ger-
manium. As previously mentioned, for certain
settings of the crystal, the strongest spot in the
pattern is found to be the (222). This is evidently
possible when the incident crystal wave vector
terminates at the corner formed by the (222)
Brillouin zone boundary and another boundary such
as (111), (113), or (331). In the case of a powder
pattern (Debye-Scherrer rings), such as Fig. 2(b),
it is difficult to predict the (222) intensity averaged
over all orientations.! An idea as to the procedure
necessary to obtain an average intensity for a per-
turbation reflection can be obtained from Fig. 10.
Figure 10 shows the (222) Brillouin zone boundary
for the diamond lattice. The dark shaded lines are
the neighborhoods of the intersections of Brillouin
zone boundaries of the form (111), (113), and (331)
with the (222) boundary and represent the regions
in which the perturbation (222) reflection will
result.* On the basis of the network analogy, the
dark regions are those in which there is effective
coupling to the (222) mesh while in the white
region the (222) mesh is isolated. For lack of any
other name, the dark region of Fig. 10 will be called
a ‘‘perturbation (or coupling) grid.” The total per-
turbation grid extends over all faces of the (222)
octahedron. (The octahedron so formed is not
strictly a Brillouin zone as the term is used in solid
state physics. It might be termed a ‘‘pure zone,”
however, since all faces have indices of the same
form, i.e., (222), (222), (222), etc. for this case.)
The average intensity of a (222) Debye-Scherrer
ring is then obtained by averaging over the entire
(222) octahedron. The fraction of the total area of
a pure zone occupied by the perturbation grid
would be a rough measure of the average intensity
of a Debye-Scherrer ring. In Appendix II it is shown
that the widths of the grid lines are of the order of 2°.

Having demonstrated that a (222) reflection is to
be expected from the diamond lattice, the question
arises as to whether or not other perturbation re-
flections may not arise in the same way. For ex-
ample, the (200) structure factor for diamond is also
zero. Calculations for several corners ((002)|(331),
(002)|(111), (002)|(113), and (002)|(331)) have
been made and indicate that a strong (002) should
occur at these corners and others. Diffraction
patterns from evaporated germanium and silicon

i For the case of only one strong diffracted beam, the inte-
gation has been carried out to obtain the intensities of Debye-

herrer rings. M. Blackman, Proc. Roy. Soc. (London) A174,
68 (1939).

k See Appendix II for calculations pertaining to the width
of the lines.
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__(337)
—(331)

F1G. 10. View normal to the (222) Brillouin zone face of the
(222) octahedron in reciprocal space. The array of intersecting
lines consists of zone edges formed by intersections of the
(222) face with other zone boundaries and is termed a ‘‘per-
turbation grid.” The widths of the grid lines are of the order
of a degree or so (Appendix II) with increased broadening
near intersections as shown schematically above. The per-
turbation grid extends over all faces of the octahedron.

generally show a weak (200) ring but a strong Laue
spot from a single crystal has not been reported.
With a suitably oriented crystal, a strong (200)
reflection should be obtained if the theory is correct.
The multiplicity for (200) is six as compared to
eight for (222) which reduces the change of finding
the eorrect orientation in randomly oriented crystals.
An experiment to find the (200) Laue spot seems
called for.

A perturbation grid occurs for all zone boundaries
in any crystal whether or not the structure factor
vanishes. If the structure factor is not zero, then the
effect of the perturbation grid is not so evident
since an appreciable change in intensity from that
expected with the kinematic theory is unlikely and
would be difficult to detect experimentally due to
complications arising from factors such as preferred
orientation, distortion, etc. Cases in which the
structure factor is zero should be the most fruitful
in this type application of the dynamical theory.

IV. GENERAL REMARKS

The presence of the (222) reflection in electron
diffraction patterns of elements possessing the
diamond structure seems at present to be adequately
explained by the dynamical theory. Experimental
verification*®? of the approximate correctness of
several of the salient features of the dynamical
theory leads to a reasonable amount of confidence
in the foregoing explanation of the (222) reflection.
The general approach and treatment is not unique
to electrons, however, and could be carried out for
x-rays as well.* The case of a single diffracted beam
in x-ray diffraction was worked out some thirty

* See J. Weigle and H. Miiksam, Helv. Phys. Acta. 10, 139
(1937).
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years ago by Darwin and Ewald.?® The transition to
the x-ray case can be readily accomplished by
noting that the quantity |,|/E occuring in the
argument of the sin? term for the simple electron
case becomes (K/(|vov,|)?)|oy| for x-rays,'® where
K =1 for normal polarization, o, is the polarizability
coefficient, and v,, v, are the direction cosines for
the incident and diffracted beams, respectively. If a
denotes the polarizability, then

Zﬂ o.ae2xi(p~r)
(the x-ray counter part of Eq. (4)) and
|og| = (eN/mn?Q) | F,|,

e is the electronic charge, A the wave-length, m the
electron mass, ¢ the ratio of the electrostatic and
electromagnetic units, Q the volume of the unit cell,
and F, the x-ray structure factor. For the case when
the Ewald sphere touches reciprocal lattice points
(111) and (222), Egs. (22a) may be applied with

2\
go~———-——=1.,44 X 107¢ cm for A=1.5A.
(logl?+]al®?

The two cases, electron and x-ray, thus differ only
by a change of scale as can be seen. The x-ray (222)
reflection does not reach maximum intensity until
the depth of penetration is about 8000A in ger-
manium as compared to 225A iu the electron case.
From the equivalent circuit point of view, the
couplings in the x-ray case are much weaker than
in the electron case.

The period 2y~1.4X10~* cm (in germanium) for
1.5A x-rays is of the same order as the estimates of
mosaic size. If the coherent path length in a crystal
is J, then the relative intensity of a reflection will be

c=4ra=
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F1G. 11. Rocking curves for the Ge (111) reflection averaged
over thickness showing the difference in width far from a
Brillouin zone edge, A, and at the (111)](222) edge, B. Curve
A is the quadratic approximation for only one diffracted
beam. Curve B is the cubic approximation with the incident
wave vector maintaining its terminus on the (222) boundary
and running either direction away from the (111) )| (222) edge.
The deviation from the Laue condition, Ag, is given in volts
which can be converted to radians, A8, through the relation
A0=A,d/2EX where d is the interplanar spacing, E the total
energy, and N the wave-length. For 40-kv electrons, A8=1.3
X107%Ag.

10 See W. Zachariasen, Theory of X-ray, Diffraction in
Crystals (John Wiley and Sons, Inc., New York, 1945),
Sections 3, 8-11.
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dependent upon /. In the case of diamond, 2, is about
4X10~* cm for the (222) and the intensity should
be sensitive to the mosaic size of the crystal. This
appears to be in qualitative agreement with experi-
mental observation.!! However, the dependence of
intensity upon mosaic size does not require that the
x-ray (222) in diamond originate primarily through
the perturbation grid on the (222) octahedron (Fig.
10). The simple case for only a single diffracted
beam wherein the (222) structure factor is not zero
(due to valence electron distribution) would also
predict a dependence of intensity upon coherent
path length. The width of the perturbation grid
lines for the x-ray case will be of the order of about
one-fifth of those for the electron case according to
a rough calculation. The region in which a per-
turbation (222) can occur in the x-ray case is then
smaller than for the electron case. It would appear
desirable to carry through the perturbation cal-
culation in detail for the x-ray case in an effort to
determine whether or not the dynamical theory
alone is sufficient to account for the (222).

In the electron case it seems clear that the origin
of the (222) is a perturbation phenomenon. Appli-
cation of the theory to a number of cases in addition
to the (222) would be desirable as a check.

The author is indebted to various members of the
technical staff for aid and criticism and particularly
to Dr. C. Herring for help in developing the general
theory and to Dr. R. L. Dietzold for aid in the
equivalent circuit treatment.

APPENDIX I. FOURIER COEFFICIENTS
The Fourier coefficients of potentials are given byt

vy =(e/nQ2|g|*)Z; (Z;—f;) exp[2wi(gj-rj)] es.u.

and vr(volts) =300 v, Q is the volume of the unit cell.
Some of the coefficients for germanium used in the text are
displayed below and were calculated using formula (I-1).

(I-1)

Germanium: Silicon: Diamond:
ap= 5.65A ao=5.42A do=3.56A
Q=180A3 Q=159A3 Q=45A3,

The unit cells contain eight atoms with the basis

(000), (330), GO, (03 ), Gid G1D, G1D G1D.

Germanium:

hkl (111) 117) (I11) (113)
Vhkt 6(1—1) 6(1+4) 6(1+1) 4.5(1—1)
| Wi | 8.5 volts 8.5 8.5 6.4
hkl 113) (331) (331) (115)
Vhkt 4.5(1—1) 2.5(1—1) 2.5(141) 1.9(144)
[vhkll 64 3.5 3.5 27

APPENDIX II. ROCKING CURVES

The behavior of the diffracted intensities in the neighbor-
hood of a Brillouin zone corner is important in considering

u Robertson, Fox, and Martin, Phil. Trans. A232, 474
(1934).

t The deviation, A, can be converted to radians through
the relation A@=A,d/2E) where d is the interplanar spacing.
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the widths of the perturbation grid lines of Fig. 10. A cal-
culation of the intensities as a function of the deviation, Ag
from the Laue condition is required and can be carried out
readily for the cubic approximation. For corner C (Fig. 6,
the (111)|(222) corner) the matrix (15) becomes

Bo —v,* 0 g=(111)
(—va Bo+4, —vx*), s=(222) (1I-1)
0 - Bo A=(113)

where Ay= (h?/8n*m) (| Kq|*— | Ko|?) is the deviation from the
Laue condition for the wave vector Kg. In this A,=0 since K,
is to maintain its terminus on the (222) zone boundary but
may move away from the corner in either direction. The
secular determinant of (II-1) yields the roots

600_
= L (80/2) +[(a0/2*+(AE) D,
=—(8,/2) —~[(A0/2)*+(AE)* ]},

with AE=(|v,|2+lv)‘l2)* as before (Fig. 8). Using the roots
(I1-2), the beat wave vectors are found to be

AKpn =Ko ~K=(x/NE®) { —(4,/2)+[(8,/2)*+(AE)*]}},
AKp=Ke¢—K=(r/NE®) { —(4,/2) —[(44/2)*+(AE)* ]},
AR =K —Ko =(—2x/\EO)[(A,/2)*+(AE)? . (11-3)

The ratios of the amplitude coefficients ag=
b=

.

L L[ 4,
al=—r ——
Ok 2

C,/Cy, etc. are now

HE) ramly w--2
-|GY reer]} o

in contrast to Eq. (20). From (14b) and (21) the diffracted
intensities are found to be

(I1-9

k2
v, v,

d=al=

Ia,‘)[?{a,‘!z

- 202, 2%
[(-z;zz)— [as‘—a.°{21a92—(xq‘i2[4(la” \2 agFa,l)
Xsin23AK oz +4 (gl |2 —ala *) sinAK 25
+2(ala* Fa*a,) sin?hAK ], (11-5)
0 12
Iy =4 Chilk La”' lag'| - sin?3AK 153
¢ st —a|? lag? —agt|?

[24]?

T (A,/2+(AER

in place of Egs. (22a).

It is of interest to consider first the (111) intensity as given
by (II-5). If vx =w11; is neglected, I(111y reduces to the case for
only one diffracted wave (reference 1) since now (AE)?= |v,|*
with

sin'-’%AKlg:,

2
=— 2.
Aa—sﬂgm“Kal

2
| Kol?)=2 h“ ([2A0 sin20 =2E©®Af sin26,
8r’n
where Af is the deviation from the Bragg angle 6. If the aver-
age value of sin?=1% is employed, the effect of thickness is
eliminated and average rocking curves are obtained as shown
in Fig. 11. The width at half-maximum intensity for the ap-
proximation of only one diffracted wave (far from a corner)
is about 32 volts as compared to about 42 volts at the
(111)](222) corner. The width at half-maximum can be
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Fic. 12. Ge (111) and (222) rockmg curves for two thick-
nesses of crystal as computed using the cubic approximation.
The incident wave vector terminus is maintained on the
(222) zone boundary and in the neighborhood of the (111)](222)
edge.

obtained directly from (1I-5) as [A,];=4AE and is seen to be
proportional to the energy gap at the zone boundary. The
width of a Kikuchi line would then be greater for large energy
gaps and hence greater if the incident wave vector terminates
near a zone corner.

The width of the (222) reflection is not obtained quite as
simply due to the presence of several periods in the expression
(I1I-5) for the intensity. Equation (II-5) has been plotted for
two different thicknesses, 100A and 200A, and is shown in
Fig. 12. The (111) is also plotted for the same thickness for
comparison. The subsidiary maxima are evident for the (111)
reflection in Fig. 12(b) and are more intense than the primary.
The half-widths of the (222) rocking curve from germanium
are seen to be about 54 volts with a thickness of 100A and 26
volts at 200A. The (222) exhibits in both cases a greater half-
width than does the (111). Experimentally, this should show
up as a broader (222) Kikuchi line.

The half-widths of the grid lines of Fig. 10 are thus seen to
be of the order of 5X 1072 rad. or about 2° for 40-kv electrons.



FiG. 2. Examples of the
“forbidden' (222) reflection in
electron diffraction patterns
from silicon and germanium
(40-kv electrons). (a) Strong
(222) Laue spot from an
etched single crystal of silicon.
(Courtesy of K. H. Storks.)
(b) Transmission pattern from
an evaporated germanium film
on a silica substrate. (¢) Re-
flection pattern from a ground
germanium surface showing
grainy rings.

Yo
Esu?

™ (220)

(1)

(a) (b) (c)



