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The Theory of the Change in the Conductivity of Metals Produced by Cold Work
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An attempt is made to calculate the increase in the residual electrical resistance of cold-worked metals
by attributing the eGect to an elastic distortion similar to that produced by the presence of edge type disloca-
tions. It is shown that, in single crystals, the direction of the dislocation axes, the slip direction and the
direction normal to the slip plane represent a set of principal axes of the conductivity tensor. The dislocation
resistance parallel to the dislocation axes is zero, while the resistance in the slip direction exceeds the resist-
ance normal to the slip plane by a factor which depends upon Poisson's ratio and which lies between 1
and 3. The mean density of dislocations in a highly cold-worked polycrystalline specimen of copper is
estimated from the observed resistance change and is found to be in reasonable agreement with the value
derived from the energy stored during work hardening. The formulation of the present theory follows the
lines of a recent paper by J. S. Koehler; the results difkr considerably from Koehler s, however, and it is
shown that his treatment cannot be regarded as satisfactory.

l. INTRODUCTION

'HE aim of the present paper is to give a theoretical
discussion of the additional residual resistance of

metals produced by cold working, it being assumed that
the important change which occurs during cold work is
the introduction of a large number of edge dislocations
of the type discussed by Burgers' and Koehler. ' This
problem has recently been studied by Koehler, ' and our
formulation follows the general lines laid down in
Koehler's paper; his treatment cannot, however, be
regarded as satisfactory, and a re-examination of the
problem seemed therefore to be desirable. The diGer-
ences between our calculation and Koehler's will be
pointed out at the appropriate stages during the de-
velopment of our theory.

We consider a metal single crystal containing a large
number of dislocations which have their axes parallel
and which correspond to parallel slip planes. The result-
ing displacement of the lattice ions from their positions
in the perfect lattice may be calculated approximately
by means of elastic continuum theory. Owing to the
elastic distortion the potential in the crystal lattice is
no longer periodic, and a conduction electron moving
through the crystal therefore undergoes scattering; the
collisions are elastic, since the dislocations constitute
a static perturbation. A rigorous evaluation of the
scattering probability is di6icult, since the displace-
ments produced by a dislocation are such that the per-
turbation methods usual in the theory of metals cannot
easily be applied; we therefore approximate by intro-
ducing a displacement function (Eq. (13))which enables
us to use the ordinary methods, and which at the same
time reproduces to a considerable extent the actual
elastic distortion present. It is hoped to investigate the
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error introduced by this procedure in a later paper; we
shall here assume it to be unimportant.

When the scattering probability has been calculated,
we can formulate the transport equation which deter-
mines the velocity distribution function, f, of the con-
duction electrons; this equation is formed by equating
the rate of change in f due to an applied electric 6eld to
the rate of change due to the scattering mechanism, and
it takes the form of a complicated integral equation.
The general formulas required are collected together
in $2, the matrix element for dislocation scattering is
evaluated in $3, and the transport equation is set up
in mI4. 1 in a form which includes the effect of thermal
as well as dislocation scattering (Eq. (22)). The thermal
scattering is assumed to take place isotropically.

In II4.2 we prove that the axes of the dislocation
system represent a set of principal axes of the conduc-
tivity tensor, and in $5 we obtain explicit solutions of
the transport equation for the limiting case in which
the dislocation resistance is small compared with the
thermal resistance. In $6 these solutions are used to set
up general expressions (Eqs. (36) and (37)) for the
dislocation resistance, based on the assumption that
Matthiessen's rule concerning the additivity of the
thermal and residual resistances is of general validity.
The results are in reasonable quantitative agreement
with the measured resistance change in polycrystalline
copper. For single crystals the dislocation resistance is
anisotropic, there being no resistance in the direction
of the dislocation axes, and the resistance in the slip
direction exceeding the resistance at right angles to it by
a factor which lies between 1 and 3, and which is greater
the smaller the value of Poisson's ratio.

2. GENERAL FORMULAS

2.1. As is usual in the theory of metallic conduction
the conduction electrons will be regarded as free, in the
sense that the energy E is related to the wave-vector k
by E=k'k'/2m, k being the magnitude of lr and m being
the effective mass of an electron. The distribution func-
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tion fof the electrons is conveniently written in the form

Irt Bf0
f=f.—g(k) k—,

m BE

where fo is the Fermi function 1/{e&s &»'r+1} (f being
the Fermi energy level and k being Boltzmann's con-
stant**), and where g= (g„g„,g,) is an unknown vector
function of h which is to be determined.

In the steady state, f is determined by the Boltzmann
equation

element for dislocation scattering, corresponding to a
transition in which the wave-vector of an electron
changes from k to h'. The collisions are, of course,
elastic, since Q(Ek —Ek) is effectively different from
zero only if E&=E& . We may therefore, as usual, replace
the integration in k-space by an integration over the
surface of a sphere of constant energy, and obtain

(2G+1)'ma

2~'k'k

ek Bfo Bf——K.k—= —'

7

m BE Bt
(2) {f( ') —f()}l( 'I

I
)I' ', ()

where —e is the electronic charge. The term on the left-
hand side denotes the rate of change of f due to an
applied electric 6eld E; the product of E with g has as
usual been neglected.

$Bf/Bt]„» in Eq. .(2) is the rate of change of f due
to the mechanism which scatters the electrons. We shall

suppose that the scattering in a highly cold-worked
metal is due to two causes: 6rst the presence of thermal
vibrations, random impurities, etc., which scatter iso-

tropically since the electrons are free, $ and secondly the
presence of a large number of dislocations, the scatter-
ing from which will possess directional features. It will

be assumed that the 6rst collision mechanism can be
described in terms of a time of relaxation 7, so that we

may write

where dS' is an element of the surface Ei, =constant in
k-spa, ce. Using Eq. (1), this becomes

Bt

(2G+1)'6 Bfg

2m'5'k BE

X " {g(k) k—g(k') k'} f(k'faVfk) I'dS', (6)

1 (2G+1)'mA—.E k=-g(k) k+
2m'k'k

and, combining (1), (2), (3), and (6), we obtain the
following integral equation for g

Bt «ii.

f fo Bf—+—
- B~ —disl.

(3) {g(k) k—g(k') k'}
I (k'I aVI k) I'dS'. (7)

where 7. may be a function of the energy but is inde-

pendent of the direction of k. We must now find an
expression for the dislocation term [Bf/Bt jq;, ~

2.2. Since the dislocations constitute a static per-
turbation, the collision operator is4

2.3. When Eq. (7) has been solved, the electric cur-
rent density (J., J„,J.) can be obtained at once. For
example, if v is the velocity of an electron, we have

-B~ - disl.

= (2G+1)' — {f(k') —f(k) }
2m'h'& ~ ~

XQ(Ek Ek')
I
(k'

I
AVI k) I'dk. 'dk„'dk, ', (4)

~ v fdkgk„dk,4~ JJ
eh' p r Bfp

k,g(k) k dkgk„dk„—
4x'm' & ~ ~ BE

where (2G+1)' is the number of atoms in the crystal, 6
is the volume of the unit cell, Q(x) =sin(xt/It)/(x/5),
(t being the time), and where (k'

I EVI k) is the matrix

**This is the only formula in the present paper in which k
denotes Boltzmann's constant. In all other cases k is used to
denote the magnitude of the wave-vector k and no confusion
should therefore arise.

f Note that we disregard anisotropic conduction effects in the
unstrained metal. The approximation of free electrons should be
a reasonable one for the monovalent elements and for those
metals in which the surface of the Fermi distribution does not
approach close to the boundaries of the Brillouin zones (A. H.
Wdson, reference 4, Chapter V).

4A. H. Wilson, The Theory of Metals (Cambridge University
Press, London, 1936), p. 223.

using Eq. (1) and the relation mv= Itk which holds for
free electrons. For a degenerate electron gas, J can be
expressed in the usual way as an integral over the sur-
face of the Fermi sphere. Introducing polar coordinates
k, 8, p in the k-space, the polar axis being in the
s direction, we obtain

36S I f
~~ g(k). k sin'B cosgd&dp, (8)

4~mkp ~

ko being the value of k at the surface of the Fermi sphere
and n= k~'/3x' being the number of electrons per unit
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volume. Similarly,

3es p f
J&= — ' g(k) k sin'8sin+8dd,

4smko" ~

36S
J.= — ~ ~g(k) k sin8 cos8d8dd.

4mmkp»

(k'~AV~k)=) Pg*AVPgdr, (10)

where fq is the electronic wave function corresponding
to the state k, AV is the deviation of the potential from
its value in a perfectly periodic lattice, and where the
integration extends over the whole crystal.

The potential in which the conduction electrons move
in a perfect lattice may be written

V(r) =Z U (r), (11)

where the potential energy U; is a function of the dis-
tance r—a; from the position a, of the jth lattice point.
U; is large near the lattice point and falls oG very rapidly
with distance.

In the presence of dislocations the ions are disp1aced
from their positions in the perfect lattice. If u; is the
displacement of the jth ion, the perturbing potential is

hV=P, ( U, (r) U;(r+u, )—}= —P; u; grad U, (12)

approximately, provided that the displacements are
small.

3.2. %'e shall consider the displacements to be pro-
duced by edge dislocations of the type discussed by
Burgers' and Koehler. ' Following E, we shall evaluate
the matrix element for a positive™negative dislocation
pair which has its axis parallel to the s axis, the positive
dislocation being located at x=0, y= ~R and the nega-
tive dislocation at x=0, y= ——,R. The x axis is the slip
direction and the xs plane is the slip plane. R is of the
order of 10-' cm and is thus large compared with the
interatomic distance.

The elastic problem corresponding to such a disloca-
tion pair is a two-dimensional one, for which the dis-

placement u, vanishes and the displacements N and N„
are functions of x and y only. %e take N and u„ to be
given by

(y——.R~, (y+-.R)
i E x )

y ——,'R y+-'R
+2Bx

x*+(y-lR) "+(y+lR)'
for

~ y( )sR, (13a)

3. THE MATRIX ELEMENT FOR DISLOCATION
SCATTERING

3.1. The matrix element which determines the transi-
tion 1r~h' is

f lR+lyli
u.=A tan-'I

I
tan

x ) E x )

—2Bx'
1

(13c)
x'+(y ——,'R)' x'+(y+-,'R)'

where

2x

X V8—
)

SX V—i

X v —2C=-
4X V —1

(14)

X is the unit crystallographic slip distance, v is the
reciprocal of Poisson's ratio, and the principal value of
the angles in (13a) and (13b) is taken (——,'s. &~8 &-,'x).

3.21. The expressions (13) represent an approxima-
tion, since, for a true edge dislocation, u, is given by
(13a) for all values of y (compare K, Eq. (16)). If the
correct expression is used, N, is discontinuous across
x=0 for ~y~ ~&-,R (i.e., across the line joining the two
dislocations); such a discontinuity is of course the
characteristic feature of a dislocation. This behavior of
the displacement makes it very dificult to give a rigor-
ous treatment of the problem, since the expression (12)
for the perturbing potential cannot be used in the region
close to the discontinuity. In representing the x-dis-
placement by Eq. (13b) in the strip ~y~ ~&-,'R we have
electively smoothed out the discontinuity. Note that
our expression for u has the correct symmetry proper-
ties, being an odd function of x and an even function of
y. Note also that the material near the origin is essen-
tially a perfect lattice (u, =u„=0 for x=y=0) and that
the 6rst term in N, vanishes on the line y=0; we are
thus neglecting the contribution to the scattering of the
region midway between the dislocations. It seems
reasonable to suppose that this contribution will be
small. j'f'

In 1C the expression (12) is used for the perturbing
potential, together with the exact expression for u, . If
this (inadmissible) procedure is followed, the dislocation
resistance in the x direction is found to exceed that in
the y direction by a (large) factor of the order of koR.
Koehler does not obtain this result, and it seems to us
that in deriving his expression (E, Eq. (26)) for the

ff An alternative approximation (suggested to us by Professor
Koehler in a private communication) is to suppose that the first
term in u, is an even instead of an odd function of x, i.e., to replace
it by its absolute value. This leads to the same expression (19)
for the scattering probability as does our present procedure, and
seems to indicate that the results are not very sensitive to the
particular model adopted.

y ——R y+-,'R
+2Bx

x'+(y ——,'R)2 x~+(y+~R)2

ly~ ~&~R, (13b)

x'+(y ——,'R)' &

+y= —C log
x'+ (y+-,'R)'
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V, (r) = —Z.2 (15)

scattering probability, Koehler must at some stage have
made an approximation of the type discussed here. This
point is, however, not mentioned explicitly in E, and
we have been unable to follow Koehler's calculation in
detail.

3.3. Again following E, we shall take the potential of
a single ion to be a screened Coulomb potential, so that

therefore obtain, neglecting the small term e &"~~'t,*

512s'Z'e4$ {b(K,) }
"-

I
(k'I ~vlk) I'=

(2G+1)'A4(q'+K')'(K, '+K„')'

X {A'K,'+(28—C)'K '} (19)

X being the total number of dislocation pairs in the
specimen. Note that Eq. (19) differs from the corre-
sponding expression in K (compare $3.21 above).

where Ze is the effective charge of the ion and q is the
screening constant. The electronic wave functions are
assumed to be free electron wave functions (normalized
in the whole crystal), so that

Pg ——e'~'/A&(2G+1) &. (16)

(I '1 ~v}k)=— 32''Ze'8(K, )

(2G+ 1)3+2(g2+K2)(K 2+K 2)

XI A
I
K.

I
{cos(-',K„R)—e-&~~rr*~

}

+ (2B C)K„sin(-', K„R)j—, (17)

where K=%'—h, E is the magnitude of K, and where

Assuming further that the displacement of a lattice
point at (z, y) is given by (13),and combining Eqs. (10),
(12), (13), (15), and (16), we may now evaluate the
matrix element, as in E, by integrating 6rst over the
electronic coordinates, and then converting the sum
over j into an integral and performing another volume
integration. The calculation follows the lines indicated
by Koehler and the details will not be given here. The
result is

4. THE TRANSPORT EQUATION

4.1. Combining Eqs. (7) and (19), we obtain the
transport equation

j.—eE k=-g(k) k
T

256~4ZVmS
+ {g(k) k —g(k') k'}

(2G+1)'5'k'k ~ ~

A'K, '+ (28—C)'E„'
X — {8(K,) }'dS'. (20)

(8'+K')'(K '+K ')'

Introducing polar angles 8', @' on the sphere k'= k = con-
stant, the polar axis being in the s direction, we have
dS'=k2 sin8'd8'd@' and K,=k,' k, =k(—cos8' cos8)—
The part of the integrals depending on 8' contains, apart
from slowly varying quantities, the expression

8'=0

{8(K,)}
' sin8'd8' =— {b(K ) }'dK,

0 k 8'=x

V& te'=' sin'y
dy, (21)

2x'k ~e- y'

1
8(K ) =—

~'

2~ ~-yv&

sin(-,' K, V&)
~sKgzdg

)
the upper limit of integration being

y= -', V&k(1—cos8),

V=(2G+1)'6 being the volume of the crystal (note
that Koehler s 8-function is deined in a slightly diGerent
way). The appearance of the 8-function means, of
course, that, corresponding to the two-dimensional
nature of the problem, only those transitions occur in
which k,' equals k, .

3.4. The presence of the sine and cosine terms in the
matrix element gives rise to diGraction effects which
have been discussed in K. In normal metals the maxi-
mum value of ~E„E.is large compared with unity, and
the square of the matrix element (i.e., the scattering
probability) hence contains rapidly fluctuating terms
which may be replaced by their average value. The
scattering probability for a large number E of disloca-
tion pairs all oriented similarly (i.e., having their axes
parallel and corresponding to parallel slip planes) is then
simply E times the average value for a single pair. We

and the lower being

y= ——,
' V&k(1+cos8).

Since these limits are of opposite sign, the integral in

(21) is effectively

p" sin'y
(1$=Ã)

2V

and since the whole of the integral comes from regions
near y=O we may replace any slowly varying functions
of 8' by their values when y=O, i.e., when E,=O and
e'=I51.

* It is easily shown that the contribution of this term to the
resistivity is of order e~o compared with the leading term, which
is entirely negligible since kR is of order 100 for normal metals.
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3

J,=Q o;gbg, i=1, 2, 3.
k=1

(23)

We shall now prove that the rectangular coordinate
system formed by the direction of the dislocation axes,
the slip direction and the direction perpendicular to
these two represents a system of principal axes of the
conductivity tensor 0;I,. If we put

g= (g, g„, g,)= (k 8, k„h„, k, g,), (24)

the integral equation (22) splits up into three equations,
and from the symmetry of these equations it may
easily be shown that h, h„, and h, are even functions of

The transport equation therefore takes the final form

1 128m'Z'~4m'—eE k=-g(k) fr+
(2G+ 1)'681'k'

f2x

x {g(1) 1 —g(&') &'I
Jo

A'E,'+ (2B—C)'E„'
x d4', (22)

(g2+E 2+E 2)2(E 2+E 2)2

all quantities in the integrand taking their value for
8'= 8.

4.2. When Kq. (22) has been solved, the electric
current can be calculated by means of (8) and (9). The
current is of course related to the electric field by a
tensor relation of the form

gp h= —evE k,

128~'Z'e'mE~'

(25)

g) k=—
(2G+1)'6+'k'

.O'E, '+ (2B—C)'E„'
x E K dy'. (26)

(q2+E 2+E 2)2(E 2+E 2)2

Substituting these expressions into (8) and (9) and ex-

pressing E,=k,' —k and E„=k„'—k„ in polar coordi-
nates (it should be remembered that E,=k, ' —k, =0),
it is easily verified explicitly that the non-diagonal
components of the conductivity tensor vanish, and that

k„and k, . On substituting (24) into (8) and (9) it is
therefore seen that h„and h, do not contribute to J,
and there are corresponding results for J„and J,. Thus
the only non-vanishing components of the conductivity
tensor are the diagonal components 0~~, ~2p, and o33,
which proves our result.

5. SOLUTION OF THE TRANSPORT EQUATION

We shall now obtain an explicit expression for the
conductivity in the limiting case where the thermal
resistance is large compared with the additional re-
sistance due to dislocations. **In this case we may treat
the second term on the right-hand side of (22) as small
compared with the first and solve the equation by suc-
cessive approximations. Putting g=gp+gy+ ~ and
confining ourselves to the first two approximations,
we obtain

3~2Z2~6~g ~2

(2G+ 1)'dP"k'ko'

f Ã 2% f/2%

d8)~ dye) dp'
"0 0 0

I
4' —4~

sin]
)

a'+sin'8 sin']
2 ) E 2

3x'Z'~'niV 7'-'

0'22 = 0's+
(2G+ 1)'5@'k'ko'

. ~4'+4& )4'+4& [4'+4 i
sin8 cosg sin)

(
A' sin') [+(2B—C)' cos'(

2 ) ( 2 ) )
(27)

2a ~2m

de I dy
o ~o ~o

(4'+4»
i

. , (4'+4 & f4'+4''t
isine sing cos(

)
A' sin') — [+.(2B—C)' cos'(

2 J l & 2 2 )I
p4' —4q '

sin
~ )

a'+ sin'8 sin'I
2 )1

(28)

where

and where

a= q(2ko, (29)
tivity measured parallel to the dislocation axes is there-
fore unchanged, as we should expect.

The triple integrals in (27) and (28) may be evaluated
(r; =na'r/ns (30)

is the conductivity caused by thermal scattering alone.
Ke further find that

&33= &sp (31)

all the higher approx~m~tions vanishing. The conduc-

**In E the transport equation is solved by a complicated
numerical method in which the distribution function is expanded
as a Fourier series. Only the 6rst few terms of the series are re-
tained, but the convergence of the procedure is not investigated.
The present method of solution is much simpler; no numerical
work is necessary, and the conductivity is obtained in the form
of dosed algebraic expressions.
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by elementary methods, using $(p'+g) and q($' Q—)
as variables of integration. The calculation is straight-
forward and the details will not be given here. The 6nal
results are

0'u= 0'i
3HZ e nSv

2(2G+ 1)'5"'k'ko'

cot 'a 1
+ }3A'+(28—C)'} (3&)

a' c'(a'+1)

&22= &i

3m'Z'~'nA 7'

2 (2G+ 1)'bP18k'ko'

cot—'a 1
X + I A'+3(28 —C)'} (33)

a' u'(a'+1)

and comparison with (30) and (32) shows that

3x'ZVm'A1
p&= —=

op 2(2G+1)'6@' 'kk' on

cot 'a 1
t 3A'+ (28—C)'}. (34)

a' a'(a'+1)

Similarly,

3x'ZVm')71
p2=

2(2G+1)'6@' k' k'on

cot 'a 1
+ }A'+3(28—C)'}. (35)

a' a'(u'+1)

6.11. Equations (34) and (35) have been derived only
for the limiting case in which p~ and p2 are small com-
pared with the thermal resistance. We shall, however,
assume that Eqs. (34) and (35) may be taken to repre-
sent the dislocation resistance in the general case, re-

6. THE DISLOCATION RESISTANCE

6.1. Matthiessen's rule, applied to the present prob-
lem, states that the electrical resistance of a metal is the
sum of an ideal resistance due to the lattice vibrations
and a residual resistance due to dislocations. %e shall
assume that Matthiessen's rule holds for the resistance
measured along any one of the principal axes, so that,
for example,

1/un ——1/~;+ 1/~g,

where 0; is given by (30) and 1/rr&= p& is the dislocation
resistance in the x direction. For small values of 0;/a~
this becomes

gardless of the magnitude of the thermal resistance. It
would be desirable to test this assumption by 6nding a
more general solution of the transport equation; this,
however, appears to involve considerable diQiculties,
and in the present paper we shall assume the general
validity of (34) and (35) without attempting to supply
a direct proof. Our expressions for the dislocation re-
sistance are the simplest ones compatible with the as-
sumption that Matthiessen's rule is of general validity.

6.12. For a metal of unit volume we have (2G+1)'5
= 1; also ko'= 3m n (see $2.3), and Eq. (14) may be used
to express A, 8, and C in terms of X, the unit crystal-
lographic slip distance, and v, the reciprocal of Poisson s
ratio. We therefore obtain, 6nally,

Z c'm'XX' cot 'a 1 3(v—1)'+1
+ (36)

241r'k'n'6' a' u'(a'+1) (v —1)'

Z'e'm'X7 ' cot 'a 1 (v —1)'+3
p2= +

247r'k'n'5' u' a'(a'+1) (v—1)'
(37)

We recall that p~ is the dislocation resistance in the s)ip
direction and p2 the resistance normal to the slip plane,
and that the dislocation resistance p3 in the direction of
the dislocation axes vanishes. n is the number of can-
duction electrons per unit volume, X the number of
dislocation pairs per unit area normal to the axes, 5 the
volume of the unit cell, and the potential of a lattice
ion is taken to be of the form —(Z~%)e '"; finally
a=q/2ko, where ko is the wave-vector at the surface of
the Fermi distribution.

6.2. From (36) and (37) we obtain the following
simple formula for the ratio of the dislocation resistances
in and perpendicular to the slip direction:

pg 3(v—1)'+1

p2 (v—1)'+3

p, p= sin'a(p~ cos'p+ pm sin'p), (39)

and the average resistance for a polycrystalline ma-
terial, which is obtained by averaging (39) over all

f Equation (39) is entirely different from the corresponding
Eq. (48) in K. Koehler's result is erroneous, as he does not take
into account correctly the tensor character of the conductivity
and calculates the resistance by means of a formula (E, Eq. (f))
which may be used for isotropic media only.

The ratio thus depends only upon the value of Poisson's
ratio. For all known materials v (the reciprocal of
Poisson's ratio) is positive, and its value cannot be less
than 2; we see from Eq. (38) that, as v increases from 2
to infinity, the ratio p&/p& increases steadily from 1 to 3.
A value 3 of Poisson's ratio corresponds to v=3 and
pj/p, = 13/7.

6.21. The dislocation resistance measured in an arbi-
tra, ry direction (a, P), as shown in Fig. 1, is given by the
ordinary tensor rule)
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directions, is

P=s(Pi+P2) =
ZVnz'EX'

18m k'e'6'

+ J1+ t . (40)
g3 g2(@2+1) i (p 1)2 i

6.3. The experimental results on the change in the
electrical resistance of metals produced by cold work
all refer to room temperature and to polycrystalline
specimens of undetermined purity. For a highly cold-
worked specimen of copper, for example, the increase
in resistance is 2 percent. If we assume that the cold
work results in the introduction of a large number of
dislocations of the type considered in the present paper,
we may use Eq. (40) and the observed resistance change

to estimate E, the mean density of dislocation pairs.
For copper we take n= 1.2 X10", k0=1.53' 10',
)%.=2.55X10 s g=)|,'/v2=1. 17X10-" ~=2.94, Z=1,
and' q 2.5X10, so that u=q/2k0=0. 82. The thermal
resistance of copper at 20'C is 1.89X10 " gaussian
unit. According to (40), an increase in resistance of 2

percent therefore corresponds to %=5)&10"dislocation
pairs per cm'. This value is considerably higher than the
value %=2.9X10" estimated from the energy stored
during work hardening. ' Our estimate of X is, however,
somewhat too high, since the effective mass of a conduc-
tion electron in copper is probably greater than the mass
of a free electron and the eGective charge on an ion is
greater than e. These factors are dificult to estimate
precisely, but they may reasonably be expected to
reduce our estimate of S to about 10". In view of the
artificial nature of our model and the many approxima-
tions made in the calculation, the agreement with the
value derived from other evidence may be regarded as
satisfactory.

In order to test our predictions for the angular de-
pendence of the dislocation resistance, it is necessary to
use pure single crystals and to carry out the experiments
at low temperatures, where the main part of the resist-
ance will be due to dislocation scattering. As mentioned
in E, such experiments are at present in progress at the
Physics Department of the Carnegie Institute of
Technology.
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