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A Theory of Dielectric Polarization in Alkali-Halide Crystals
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A theory of dielectric polarization is described in which each ion in an alkali-halide crystal is considered
as a separate entity capable of being distorted internally by an electric Geld. Three stiffness coefficients
suffice to describe the interaction between the local electric 6eld and the polarizable ion. The Lorentz internal
Geld is shown to be valid for this calculation. Optical and dielectric polarizabilities per moIecule and infra-red
absorption frequencies in alkali-halide crystals calculated by this method are shown to be in substantial
agreement with experiment. Electronic polarizabilities of free (gaseous) ions are also calculated, and a novel
"pseudo-piezoelectric" effect is predicted.

I. INTRODUCTION

T seems intuitively obvious that the dielectric prop-
erties of a solid material should be determined

uniquely by the properties of the atoms or ions of which
it is made, and by the way in which they are arranged.
In respect to the atomic arrangement, the alkali-halide
crystals are the simplest ionic solids and their pertinent
dielectric and optical properties have generally been
known for seventeen years. An interpretation of ionic
polarization is now proposed which is inherently simple,
explains all the experimental data to a good approxima-
tion and does not go beyond classical mechanical
principles.

In order to study a single ion independently of the
crystal, it is necessary to construct an imaginary bound-

ary around it and to replace forces which formerly
existed between particles inside the boundary and those
outside by corresponding forces between the internal
particles and the boundary. In this way a relation can
be found between the forces acting on an ion and the
distortion produced thereby. This relation may be ex-
pressed by three stiffness coeKcients or "springs" con-
nected between the nucleus, the electron cloud, and the
boundary. All of these springs are necessary to explain
the experimental results.

II. DISTORTION OF IONS BY ELECTRIC FIELDS

The arrangement and size of ions in ionic crystals are
generally studied in the absence of an electric field by
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Fxo. 1. Ionic arrangement in neutral crystal (upper diagram)
and in polarized crystal (lower diagram) showing nuclear and
electronic displacements.

x-ray diffraction methods. In this way, it is determined,
for example, that a sodium chloride crystal has a cubic
unit celL with face-centered symmetry containing four
ions of each type and having an edge 5.629 angstroms
in length. This is the distance from the center of one
sodium ion to the next, with a chlorine ion in between.

It is convenient to think of each ion as a separate
individual which just touches its neighbors. Then it is
an experimental fact that the points of contact so de-
fined between a given ion and its neighbors in the crys-
tals being considered determine a sphere. This is what
is meant by the spherical boundary of an ion. In crystals
of the sodium chloride type it follows that the edge of
the unit cube is equal to the sum of the diameters of
the alkali and halide ions (if they do touch). From the
regularity in the observed lattice spacings, it is found
that each ion has very nearly the same diameter in
different kinds of crystals.

%hen an electric field of ordinary magnitude is ap-
plied to an alkali-halide crystal, the ions are internally
distorted, but their external spherical shape and size
(as defined by the points of contact) as well as their
arrangement are unaffected. This conclusion follows
directly from the same symmetry considerations which
are employed to prove the absence of the first-order
piezoelectric effect. Since the ionic boundaries are not
deformed by an electric field, there is no loss in gener-
ality for the present problem by considering the
boundaries to be rigid spheres. A more complicated
(non-rigid) ionic model would be needed if elastic defor-
mation were to be considered in addition to electrical
polarization.

In order to describe the internal distortion of an ion,
it will be necessary to consider the relative displace-
ments of certain reference points. The center of the
spherical boundary is such a point. It is the center of
charge, mass, etc., of the unpolarized ion and the geo-
metrical center of the polarized ion. The position of the
nucleus is another such point, which would be at the
center in the unpolarized ion, but is displaced a distance
X to one side of the center in the polarized ion. The
third point is the center of charge of the electron cloud
including all electrons, even those closely bound to the
nucleus. In the unpolarized ion, the center of electronic
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charge coincides with the position of the nucleus, but
in the polarized ion, it is displaced a distance b to one
side of the ggcleus.

These three points and the displacements I and 8

for each of the two types of ions in an alkali-halide crys-
tal are shown schematically in Fig. 1. A row of ions in
an unpolarized crystal (upper diagram) is compared
with a similar row of ions in a polarized crystal (lower

diagram). The distance Xo, indicated in this figure,
represents a displacement of the whole system of
boundaries from its equilibrium position. Such a dis-
placement is possible because, though rigid, the system
of boundaries is not necessarily fixed in space. In this
6gure, positive vectors are drawn to the right.

F„= bX+cb+ pe—F;,

where pe is the charge on the nucleus and F; is the
electrostatic field at the center of the ion.

2. Force on electron clond:

F,= cb f(X+—b) —neF, , —

where n is the total number of electrons and e is the
electronic charge.

3. Force on boundary (due to internal distortion):

F(, bX+f(X+b——) (3)

Equation (2) involves the proposition that the aver-
age electric Geld effective in displacing the electron

III. EQUATIONS OF MOTION

The individual ion is distorted because forces operate
on its component parts. The forces causing the distor-
tion are due to the action of the local electric field on
charge carriers. These forces are opposed by restoring
forces depending on the magnitude of the ionic distor-
tion. For simplification, the forces and displacements
are to be considered small enough so that a relation
analogous to Hooke's law is obeyed. In other words, the
restoring forces are assumed proportional to the dis-
placements. Three constants of proportionality b, c, and

f are then needed to express the forces between the
nucleus, the electron cloud and the ionic boundary due
to their relative displacements. The equations for the
total forces are given below.

1. Force oe nlclegs:

cloud is that at the center of the ion, or rather the Geld
that would exist at this point if the ion itself were
absent. The electric 6eld in the space vacated by the
ion is extremely unhomogeneous due to the close
proximity of charged particles. However, in any such
space where Laplace's equation is valid, the average
potential on the surface of a sphere is equal to that at
its center. Similarly, the average over the spherical sur-
face of any Cartesian component of the potential gradi-
ent is equal to that at the center. If the distribution of
electron probability density in the ion is uniform over
each such concentric sphere, then the average 6eld
effective in causing electron polarization is that at the
center. The assumption of radial symmetry follows
from the picture of spherical ions adopted earlier.

The dipole moment induced on a given ion is obtained
by multiplying the charge on each part of the ion by
its total displacement in space from its initial or equi-
librium position.

p, =pe(X+Xo) —ne(X+ 5+X())
= e(p —n) (X+X())—neb. (4)

The mass of the electron cloud is negligible relative
to that of the nucleus, hence the force on the electron
cloud is effectively zero throughout the frequency range
to be considered. Thus, Eq. (2) can be used to eliminate
one of the variables, namely:

"o= ( fX neF, )/—(c+f—).

Substituting this value of b in Eqs. (1),(3),and (4), gives:

bc+cf+fb ( cn )F —— X+/ p
c+f ( c+fJ

bc+cf+ fb nf
F~— X— eF;

c+f c+f
cn n'

)((,= ) p — ~eX+(p n)eXO+— e'F,
)). c+f) c+f

The form of these equations as well as all subsequent
calculations can be greatly simplihed by substituting
three new parameters in place of the ionic stiffnesses
b, c, and f. The new parameters are defined in terms of
the old in the following way:

TABLE I. Tentative ionic parameters.

C
(AI)

A =p cn/(c+ f)—
/)= '/(, ( +/)/()c+c/+/b)I.
C=e2/g, n'/(c+f)

Li
Na
K
Rb
Cs

F
Cl
Br
I

2.075
1.501
1.769
1.277

—0.867—0.702—0.678—0.614

0
1.4
8.1
99

16.0

35.2
75.6
87.4

209.2

0
1.97

11.44
14.63
33.69

12.05
37.25
52.54
79.90

where $0 is the permittivity of free space.
The fundamental equations then take the following

form:

F„= 1/8 (e'/b)X+AeF—;
1//) .(e/()X (A P+ n') e F,;j=- —

/i;=AeX+ (p n) eXO+C$0F;—

Equations (8) are helpful in explaining the significance
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TABLE H. Comparison of experimenta1 and theoretical data for alkali-halide crystals.

LiF
LiCl
LiBr
LiI

16.21
33.74
41.36
54.00

2
K

9.27
11.05
12.1
11.03

{Na-D)

1.391
1.662
1.784
1.955

exp
(A&)

35.7
77.9
97.6

124.7

re
theor.
(Aa}

37.5
74.5
92.7

121.1

exp
(A3)

11.55
37.45
52.26
78.52

theor.
(A')

11.05
37.25
52.54
79.90

8 9

exp theor.
( X10 6 I}( X10 ll Ill)

32.6 32.3
49.4
55.5
57.2

10
zzaol

exp
(As)

43.5
61.1
93.4

theor
(Al) ~

11.7
44.0
61.6
96.2

NaF
NaCl
NaBr
NaI

24.65
44.59
52.95
67.46

6.0
5.62
5.99
6.60

2.326
1.544
1.641
1.774

46.2 45,5
81.1 82.5
99.3 100.7

131.7 129.1

14.92
42.23
57.32
84.41

14.98
41.81
57.20
84.82

40.6
61.1
74.7
85.5

40.6
61.6
74.1
85.5

45.9
64.1
96.3

15.8
48.0
65.7

100.3

KF
KCI
KBr
KI

RbF
RbCI
RbBr
RbI

38.07
61.86
71.42
87.67

44.85
69.93
80.50
98.30

6.05
4.68
4.78
4 94.

5.91
5.0
5.0
5.0

1.362
1.490
1.560
2.667

1.398
1.494
1.553
1.647

71.6 67.2
102.2 104.2
119.5 222.4
149.4 150.8

83.6 83.1
219.8 120.1
137.9 138.3
168.4 166.7

25.33
53.65
69.29
97.92

32.47
6i.07
77.28

107.19

25.14
53.36
69.00
97.27

32.97
61.85
77.76

106.64

48.5
70.7 70.8
88.3 88.3

102.0 101.8

53.4
84.8 84.8

114.0 113.7
129.5 135.4

24.7
58.1
74.5

207.3

31.9
63.4
81.0

113.3

26.0
58.3
76.0

110.5

32.9
65.2
82.9

117.4

CsF
CsCl
CsBr
CsI

54.22
69.43
78.95
94.94

7.20
6.51
5.65

1.478
1.642
1.698
1.788

97.3
140.4 134.3
153.2 152.5
173.2 180.8

46.03 46.59
75.23 75.31
91.33 91.09

120.40 229.72

48.1
102.0 10f.1
134.0 135.1

155.9

76.1
94.3

46.4
78.7
96.3

130.9

of the new ionic parameters. According to this inter-
pretation, Ae would be a sort of efFective charge on the
nucleus, while the remaining charge —(A —p+e)e would

be appropriately linked with the boundary. The param-
eter 8, which has the dimensions of polarizability or
volume, would be a measure of the displacement of the
nucleus relative to the boundary for a given force
between them.

If the boundary of an ion is restrained from moving,
and if likewise its nucleus is held fixed, then only the
inner electrons can move and the dipole moment is

C$0F,, which corresponds to a polarizability, C. If the
nucleus is released, the polarizability is increased by an
amount proportional to the square of the nuclear charge
times the parameter B.Then, the total polarizability is
A2B+C. Similarly, if only the nucleus is held fixed, the
corresponding polarizability will be (A —p+n)'B+C.
A more detailed derivation of the polarizabilities is given
in the next section.

A set of values of the parameters A, 8, and C for
alkali and halide ions is given in Table I. These values

were obtained by successive approximations in order to
achieve the most consistent agreement between experi-
mental data and theoretical calculations. In order to
resolve a certain indefiniteness in the absolute scale of
values, the parameters B and C for lithium were

arbitrarily set equal to zero. This should have a mini-

mum efFect on the results for other ions since the
values for lithium are obviously much smaller, if differ-

ent from zero.

HF. POLARIZABILITIES OF IOHS IN CRYSTALS

In alkali-halide crystals, the subscripts 1 and 2 will

be used to difFerentiate between the parameters of the

alkali ion and the halide ion respectively. Then:

pg sr+1 j p2 —s2 1 ~

The equations of motion of the crystal comprise two
sets of equations similar to (8), one set for each type of
ion. Since Xo is the same for both types of ion, it does
not appear in the expression for the total dipole moment
per molecule.

pl+ p2 e(A 1X1+A2X2)+ $0F (CI+C2) (1O)

The polarizability n is by definition the constant
ratio of the dipole moment p, to the internal field F;,
divided by $0.

o'= (glkaF ') = (e/(oF ) (A iXq+A 2Xq)+C&+C2. (11)

If the displacements are sinusoidal functions of time
with a frequency I/2z, the force on the nucleus is:

F„=ma= m(d'/dt') (X+Xo)= co'm(X—+Xo), (12)

where m is the mass of the nucleus and a its acceleration.
At very low frequencies, the forces on the nucleus are

nearly balanced so that the first part of Eq. (8) can be
set equal to zero for each ion. Then:

Xz =A &B&(goF;/e); Xm A IB2(&OF'/e). (13——)
The dielectric polarizability, 0.&, valid at very low

frequencies, is derived by substituting (13) in (11).

~D (Al Bl+Cl)+(A2 B2+C2) ~ (14)

Equation (14) indicates that the dielectric polariza-
bility is an additive function expressible as a sum of
polarizabilities of the separate ions.

The values of dielectric pol@rizability of alkali-halide
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crystals calculated by means of this equation are shown
in column 5 of Table II.

At wave-lengths in the range of visible light, the fre-
quency is so high that the inertia of the nuclei elec-
tively prevents them from moving, so that:

ol

Xg+Xo= 0; X2+X0=0,

Xg =X2= —Xo. (15)

Since the system of ionic boundaries has no mass, the
combined force on it per molecule must equal zero. Or:

F~i+Fb~= 1/Bz (e /P.o)Xq —(Aq —1)eFq
+1/B2 (e'/go. )X2—(Am+1)eF;=0 (1.6)

precisely equal to the original polarizabilities of ions
in solution calculated by the Lorentz field assumption.

The polarizability of an unconstrained ion can be
calculated by setting the force on its boundary equal
to zero.

Fg 1/B——(e'/go)X (—A p+—n)eF;=0 . (19)

Then:
X= (B/e) (A —p+ n) goF, . (20)

At optical frequencies X+Xo——0, since the nucleus does
not move. The dipole moment is derived from Eq. (8).

p;= [B(A P+—n)'+C7$0F (21)

From this, one obtains:

A )+A2 $0F,
Xg= X2=

1/By+1/B2 e
(17)

The polarizability of an alkali-halide ion pair is then
obtained by adding the individual dipole moments and
dividing by PDF;.

a,=B&(A &
—I)'+C&+B2(A 2+ 1)'+Cm. (22)

The electronic polarizability, O.„so called because
electrons are the only particles which move, is derived
by substituting (17) in (11).

(A g+A2)'
O.'e = +Ci+C2-

1/By+1/B2
(18)

Since the boundaries have some freedom of motion, this
electronic polarizability is greater than C&+C2, which
corresponds to the hypothetical example of 6xed
boundaries. Equation (18) indicates that the electronic
polarizability is not a strictly additive function since
the 6rst term involves cross products of the ionic
parameters. However, this term is relatively small and
the resulting departure from additivity is too slight to
be observed experimentally.

Values of electronic polarizability calculated by
means of Eq. (18) are shown in column 7 of Table II.

V. POLAMZABILITIES OF FREE IONS

It was formerly thought that the electronic polariza-
bilities of ions in crystals were smaller than those for
ions in aqueous solutions. ' Values of electronic polariz-
ability of ions in solution were calculated by assuming
the Lorentz value of internal Geld and were compared
with theoretical polarizabilities of free ions calculated
from data on the Stark eGect. ' Subsequent work by
Bottcher' indicated that it was necessary to correct the
Lorentz field to account for the interaction between a
dissolved ion and its surroundings. When this was done
the electronic polarizabilities of ions in solution were
found to be more nearly equal to those of ions in crys-
tals. So far no one has measured the polarizability of a
"free" ion; however, it is now possible to calculate such
polarizabilities from the data on solid crystals. Oddly
enough, the resulting values turn out to be almost

' K. Fajans and G. Joos, Zeits. f. Physik 23, 1 (1924).' L. Pauling, Proc. Roy. Soc. A. 114, 181 (1927).' C. J. P. Bottcher, Rec. des Trav. Chin. 65, 19 (1946).

The electronic polarizability e, of a pair of free
(gaseous) ions has been calculated for each of the alkali-
halides by using Eq. (22). These results are given in
column 11 of Table II. For comparison, the polariza-
bilities n„& of ionized molecules in dilute aqueous solu-
tions as reported by Heydweiller4 for the wave-length of
sodium light are given in column 10. The conversion
factor from his units to ours is 3/L)&10'4=4. 981, where
L is Loschmidt's number and there are 10'4 cubic
angstroms per cubic centimeter.

VI. THE INTERNAL FIELD

In order to derive a relation between polarizability
and dielectric constant or index of refraction, it is 6rst
necessary to establish the relation between the applied
or macroscopic field E and the local Geld Ii; which exists
at the center of an ion in the crystal —or would exist
there if the ion were removed without disturbing its
neighbors. This calculation was originally carried out by
Lorentz, ' who assumed that the external 6eld set up by a
polarized ion was the same as that from a point dipole
at its center.

The local Geld at a given position in a homogeneous
crystal may be thought of as composed of four com-
ponents. Of these, Iio is the static 6eld at equilibrium
resulting from the Coulomb forces of the various
charged particles making up the crystal. This compon-
ent has been discussed in a previous paper' and has
been shown to be zero at the centers of ions in the
crystals under consideration.

The second component is just the applied field E,
which needs no further comment.

The third component is the change in the Coulomb
6eld due to displacement of charged particles from their
equilibrium positions including only those particles

' A. Heydmeiller, Physik. Zeits. 26, 526 (1925).' H. A. Lorentz, Theory of E/ectrons, Note 55, (B. G. Teubner,
Leipzig, 1916), second edition, p. 308.

6 S. Roberts, Phys. Rev. ?6, 1215 (1949).



ROBERTS

which are outside a sphere concentric with the ion in

question, but of relatively large radius. This component
is generally conceded to be P/3$p, as derived by Lorentz
and others, where I' is the total polarization or dipole
moment per unit volume.

Most of the discussion centers around the remaining

term which is the change in the Coulomb 6eld due to
the displacement of charged particles (or induced di-

poles) within the sphere. Lorentz found that this term

vanishes in certain cubic crystals.
His calculation is based on the assumption of cuosc

symmetry with respect to each ionic position. A conse-

quence of this symmetry requirement is that if the rec-

tangular coordinates of the center of any one ion are

(a, b, c) relative to any second ion, then there are two

more ions like the 6rst whose coordinates are (b, c, a)
and (c, a, b) Onl.y the "diagonal cubic" types of crys-

tals have this degree of symmetry. These include NaC1,

CaCl, CaF2, and ZnS.
The Z component of 6eld at the origin due to a Z

oriented dipole of strength p located at the position

(X, V, Z) is:

It = 1+P/bE= (V+-', no)/( V—
p nn),

or:
nn =3V(E 1)/(K+—2). (26)

This is the Clausius-Mosotti equation.
The corresponding equation relating the electronic

polarizability to the optical index of refraction is that
attributed to Lorentz and Lorenz.

of a piezoelectric effect, that the spherical boundaries
of ions are not distorted in shape by an electric 6eld.

VII. DIELECTRIC CONSTANTS AND INDICES
OF REFRACTION

The Lorentz internal field given by Eq. (24) is used
in calculating the relations between the polarizabilities
and the dielectric constant and index of refraction. If V
is the volume per molecule in the crystal lattice, the
total dipole moment per unit volume is:
P= ii/V= nbF;/V= (nb/V)E

+ (n/3V)P= Lbn/(V —n/3) jE. (25)

Then, at low frequencies, nD may be determined from
measurements of the dielectric constant, K.

Ez —p/4prb ——(X'+ F'—2Z')/(X'+ V'+Z-')"'. (23) n, =3 V(N' —1)/(e'+ 2), (27)

If one adds the components of field due to three equal
dipoles at positions (a, b, c), (b, c, a), and (c, a, b), the
result is evidently zero. Hence, one may conclude that
there is no net contribution to the 6eld at the center by
all dipoles at a given distance from the ion in question
in crystals having diagonal cubic symmetry. From this,

it is also clear that the field component due to all

dipoles within the sphere must vanish.
The external Geld of an ion may not necessarily be

considered equivalent to that produced by a single

point dipole at its center. In this event the ion needs

to be represented by an assembly of point dipoles dis-

tributed throughout the space it occupies. In view of

the spherical concept of the ion, it seems appropriate to
assume that the dipoles are arranged inside in a manner

at least consistent with cubic symmetry. In this, as in

the previous example, the field at the center vanishes

due to all polarized ions within the sphere.
Since only the second and third components of the

internal Geld are non-vanishing, it may be expressed in

the form derived by Lorentz.

F,=E+P/3$p. (24)

In actual fact, it is not so simple to prove that the
induced dipoles should be arranged inside the ion ac-
cording to cubic symmetry. If true, this seems to imply
a certain rigidity of the electron structure in which

electrons are arranged in concentric spherics, l shells (or
equivalent) which are displaced in relative position but
not distorted in shape by the electric field. This is re-

lated to the previous assumption, based on the absence

'7 M. Born and M. Goeppert-Mayer, Handbuch der Physik (1933),
second edition, Vol. 24, No. 2, p. 625.

or:
E=F, P/3b F; Ii/3bV=—0, —— —

i1, =3VbF, (2S)

Then from Eq. (10):
AiXi+ApXp= (3V Ci Cp) bFf~/c. — —(29)

g R. W. G. Wyckoff, Crystal Structures, Section I (Interscience
Publications, Inc. , New York, 1948).

i1 K. Hojendahl, Kgl. Danske Vid. Sels. , Math. -pys. Medd. 16
(2), 59 (1938).

» K. Spangenberg, Zeits. f. Krist. 57, 494 (1923)."R.B.Barnes, Zeits. f. Physik 75, 723 (1932).

where n is the index of refraction.
The molecular volumes V of the alkali-halide crystals

are calculated from the lattice constants compiled by
%yckofjI'. ' The results are given in column 1 of Table II.
The dielectric constants as compiled by Hojendahl' are
listed in column 2. The indices of refraction for Na-D
light as reported by Spangenberg" are listed in column
3. From these experimental data, values of dielectric
polarizability nD and electronic polarizability 0., are
calculated by means of Eqs. (26) and (27). These results
are shown in columns 4 and 6 respectively.

VIII. INFRA-RED ABSORPTION FREQUENCIES

The frequency, or wave-length, in the infra-red dis-
persion spectrum which seems to have been measured
with greatest accuracy is that of maximum absorption.
The experimental wave-length data for alkali-halide
crystals reported by Barnes" are given in column 8 of
Table II. At this frequency, pi&/2n. , the dielectric con-
stant or index of refraction is theoretically infinite and
the applied field 8 vanishes corresponding to a finite
polarization. Then, from Eq. (24):
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By solving Eqs. (16) and (29) for Xi and X2, sub-
stituting these values in (31) and by using Eqs. (14)
and (18) for nD and a, to simplify the result, one finally
Obtams:

e'(3 V—an) (1/mi+ 1/m2)

Pp(3 V—a,)(Bi+B,)
e'(n'y )2(1/m, + 1/m, )

fo(K+ 2) (Bi+Bm)

The corresponding wave-length is:

Xg = 2 ÃC,/ M.g,

(32)

where c is the velocity of light.
%ave-lengths calculated by this method are shown

in column 9 of Table II. In this calculation, more con-
sistent results were obtained by using the experimental
values of o.~ and O.„or n and E, rather than the theo-
retical values. This is further evidence that the small
deviations between theory and experiment are of real
significance.

Equation (32) indicates that (Bi+B2) may be calcu-
lated from observable properties of the crystal. Hence
this equation leads to a second additivity relation, the
6rst being the additivity of dielectric polarizabilities.
A third additivity relation may be derived from Eqs.
(14) and (18).

L(BI+B2)(eiD+ +e)j A 1B1 A 2B2 (34)

IX. THE PSEUDO-PIEZOELECTMC EFFECT

A novel physical phenomenon is predicted by a
further extension of the present theory. This is the
"pseudo-piezoelectric" efFect, which is similar to the
ordinary piezoelectric efFect in that it is a linear electro-
mechanical phenomenon, but it differs in that it does
not depend on crystalline anisotropy. In comparison
v ith the ordinary piezoelectric effect, in which statically
balanced forces applied to a crystal induce electric
Gelds within it, a statically unbalanced force or accelera-
tion is found to have the same effect on the isotropic
crystals considered here.

Xn order to calculate the magnitude of the effect, the
electric Geld will be considered which is set up in a

The forces on the nuclei are derived from Eqs. (8)
and (12).

F i= —1/Bi (e'/gg)Xi+AieF;
= —leg mi(Xi+Xo)

(3Q)F 2= —1/Bi (e'/$0)X2+AieF,
= —cog'm2(X2+ Xo),

Eliminating Xo and solving for co~' gives:

pX, X, qe' pA, A, p

EmiBi m2B2I (o &mi mm&

(31)
Xg—X2

crystal by raising its acceleration from zero to a uniform
value "a." The surfaces of the crystal are to be elec-
trically open, that is, no charge may Qow to or from
the surfaces from an external circuit. In this case, the
electric Geld in the crystal turns out to be proportional
to the acceleration.

E=pu, (35)

where p is a new parameter equal to the following
expression.

p —(miAiBi+m2A 282)/e( ,'no+ -V). (36)

The electric field produced by an acceleration equiva-
lent to gravity in a sodium iodide crystal is, for example,
—5.52 microvolt per meter according to the theory. In
most of the alkali halides, the sign of the efFect is
negative. This is a result of the fact that the halide ions,
having negative effective nuclear charges Ae, are the
most highly polarizable. In view of the small magnitude
of the efFect, no attempt has been made to confirm it
experimentally. However, if this were done, it would
afFord an independent means of testing the theory.

X. ADDITIONAL COMMENTS

The success in interpreting experimental results indi-
cates that the theoretical assumptions are approxi-
mately valid in the case of alkali-halide crystals. How-
ever, these initial assumptions may be subject to certain
limitations when applied to other types of crystals. For
example, in many less symmetrical crystals, there are
ions which are not in electrostatic equilibrium, hence Fo
is not zero. Such an ion may be distorted so much by
this residual Geld that the relation between Geld strength
and dipole moment is no longer linear. Owing to such a
saturation effect the polarizability would be reduced.
Experimental data for a number of crystals in this
category are discussed in a previous paper. '

Since the theoretical derivation is based on the idea
of contact between rigid spherical boundaries, it seems
a little surprising that the experimental results should
be consistent even in the case of certain lithium-halide
crystals in which the lithium ions do not touch their
neighbors. Evidently some other mechanism is needed to
account for the constraint imposed on the lithium ions.

There would be a difFerent complication in the case of
piezoelectric crystals of the cubic ZnS type, since there
would be relative motion between the respective ionic
boundaries. These relative motions could be prevented
by "clamping" the crystal, although this distinction
probably makes little practical difference, since the
clamped dielectric constant is only slightly difFerent
from that of the free crystal.

The foregoing theory was developed because existing
theories did not explain the additivity of dielectric
polarizabilities reported previously. ' The author is
indebted to Dr. F. E. Williams for urging him to Gnd

such an explanation. He also wishes to acknowledge the
helpful discussions with Dr. M. H. Hebb.


