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The possibility of a theory of non-local fields, which is free from the restriction that field quantities are
always point functions in the ordinary space, is investigated. Certain types of non-local fields, each satis-
fying a set of mutually compatible commutation relations, which can be obtained by extending familiar
field equations for local fields in conformity with the principle of reciprocity, are considered in detail. Thus
a scalar non-local field is obtained, which represents an assembly of particles with the mass, radius and spin 0,
provided that the field is quantized according to the procedure similar to the method of second quantization
in the usual field theory. Non-local vector and spinor fields corresponding to assemblies of particles with the
finite radius and the spins 1 and } respectively are obtained in the similar way.

I. INTRODUCTION

T has been generally believed for years that well-
known divergence difficulties in quantum theory of
wave fields could be solved only by taking into account
the finite size of the elementary particles consistently.
Recent success of quantum electrodynamics, which took
advantage of the relativistic covariance to the utmost,’
however, seemed to have weakened to some extent the
necessity of introducing so-called universal length or
any substitute for it into field theory. In fact, all
infinities which had been familiar in previous formula-
tions of quantum electrodynamics were reduced to unob-
servable renormalization factors for the mass and the
electric charge in the newer formalism. Furthermore, in
order to get rid of the remaining difficulties that these
renormalization factors were still either infinite or
indefinite, main efforts were concentrated in the direc-
tion of introducing various kinds of auxiliary fields,
either real or only formal, rather than in the direction
of introducing explicitly the universal length or the
tinite radius of the elementarv particles. So far as the
results of the investigations in the former direction are
concerned, however, the prospect is not so encouraging.
Namely, an ingenious method of regulators, which was
investigated by Pauli extensively,? can be regarded as a
formalistic generalization of the theory of mixed fields,*
but cannot be replaced by a combination of neutral
vector fietds and charged spinor fields with different
masses, unless we admit the introduction of bosons with
negative energies and fermions with imaginary charges
as pointed out by Feldman.? More generally, according

* On leave of absence from Kyoto University, Kyoto, Japan.

' As to the list of recent works by Tomonaga, Schwinger and
others, see V. Weisskopf, Rev. Mod. Phys. 21, 305 (1949).

2 W. Pauli and F. Villars, Rev. Mod. Phys. 21, 433 (1949). The
method of regulators is an extension of cut-off procedures by R. P.
Feynman, Phys. Rev. 74, 1430 (1948) and by D. Rivier and E. C.
G. Stueckelberg, Phys. Rev. 74, 218 (1948).

3 Field theories by Bopp, Podolsky, Dirac, and others are more
formalistic in that negative energy bosons are taken into account,
whereas those by Pais, Sakata, and Hara are more realistic.

4 D. Feldman, Phys. Rev. 76, 1369 (1949). The author is indebted
to Dr. Feldman for discussing the subject hefore publication of
his paper.

to recent investigations by Umezawa and others® and by
Feldman, no combination of quantized fields with
spins 0, %, and 1 can be free from all of the divergence
difficulties, as long as only positive energy states for
bosons and real coupling constants for the interactions
between fermions and bosons are taken into account.
Nevertheless, the difficulties remaining in quantum
electrodynamics are not so serious as those which
appear in meson theory. In the latter case, we know
that straightforward calculations very often lead to
divergent results for directly observable quantities such
as the probabilities of certain types of meson decay.®
Although the application of Pauli’s regulators to meson
theory was found useful for obtaining finite results, it
can hardly be considered as a satisfactory solution of the
problem for reasons mentioned above. It seems to the
present author that, at least, a part of the defect of the
present meson theory is due to the lack of a consistent
method of dealing with the finite extension of the
elementary particle such as the nucleon, whereas the
effect of the finite extension is usually very small so far
as electrodvnamical phenomena in the narrowest sense
are concerned, except for its decisive effect on the
renormalizations of the mass and the electric charge.
Under these circumstances, it seems worth while to
investigate again the possibility of extension of the
present field theory in the direction of introducing the
finite radius of the elementary particle. In this paper,
as the continuation of the preceding papers,” the pos-
sibility of a theory of quantized non-local fields, which
is free from the restriction that field quantities are
always point functions in the ordinary space, will be
discussed in detail. One may be very sceptical about the
necessity of such a drastic change in field theory, because

5 Umezawa, Yukawa, and Yamada, Prog. Theor. Phys. 4, 23,
113 (1949). See also R. Jost and J. Rayski, Helv. Phys. Acta 22,
457 (1949).

6 H. Fukuda, and Y. Miyvamoto, Prog. Theor. Phys. 4, 235
(1949); Sasaki, Oneda, and Ozaki, Prog. Theor. Phys. (to be pub-
lished); J. Steinberger, Phys. Rev. 76, 1180 (1949). See further a
comprehensive survey of recent works on meson theory by
H. Yukawa, Rev. Mod. Phys. 21, 474 (1949).

7 A preliminary account of the content of this paper was pub-
lishgd in H. Yukawa, Phys. Rev. 76, 300 (1949), which will be
cited as T.
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other possibilities such as the introduction of local
fields corresponding to particles with spins higher than
1 are not yet fully investigated. However, present theory
of elementary particles with spins higher than 1 suffers
from the difficulty associated with the necessity of
of auxiliary conditions, and even if this is overcome by
some revision of the formalism as proposed by Bhabha,?
we can hardly expect a satisfactory solution of the whole
problem, because the admixture of higher spin fields
may well give rise to newer types of divergence in return
for the elimination of more familiar ones. Moreover, it
does not seem to the present author that the theory of
non-local fields is necessarily contradictory to the
theory of mixed local fields. They can rather be com-
plementary to each other in that a non-local field may
well happen to be approximately equivalent to some
mixture of local fields. The most essential point, which
is in favor of the non-local field, is that the convergence
of field theory might be guaranteed by introducing a
new type of irreducible field instead of a mixture, which
is reducible.

In this paper, as in the preceding papers, we confine
our attention to certain types of non-local field, each
satisfying a set of mutually compatible commutation
relations, which can be obtained by extending familiar
field equations for local fields in conformity with the
principle of reciprocity. The solutions of these operator
equations can be interpreted as a field-theoretical repre-
sentation of assemblies of elementary particles, each
having a definite mass and a definite radius. In this
connection, recent attempt by Born and Green® is
interesting particularly in that they made use of the
principle of reciprocity as a postulate for determining
possible masses of elementary particles of various types.
However, it is not yet clear whether their method of
density operators contains something essentially dif-
ferent from the usual theory of mixture of local fields.
The most important question of the interaction of two
or more non-local fields will be discussed in Part IT of
this paper.

II. AN EXAMPLE OF THE NON-LOCAL SCALAR
FIELD

In order to see what comes out by generalizing a
field theory so as to include non-local fields, we start
from a particular case of the non-local scalar field. A
scalar operator U, which is supposed to describe a
non-local scalar field, can be represented, in general, by
a matrix with rows and columns, each characterized by
a set of values of space and time coordinates. Alter-
natively, we can regard this operator U as a certain
function of four space-time operators x* (¥'=x=x,
=x,=1y, *=x3=3z, x*=—x,=cf) as well as of four
space-time displacement operators p,, which satisfy

8 H. J. Bhabha, Proc. Ind. Acad. Sci. A21, 241 (1945); Rev.
Mod. Phys. 17, 200 (1945).

¢ M. Born, Nature 163, 207 (1949); H. S. Green, Nature 163,

208 (1949); M. Born and H. S. Green, Proc. Roy. Soc. Edinburgh
A92, 470 (1949).
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well-known commutation relations
[x“; Pv:]'—" Th8p,

[4, B]=AB—BA

(1)
2)

for any two operators A and B. Usual local fields are
included as the particular case, in which the field
operator U is a function of x* alone, so that it can be
represented by a diagonal matrix in the representation,
in which the operators x* themselves are diagonal. In
this particular case, it is customary to start from the
second-order wave equation

FY
( -‘K2) U@*)=0, x=mc/h
0x,9x#

for the local field U(x*), in order that it can reproduce,
when quantized, an assembly of identical particles with
a definite mass m and the spin 0. Equation (3) is
equivalent to the relation between the operator U and
the operators p,

[pulp*, UHm*¢U=0 )

for this case. We assume that the non-local scalar field
U in question satisfies the commutation relation of the
same form as (4). However, in our case, we need further
the commutation relation between U and x#, in contrast
to the case of local field, in which U and x* are simply
commutative with each other. In order to guess the
correct form for it, some heuristic idea is needed. The
principle of reciprocity seems to be very useful for this
purpose. Namely, we assume that the commutation
relation between U and «* has a form

[wula¥, UT]-NU=0,

where

)

©)

where A is a constant with the dimension of length and
can be interpreted as the radius of the elementary
particle in question, as will be shown below. The rela-
tions (4) and (5) are not exactly the same in form, but
differ from each other by plus and minus signs of the
last terms on the left-hand sides of (4) and (5). Thus,
the two operator equations (4) and (5) can be said to
be mutually reciprocal rather than perfectly sym-
metrical, indicating that the radius of the elementary
particle X must be introduced as something reciprocal
to the mass m.

Now the operator U can be represented by a matrix
(x’|U|x,") in the representation, in which x, are
diagonal matrices. The matrix elements, in turn, can be
considered as a function U(X,, r,) of two sets of real
variables

Xy=3(x/+x"),
Accordingly, the relations (4), (5) can be replaced by
(040X 08X+ —k®)U(X 4, 1) =0, 7
(rur*—=N)U(Xy, 74) =0, ®)

re=x,—x.". )
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respectively. Equations (7) and (8) are obviously com-
patible with each other and the former implies that
U(X,, r,) Is, in general, a superposition of plane waves
of the form expik,X* with &, satisfying the condition

B ki 2 =0, 9)

whereas the latter implies that U(X,, r,) can be dif-
ferent from zero only for those values of r,, which
satisfy the condition

rr¢—AN2=0.

(10)

Thus the most general solution of the simultaneous
Egs. (7) and (8) has the form

U(X, r,)= f . f (@Yl 7,08y~ N)

X 8(kuk*+*) exp(ik, X*), (11)

where u(k,, r,) is an arbitrary function of two sets of
variables &, and 7,.

The above considerations suggest us that one set X,
of the real variables could be identified with the con-
ventional space and time coordinates of the elementary
particle regarded as a material point in the limit of
A\—0, whereas the other set 7, could be interpreted as
variables describing tiie internal motion in general case,
in which the finite extension of the elementary particle
in question could not be ignored. Thus, we might expect
that the field U of the above type is equivalent to an
assembly of elementary particles with the mass m, the
radius N and the spin 0, if it is further quantized ac-
cording to the familiar method of second quantization.
However, we can easily anticipate that the equivalence
is incomplete, because U(X,, 7,) is different from zero
for arbitrary large values of 7,, so far as they satisfy the
condition (10), even when only one term of the right-
hand side of (11) corresponding to a definite set of
values of k, is taken into account. In other words, we
need another condition for restricting the possible form
of U(X,, r.,) or u(k,r,) in order to complete the
equivalence above mentioned. For this purpose, we
introduce an auxil ary condition

[pula*U]]=0, (12)
which can be said to be self-reciprocal in that the
relation

Lx(pw, U1]=0 (13)

can be deduced from (12) immediately on account of
the commutation relation (1). Both of (12) and (13) are
equivalent to the condition

(?U(X,., ’») 0
ax»

(14)

T

for U(X,, r,), or the restriction that u(k,, ) should be
zero unless k, and r, satisfy the condition

kurr=0. (15)
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Thus the most general form of U(X,, 7,), which satisfies
all the relations (7), (8), and (14), is

U(X, 72)= f - f (@R 0k, 7)3 (ki 1)

X &(rart—N2)6(kur*) exp(ik,X*), (16)

where u(k,, r,) is again an arbitrary function of k, and
7,10

Now a simple physical interpretation can be given to
the non-local field of the form (16) by considering the
corresponding particle picture: Suppose that the par-
ticle is at rest with respect to a certain reference system.
In this particular case, the motion of the particle as a
whole, or the motion of its center of mass, can be repre-
sented presumably by a plane wave in X-space with the
wave vector ky=ky=k3=0, k4= —«. The corresponding
form of U(X,, r,) is, apart from the factor independent
of Xy, 74

#(0, 0,0, — k; 7,)8(rr*—N2)8(xry) exp(—ikX*) (17)

which is different from zero only for those values of 7,,
which satisfy the conditions

r2trltr2=2\ (18)

Thus, the form of U(X,,7,) in this case is determined
completely by giving #(0, 0, 0, —«; 7,) as defined on the
surface of the sphere with the radius X in r-space. In
other words, the internal motion can be described by
the wave function #(6, ¢) depending only on the polar
angles 6, ¢, which are defined by

T4=0.

r1=7sinf cosy, ry=r sinf siny,

(19)

In general, #(f, ¢) can be expanded into series of
spherical harmonics:

u(, ¢)=2_¢(0,0,0, —«; I, m)P;™(06, ¢), (20)
Lm

r3=7 cosf.

which is equivalent to decomposing the internal rotation
into various states characterized by the azimuthal
quantum number / and the magnetic quantum number
m.

In the case when the center of mass of the particle is
moving with the velocity v, v,, v,, it can be described
by a plane wave in X-space with the wave vector k,,
which is connected with the velocity by the relations

v.=—Rkic/ky, v,=—Rkoc/ky, v.=—ksc/ks,
k4= - (k12+k22+k32+K2)%. (21)
In this case, U(X,, 7,) has the form
u(ky, 7)8(rur#—N2)o(k,r*) exp(tk,X*), (22)

which is different from zero only on the surface of the
sphere with the radius X\ in r-space, the sphere itself

10 (X, ru) as given by the expression (6) in I was not the most
general form in that the coefficients b(k,) were independent of /,,
which corresponded to ignore the internal rotation. The author is
indebted to Professor R. Serber for calling attention to this point.
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moving with the velocity v,, v, v,. Accordingly, we perform first the Lorentz transformation

x) = au, (23)
with the transformation matrix
If1+(k1/K)2 klkz/K2 klk:;/I<2 kl/K
(a.)= | kiko/K? 14 (ko/K)?  koks/K? ko/x ( 9
R I S I ¥ 7 U ) ST WA I (2
i k]/K kg/l( ka/K —‘k4/l(

where K= (k(k—k4))%. Then the wave function for the
internal motion can be described by a function #'(6’, ¢")
of the polar angle ¢, ¢ defined by

o' =ayr,=r"sing’ siny¢’,
rd = ayr,= k.

r/=ayur,=r" sinb’ cos¢’, e
ry'=agr,=r" cost’, } (25)
Incidentally, r’ as defined by the last expression in (23)
is nothing but the proper time multiplied by —¢ for the
particle, which is moving with the velocity v, v,, v..
Again, #'(8’, ¢’) can be expanded into series of spherical
harmonics:

w(0', ¢')=22 clhu, 1, m)P™(0', o). (20)
IL,m

Since the above arguments are in conformity with the
principle of relativity perfectly, the non-local field in
question can be regarded as a field-theoretical represen-
tation of a system of identical particles, each with the
mass m, the radius and the spin 0, which can rotate as
the relativistic rigid sphere without any change in
shape other than the Lorentz contraction associated
with the change of the proper time axis.

The non-local field U given by (16) reduces to the
ordinary local scalar field in the limit A—0, as it should
be, provided that the rest mass m is different from zero.
Namely, (x,/|Ulx,”) is different from zero only for
x,/=ux,”, because the only possible solution of the
simultaneous Egs. (9), (11), and (13) with m>0 and
A=01is ry=7ry=7r3=r,=0. On the contrary, the case of
the zero rest mass m=0 is exceptional in that the non-
local field U does not necessarily reduce to the local field
in the limit N=0. This is because the simultaneous
Egs. (9), (11), and (15) with m=0 and A=0 have
solutions of the form

ra==2(N)ky,  ka= (k4R R3)5, (27)

where N\’ is an arbitrary constant with the dimension of
length. More generally, the simultaneous equations
with m=0 and A5£0 has the general solution of the form

ru:rulj: (A,)gk#» k4:i(k12+k22+k32);) (28)

where r,” is any particular solution of the same equa-
tions. Thus the radius of the particle without the rest
mass cannot be defined so naturally as in the case of the
particle with the rest mass, corresponding to the cir-
cumstance that there is no rest system in the former
case. Detailed discussions of this particular case will be
made elsewhere.

III. QUANTIZATION OF NON-LOCAL SCALAR
FIELD

In order to show that the non-local field above con-
sidered represents exactly the assembly of identical
particles with the finite radius, we have to quantize the
field on the same lines as the method of second quan-
tization in ordinary field theory. For this purpose, it is
convenient to write (16) in another form

U(X 7= f - f (kYD) ey, 1)

X 6(kukr+ k2)5(Ldr— N2 (R, IH)
Xexp(tk, X#]1, 6(ru+1,),

where /, is a four vector. The integrand is different from
zero only for those values of k,, /,, which satisfy the
relations

Eukitk2=0,

(29)

LIF—N=0, kd+=0. (30)

Accordingly, the matrix elements for the operator U are

(e, |U

xu”)=f' . ~f(dk)4(dl)4u(k,., by)

X 6(kuk + k%) 8(LH— N?) exp(ikrx,’/2)

XI1u 8(x,/ =2,/ +1,) exp(ikex,”/2), (31)
which is equivalent to the relation
v= [ [ @ arate, 1) explite2
Xexp(il“pu/h) exp(ikuat/2), (32)
between the operators x#, p, and U/, where
li(k,‘, lu) =u(km lu)a(kuk"+ K2)5(l,,l“— )‘2)5(kul“)' (33)

As the operators k,x* and /#p, in the same term on the
right-hand side of (32) are commutative with each other
on account of the relations (1) and (30), (32) can also
be written in the form

U= f f (dk)*(dD)*a(ky, L) exp ikt
X exp(il*p,/h).

Similarly the operator U*, which is the Hermitian

(32)
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conjugate of U, can be written in the form

ve= - f (d8) (A1) (e 1)

Xexp(—ikat) exp(—iltp./h). (34)

Now the method of second quantization can be
applied to our case in the following way: w(k,, /,) and
@*(ky, 1,) in Egs. (32") and (34) are regarded as opera-
tors, which are Hermitian conjugate to each other and
are non-commutative in general. The fact that the
operators defined by

U (ky, Lu)=exp(ikux+) exp(iltp,/h);

U*(kyy L)=exp(— ibyat) exp(—ilspu/B) )
are unitary, i.e., satisfy the relation
U(km lu) U*(ku) ln)= U*(km l#)U(km l#) =1 (36)
suggests us the commutation relations
Calky, 1), a* (k' 1) ]
I
T ‘kml—H“ o(ku— kn’)a(lu"‘ lul> ' 5(kuk"+ k%)
! X 04— N)d(k,%),  (37)

Lk, L), u(k,/, 1) ]=0,
La*(ky, L), @ (R, 1) ]=0,

which are obviously invariant with respect to the
whole group of Lorentz transformations. In order to
make the physical meaning of the relations (37) clear,
we suppose the field in a cube with the edges of the
length L, which is very large compared with A. Then the
effects of non-localizability of the field are negligible,
because they are confined to small regions very near
the surface of the cube.!* In this case, the integrations
with respect to k, on the right-hand side of Egs. (32')
and (34) are replaced by the summations with respect
to k,, which take the values

k1= (21I'/L)I’l1, k2= (ZW/L)Ilg, k3= (ZW/L)}’I:;,
ky= = (k24 ko + k24 k2)}) (38)

where 1y, n,, 13 are integers, either positive or negative,
including zero. The integrations with respect to /, with
fixed k, are replaced by those with respect to 7, defined
by

L' = awly, (39)
where the coefficients a,, are given by (24). Further,
we introduce the polar angle @, ®, which are connected
with 1)/, I/, I3 just as 0, ¢’ are connected with 7/, 7./,
ry’ by the relations (25). Thus we obtain

27\ * N sin@dOdd
g )
kikeks L 4K(k2+ Kf‘))%

X {u(k, ©, ®)U(k, O, )

+v*(k, O, 2)U*, O, ?)}, (40)

11 More precisely, L must be large compared with A/(1—p8?%)34,
where 8¢ is the maximum velocity of particles in consideration.
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where
u(k, ©, ®)=u(ky, ke, ks, — (B2+«2%; 1),
v*(k, ©, ®)=u(— ki, —ka, — ks, (R24«2)¥;, —1,),
U(k, 0, ®)=exp(tkx~+1(k>+ k2)ixy)
s (41)

Xexp(iN#p,/h),
U*(k, ©, ) =exp(—ikx—i(k>+ «2)xy)
X exp(—iNsp,/h)..

Finally, by expanding # and * into series of spherical
harmonics, we obtain

£ (7)o
U= — —_— U k, [ ,m
kikeks Lm \ L ) 4x(k*+ '<2)il (

XUk, I, m)+v*(k, I, m)U*(k, 1, m)}, (42)
where
u(k, I, m)Eff u(k, ©, ®)
X Pm(0, ) sin@dOdd, ‘
(43)
v*(k, I, m)Eff v*(k, O, ®)
X P (0, ®) sin®dOdd,
Uk, 1, m)= f f Uk, ©, d)
X P(0, ®) sin® dOdP
(44)

|
U*(k, 1, m)= f f U*(k, ©, d) 1

X Pm(0, @) sin@dOdd)

assuming that the spherical harmonics P,"(©, ¢) and
their complex conjugate P;"(0©,®) are normalized
according to the rule:

f f Po(0, ®)P(O, @) sin@dOdd,—=1.  (45)

Similarly, U* is transformed into the form

2m\? A
= £ 2(F) st
kikaks L, m L 4K(k2+ K‘z)%

XUk, L, m)+u*(k, I, m)U*(k, I, m)}, (46)
where
Wk, 1, m)= f j Wk, ©, &) P (O, b)
Xsin@dOd®,
r(47)

v(k, I, m)Eff v(k, O, ®)Pm(0, ®)
X sin@dOde. )
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By the same transformation, we obtain from Eq. (37)
the commutation relations

La(k, I, m), a*[k', V', m")]=8(k, k')8(l, I')o(m, m'),
[b(k, I, m), b*(R', V', m") )= 8(k, k")8(l, I)o(m, m'), }(48)
[a(k, I, m), b(k', U, m')]=0, etc.

for the operators defined by

k, 1, m)= Ty A * k, 1, m)
d( IAg) M)—((Z) 4K(k2+x2)i) “( y by M),
2w\ ? A H
a*(k, 1, m)E((—) ——————) -u*(k, I, m),
L/ 4x(k24«2)?}
_ 27\ 3 N :
b(k, 1, m)= ( (—L~) ;’m) -v(k, 1, m),

b (k, I, m)= ((3]:7_;)3 ;K—(k—:i:;)—%)%-v*(k, 1, m). J

Hence, each of the operators defined by

wt(k, I, m)=a*(k, I, m)a(k, I, m);
n=(ky 1, m)=b*(k, I, m)b(k, I, m)

has eigenvalues 0, 1, 2, --- and can be interpreted as
the number of particles in the state characterized by
the quantum numbers %, /, m with either positive or
negative charge. Thus the non-local field above con-
sidered corresponds to the assembly of charged bosons
with the mass m, the radius A and the spin 0. It can
easily be shown that in the limit A—0, U reduces to the
familiar quantized local field for bosons apart from the
extra factor

5(361, - xl”)B(xg’ - xg”)é (x:;’ - xg”)ﬁ(x4’ - x4”) (51)

which must be omitted, whenever we go over from
non-local to local field.

The non-local neutral field can be obtained, if we
assume that the field operator U is Hermitian, i.e.,
U= U*. In this case, we cannot discriminate between
u and v, or @ and b, so that we have instead of Egs. (42)
and (46) the relation

v ) b k1l
_kﬁ:’ka IF;:,(Z) m{u( , bom)

XU(k, I, m)+u*(k, I, m)U*(k, I, m)}.

L (49)

(50)

(52)

It should be noticed, further, that we could start
from the commutation relations

Ca(ku, L), @* Ry, L) 1+
=110 6(ku— k)8 (u— 1) 8(kuk*+ )
X 8(bul = N2)3(kul#), (37)
[k, L), @k, 1) ]4+=0, |
La*(ky, L), a* (R, 1) ] =0. J
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instead of Eq. (37), where
[4, B]l,=AB+BA (53)

for any two operators 4 and B. However, in this case,
we arrive at the well-known contradiction in the limit
of A0, which prohibits the elementary particles with
spin O from obeying Fermi statistics.

IV. NON-LOCAL SPINOR FIELD

The above considerations can easily be extended to
the non-local vector field without introducing anything
essentially new which needs detailed discussions. On the
contrary, the case of the non-local spinor field must be
investigated from the beginning. We start from the
spinor operator ¥ with four components, which trans-
form as the components of Dirac wave function. Each
of these components can be considered as a non-local
operator just like the operator U in the case of the
scalar field. As an extension of Dirac’s wave equations
for the local spinor field, we assume the relations
between the operators x*, p, and ¢:

v (b ¥ H-mcp=0, (54)
Bula*, ¥ 1M =0, (55)

where v* are well-known Dirac matrices forming a four
vector, which satisfy the commutation relations among
themselves:

['Y"y ”Yv:]+= — 28, (56)

We assume similar commutation relations for matrices

Bu:

[8*, Bul+=28u. (57)

Then, we obtain by iteration the relations
[pLbw ¥11Hm* ey =0, (58)
[l x#, ¥ 11— Ny =0, (59)

which have the same form as the relations (4) and (5)
for the scalar field. However, the matrices 3, have to be
so chosen as to satisfy the demand that the relations
(54) and (55) are compatible with each other. Namely,
from the relations

Buv*Lw*{ psy Y11= Mmcy, (60)
vBul [, yT]=Nmey, (61)

which can be readily obtained by considering Egs. (54)
and (55), must have the same form, so that 8, must
satisfy an additional condition:

(8w, vy, ¥1]=0. (62)
This condition reduces to the form
[xul:?m ‘/’:D=07 (63)

which is the same as the condition (12) or (13) for the
scalar field, if B8, are so chosen as to satisfy the com-
mutation relations

[Bm 'Y’:'= Cépw,y (64)
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where C is a matrix with the determinant different
from zero. Equation (64) can be satisfied by matrices
v*, B, which are expressed in the form

(65)
(66)

in terms of sets of mutually independent Pauli matrices
o1, 09, 03 and py, ps, p3. It is well known that the matrices
as given by (66) do not form an ordinary vector, but a
pseudovector. Thus, if we confine our attention to the
proper Lorentz transformation, the relations (54) and
(55) are both invariant. However, if we perform the
improper Lorentz transformation, for which the deter-
minant of the transformation matrix has the value —1
instead of 41, the form of the relation (55) changes into

ﬁ#[x“) ‘l’:l_ )“l’=07 (67)

whereas the relation (54) is invariant. In other words,
the fundamental equations for the non-local spinor
field, which has similar properties as the non-local scalar
field considered in the preceding sections, can be con-
structed so as to be invariant with respect to the whole
group of Lorentz transformations including reflections,
only if both forms (55) and (67) are put together into
one relation for one spinor field with the components
twice as many as the four components for the usual
spinor field. This is equivalent to introduce one more
independent set of Pauli matrices w;, ws, w3 and to
assume that all of the matrices v#, B, have each eight
rows and columns characterized by eight combinations
of eigenvalues of a3, ps, ws. Therewith the spinor must
have eight components, first four components and the
remaining four corresponding respectively to the eigen-
values +1 and —1 of ws.

In order to establish the invariance of fundamental
laws for the non-local spinor field with respect to the
whole group of Lorentz transformations, we assume
further that w, and ws; change sign under improper
Lorentz transformation, whereas w, does not. We can
now adopt the relation

Bulx#, ¥ 1+ wshp=0 (08)

in place of Eq. (35). It is clear from the above arguments
that the fundamental Eqs. (54) and (68) are invariant
with respect to the whole group of Lorentz transforma-
tions. However, for the purpose of proving it more
explicitly, we consider the transformation properties of
¥ with respect to the Lorentz transformation, whereby
we assume that the matrices y#, B, have prescribed
forms as defined by Egs. (65), (66) independent of the
coordinate system. In the usual theory, in which the
spinor field y has four components, we have the linear
transformation

v4= ps,
B4 = —1py,

Yi=1pya3,
B3 = psos,

YE=1pa0s,
62 = P30,

Y=1py0y,
B1=ps3oy,

Y'=5¢ (69)

associated with each of the Lorentz transformations for
the coordinates:

L .
Xy = Ay,

(70)
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where S is a matrix with four rows and four columns.?
In our case, in which the spinor ¥ has eight components,
we assume the same form for S in Eq. (69) except that
the numbers of rows and columns are doubled, when
Eq. (70) is a proper Lorentz transformation with the
determinant 41, whereas we have to replace Eq. (69) by

¥'=wiSY, (71)

when Eq. (70) is an improper Lorentz transformation
with the determinant —1. This guarantees the invari-
ance of the relation (68) with respect to improper as
well as proper Lorentz transformations.

However, the above procedure is unsatisfactory, par-
ticularly because it is difficult to give a simple physical
meaning to the new degree of freedom. As will be shown
in the additional remark at the end of this paper, there
is an alternative way, in which we have no need to
increase the number of components of ¥ from 4 to 8.

Now, each component y; (i=1, 2, 3, 4) of the spinor
¥ can be represented as a matrix (x,/|¢;:|x,”) in the
representation, in which x, are diagonal. (x,/|y.]x,”)
can be regarded, in turn, as a function ¥;(X,, r,) of
X, 74, where X, r, are defined by Eq. (6). Therewith
the relations (54) and (68) can be represented by

YF(a‘l/(/Ym ru)/aX“)+'iK¢(Xp; 7p)=07 (72)
BurtY (X, 1) +M (X, 7,) =0, (73)

respectively, where Y(X,, r,) is a spinor with four com-
ponents vi(X,, 7r,) (i=1,2,3,4). The simultaneous
Egs. (72), (73) for ¢(X,, r,) have a particular solution
of the form

V(X 7u) = @(ky, 7.) exp(ik,X*),

where (k,, r,) is a spinor with four components satis-
fying

(74)

YR ku=0, Burra+ra=0. (75)

It follows immediately from (73) that & must satisfy
(kukr+k0)0a=0, (ra*—N)a=0, kora=0 (76)
so that % can be written in the form

a=u(ky, r.)o(ke*+2)o(r rt—N0)(kur*).  (77)
Each of four components of # can be expanded in the
same way as the scalar operator # in the preceding
sections. The second quantization can be performed by
assuming commutation relations of the type (37)
between field quantities, so that the non-local field
represents an assembly of fermions with the mass m,
the radius X and the spin 4. Further analysis of the
non-local spinor field will be made in Part II of this
paper. At any rate it is now clear that there exist non-
local scalar, vector, and spinor fields, each corresponding
to the assembly of particles with the mass, radius, and
the spin 0, 1, and 3.

12 See, for example, \W. Pauli, Handbuch der Physik 24, Part 1,
83 (1933).
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Now the question, with which we are met first, when
we go over to the case of two or more non-local fields
interacting with each other, is whether we can start
from Schrédinger equation for the total system (or any
substitute for it), thus retaining the most essential
feature of quantum mechanics. We know that Schré-
dinger equation in its simplest form is not obviously
relativistic in that it is a differential equation with the
time variable as independent variable, space coordinates
being regarded merely as parameters. It can be extended
to a relativistic form as in Dirac’s many-time formalism
or, more satisfactorily, in Tomonaga-Schwinger’s super-
many-time formalism, as long as we are dealing with
local fields satisfying the infinitesimal commutation
relations. However, if we introduce the non-local fields
or the non-localizability in the interaction between
local fields, the clean-cut distinction between space-like
and time-like directions is impossible in general. This
is because the interaction term in the Lagrangian or
Hamiltonian for the system of non-local fields contains
the displacement operators in the time-like directions
as well as those in the space-like directions. Thus, even
if there exists an equation of Schrédinger type, it cannot
be solved, in general, by giving the initial condition at
a certain time in the past. Under these circumstances,
we must have recourse to more general formalism such
as the S-matrix scheme, which was proposed by Heisen-
berg.!* In other words, we had better start from the
integral formalism rather than the differential for-
malism. In local field theory, the integral formalism such
as that, which was developed by Feynman, can be
deduced from the ordinary differential formalism.!*!®
In non-local field theory, however, it may well happen
that we are left only with some kind of integral for-
malism. In fact it will be shown in Part II that the non-
local fields above considered can be fitted into the
S-matrix scheme.

13 W. Heisenberg, Zeits. f. Physik 120, 513, 673 (1943); Zeits. {.
Naturforsch. 1, 608 (1946); C. Mgller, Kgl. Danske Vid. Sels. Math.
Fys. Medd. 23, Nr. 1 (1945); 22, Nr. 19 (1946).

4 R. P. Feynman, Phys. Rev. 76, 749, 769 (1949).

5 F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949). See also many
papers by E. C. G. Stueckelberg, which appeared mainly in Helv.
Phys. Acta.
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ADDITIONAL REMARKS ON NON-LOCAL
SPINOR FIELD

The problem of invariance of the relation (55) with
respect to improper Lorentz transformation can be
solved without introducing extra components to the
spinor field. Namely, we take advantage of the anti-
symmetric tensor of the fourth rank with the com-
ponents €au, which are 41 or —1 according as
(k, N, u, v) are even or odd permutations of (1, 2, 3, 4)
and 0 otherwise. Further we take into account the
relations

(78)
where (k, N, u, ) are even permutations of (1, 2, 3, 4).
Then (55) can be written in the form

§ 2 eawr Y ar, Y1+ =0,

KNy

iB= vy Mk,

(79)

which is obviously invariant with respect to the whole
group of Lorentz transformation. The invariance can be
proved more explicitly by associating a linear trans-
formation

Y=y, (80)

with each of the Lorentz transformation (70), where S
is a matrix with four rows and columns satisfying the
relations

SyrS—t=aq,,y". (81)

It should be noticed, however, that the relation (79)
is a unification of the relations (53) and (67) rather than
the simple reproduction of (33), because (79) must be
identified with (67) in the coordinate system, which is
connected with the original coordinate system by an
improper Lorentz transformation with the determinant
-1,



