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On the Angular Distribution of Two-Photon Annihilation Radiation
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An experimental determination, using anthracene scintillation
counters in coincidence, has been made of the departure from anti-
pa, rallelism of the two photons in the pair annihilation process in
an Au absorber. The observed mean angular departure, =1/137
radians, arises from the motion of the centers of mass of the
annihilating pairs; the mean momentum of these is found from the
experimental data to be equal to 1.2 mc/137, a value to be com-
pared with a lower limit of 0.8 mc/137 obtained from an included
theoretical discussion in which the momentum probability am-

plitudes of the annihilating electrons and positrons (in the ab-
sorbing metal) are estimated and appropriately combined. In these
estimates it is shown that the positrons become thermalized by
collisions with the vibrating lattice atoms in times considerably
shorter than the annihilation time, so that only their zero point
motions, together with the zero point motions of the annihilating
(valence) electrons, effectively contribute to the momenta of the
centers of mass of the annihilating pairs.
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circuit selecting toe coincident pulses from two

scintillation counters, it was realized that the angular
correlation between the two annihilation photons could
easily be measured with far greater accuracy than
previously reported. ' As a result, it was considered that
a precise measurement of the angular correlation, which
would throw some light on the momentum distribution
of the centers of mass of the annihilating pairs, and
hence, on their mean momentum, was worth attempting.
In particular, it was thought of interest to investigate
the agreement of the so deduced value for the mean
momentum of the centers of mass with the value for
the same quantity recently obtained by DuMond,
Lind, and %atson from an analysis of the shape of the
annihilation p-ray line. It was also thought of interest
to present a theoretical treatment and to compare the
results of theory and experiment.

EXPERIMENTAL ARRANGEMENT AND RESULTS

Two anthracene detectors' were used with type
2P-21 photo-multipliers, whose pulses were amplified
with amplifiers of 0.2 @sec. rise time, and fed to a
coincidence circuit of 0.3 psec. resolving time.

The pieces of anthracene were in contact with the
envelope of the multiplier tubes. In order to minimize
the effect of scattering, light tightness was insured by
wrapping the tubes with rubber tape, and the pieces of
anthracene were covered only with an aluminum foil
2 mil thick. The surfaces of the anthracene samples

' Preliminary note in Phys. Rev. 76, 440 (1949).* Now at Carnegie Institute of Technology, Pittsburgh, Penn-
sylvania.**Now at Los Alamos Scienti6c Laboratory, Los Alamos, New
Mexico.

***Assisted by the Joint Program of the ONR and the AEC.' R. Beringer and C. G. Montgomery, Phys. Rev. 61, 222 (1942).
A note by I. Pomeranchuk, J.Exp. Theor. Phys. (Russian) 19, 183
(1949) on the "Mean life of slow positrons, " received here after
the present work was largely completed, contains a very brief
discussion of the theory and mentions experiments by N. A.
Vlassov and E. A. Tzirelson (Dokl. Akad. Nauk U.S.S.R. 59, 879
(1948})with results apparently in agreement with ours.' DuMond, Lind, and Watson, Phys. Rev. 75, 1226 (1949}.

«Kindly supplied by P. R. Bell of the Oak Ridge National
Laboratory.

located directly under the aluminum foil were plane and
their positions could easily be located from the outside.

The source of positrons consisted of thin "shavings"
(two or three pieces 1X3 mm and a few mils thick)
from a deuteron-bombarded copper target, rich in the
24-hour Cu'4 activity. The copper "shavings" were
introduced in a small gold tube, obtained by wrapping
sixfold a 1 mil gold foil. This tube was subsequently
fiattened and eGectively constituted a source of anni-
hilation gamma-rays of thickness of only a few tenths
of a mm, since, as is easily seen, most of the positrons
were absorbed in the inner layers of the gold.

Several measurements of the angular distribution
were performed with the source at different distances
from the detectors. During the final experiments, whose
results are shown in I'ig. 1, the distance between the
source and either detector was 120 cm (Fig. 2). For
maximum eSciency and best angular definition, the
gamma-rays from the source were made to traverse the
detectors along their longest dimension. In these con-
ditions the detectors, seen from the source, subtended
an angle of 4&&10 ' rad. = 25' in the vertical direction,
and an angle of 10 2 rad. =40' in the horizontal direc-
tion; while the source, seen from the detectors, covered
an angle of only a few minutes in the vertical direction
and of about 15' in the horizontal direction. The
vertical alignment of the apparatus was made by means
of a cathetometer and the measurements were per-
formed by displacing one of the detectors vertically.
The displacements were measured with the cathetom-
eter from the position where the source and the upper
surfaces of the detectors were in the same horizontal
line; this position corresponds to the zero on the ab-
scissas of Fig. 1, downward displacement of the detector
being taken as positive.

The peak of the curve occurs for a negative displace-
ment of about 0.6 cm, corresponding to the position at
which the line joining the centers of the detectors
passes through the source. The coincidence rate was
=60 c/m at the peak, and = 1 c/m at a displacement
3 cm away from the peak. The curve is practically
symmetrical about the peak; however, some errors
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can be treated in a vertical plane without too large
errors. Then, since, p,/mc is numerically equal to the
vertical angle o. (in radians) measuring the departure
from 180' of the annihilation quanta, we can write:
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so that after double di8erentiation, and apart from
trivial constants,

t d'C(1%) j/d)P =X (2s)+ X) 2—V,(r»+ X)+cV,(X) (1)

After Ã, (p,) is obtained by means of this relation, X(p)
may be immediately computed from:

iV(p) = —2pLdlV. (p)/dp].

Pro. i. Photon-photon coincidences as a function of the position
of one of the detecting counters.

(due to imperfect alignment of the lower surface of the
detectors, to scattering from the multiplier tubes, and
to the direct response of the multipliers to gamma-rays)
were expected on the negative side, and only the
positive (right-hand) side of the peak was carefully
studied. The fact that the counting rate does not vanish
for positive displacements conclusively indicates that
the annihilation gamma-rays are not always emitted in
exactly opposite directions.

The possible infl.uence of Compton scattering on the
annihilation gamma-rays was studied experimentally by
increasing the thickness of the gold absorber and by
inserting a number of thin aluminum and paper foils
along the path of the gamma-rays. Since the shape of
the curve for positive displacements was not sensibly
affected, we feel justified in assuming that the eGect of
Compton scattering can be neglected in the analysis of
the observed distribution. '

THE MEAN MOMENTUM OF THE CENTERS OF
MASS OF THE ANNIHILATING PAIRS

Let us call ) the experimentally measured angle
between the lines connecting the source with the upper
surfaces of the two detectors, co the vertical angular
width of the detectors, and C(X) the observed coin-
cidence counting rate. Let us call X(p)dp the number
of annihilating pairs having center of mass momentum
of magnitude between p and p+dp. We want to find a
relation between the measured quantities and the
function E(p).

For this purpose let us first consider the function
X.(p,) expressing the distribution of the annihilating
pairs according to their s (vertical) components of
center of mass momentum, and observe that the
horizontal angular aperture of our detectors is, on the
one hand, so small that its square can be neglected, but,
on the other, still so large compared to the angular
aperture of the annihilation quanta that the problem

~ See also, DuMond, Lind, and Watson, reference 3, and J. W.
M. DuMond, Phys. Rev. 75, j.266 (1949).

Thus we can write E(p) = (const. )p exp( —p/4. 5X10 '
mc). We will use this expression only for the deter-
mination of the average value of p, with the result

p~~=2X4.5X10 ' me=1.2 mc/137. (3)

This value is in order of magnitude agreement with
that obtained by DuMond, Lind, and Watson, from
an analysis of the shape of the annihilation p-ray line
from a Cu absorber, viz. :

pc, =8X10 ' me=1. 1 mc/137. (4)

THEORETICAL ESTIMATE OF THE MEAN MO-
MENTUM OF THE CENTERS OF MASS OF

THE ANNIHILATING PAIRS

In order to obtain a theoretical estimate of the mean
momentum of the centers of mass of the annihilating
pairs, p, it is convenient to treat separately the con-
tributions of the electron and of the positron.

Let us consider the positron first. We note that ap-
proximately 98 percent of the positrons reach the end
of their "path of ionization" without suGering annihila-
tion. ' At the end of this path the positron kinetic
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Fro. 2. Location of source and detecting counters in
the final experiments.

W. Heitler, Qguefem Theory of Radiatioe (Oxford University
Press, London, 1944), p. 230 8.

The accuracy of our data hardly justifies the detailed
application of this procedure, which will be used only
as a guide in what follows. Since the experimentally
determined C(1%,), for X)0, can be closely approximated
by (const. ) e "'"', with X0=4.5X10 ' rad. (see Fig 1), .
solution of the difference Eq. (1) immediately yields

iV, (X)=(const. )1%, '(e ~'"' 1) —'e "'"'

= (const. ')e "'"'. (2)
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energy is of the same order of magnitude as that of the
fastest electrons in the degenerate electron gas in the
metal. Subsequent energy losses for the positron are
then possible largely through inelastic collisions with
the thermal lattice vibrations of the metal atoms. We
shall show in whs, t follows (see Appendix I) that, as a
result of such inelastic collisions, the positrons attain
thermal equilibrium with the lattice in a time short
compared with the mean time for annihilation. Once
thermalized, the positrons di6use randomly through the
metal without any further energy gain or loss on the
average, and are eventually annihilated.

During their diBusion, the thermalized positrons
preferentially occupy interstitial positions in the lattice
as a consequence of the Coulomb repulsion of the
positive metallic ions. We, therefore, describe the
motion of these positrons by a wave-function which is
essentially different from zero (and roughly constant),
within any atomic polyhedron, only at distances from
the nucleus greater than the positive ion radius. Thus,
only electrons whose wave functions appreciably extend
beyond the ionic volumes will electively combine with
the positrons in the annihilation process. ' In the present
case of Au, such electrons are those occupying the
bands arising from the 6s, and, possibly the Sd, atomic
orbitals.

We next present arguments (see below) indicating
that, to a sufFicient approximation for the purpose at
hand, we may describe the motion of the 6s electrons by
plane wave wave functions outside the ionic volumes,
and may neglect the overlap between the 5d electron
and the positron wave functions. With the electron and
positron wave functions so specified we turn our atten-
tion to the matrix element for the two photon anni-
hilation transition; this matrix element is seen, in
accordance with radiation theory, to involve the above-
mentioned electron and positron wave functions and the
plane waves associated with the two emitted photons.
The evaluation of the integral for this matrix element
then yields, by standard perturbation theory, the
probability for the annihilation of an electron and
positron of given energies (or rather given wave
numbers) with the simultaneous emission of two photons
of given total momentum. Finally, we average this
annihilation probability over the energy distributions
(Fermi and Boltzmann, respectively) of the anni-
hilating electrons and positrons; the result is X(P)dP,
the probability that the annihilation occurs with the
total momentum p of the two emitted photons lying
in the range dp. Since p, from the conservation of
momentum in (any particular) annihilation process,
is also the total momentum of the (particular) an-
nihilating electron and positron, i.e., the momentum
of the center of mass of the corresponding annihilating
pair, a knowledge of X(p)dP immediately yields the
pair's mean center of mass momentum, p.

~ See DuMond, Lind, and Watson, reference 3; Pomeranchuk,
reference 2.

We may now proceed to obtain quantitative estimates
of X(P) and p in accordance with the scheme outlined
in the preceding two paragraphs. First of all, ordinary
statistical considerations indicate that:

F (k )=(const. ) exp
e (k ) —f'(T)—+1

KT

for states in the half-filled 6s band; ep(kp) =h'k'p/2m
is the energy of the k+ states (reckoned relative to the
corresponding bottom-of-the-band zero-point energy). '
The quantity Ck+, g—(P) is, apart from a constant, the
matrix element (i.e. essentially the probability ampli-
tude) for the emission of two photons with total
momentum p, as a result of the annihilation of an
electron and a positron with wave numbers k, k+.

Further, radiation theory indicates that (see Appendix
Il)

+k+, k —(p) =
J Pk+ (r)$k (r) exp( —ip r)dr. .(6)

or, alternatively,

@ +, -(P)=(2 ) J 0'+ (P )&P -(P-)

&& ~(P++P- P)dP+"P— (7)

In Eqs. (6), (7), P&+(r), vk+(r) are, respectively, the
coordinate space and the momentum space wave
functions of the annihilating electron and positron,
appropriate to states of motion in the periodic potential
of the lattice specified by wave number k+. The 6
function in the integral of Eq. (7) expresses the con-
servation of momentum in any particular annihilation
and justifies the additional interpretation of C»+, & (P)
as the probability amplitude for the center of mass of
the annihilating electron and positron (with wave
numbers, k, k+) having the momentum value p.

8 To a sufBcient approximation, we may take throughout, as the
eBective crystal lattice mass of both the valence 6s electron and
the positron, the free electron mass, m. This assumption is roughly
justi6ed, for the electron by the work of Krutter in reference 13
on the homologous case of Cu, and for the positron, by Eq. (23)-
(25), below. It may also be mentioned that the general description
used of the motion of a charged particle in the crystal lattice, the
Bloch model, is an even better approximation for the positron
than for the valence electron. This follows because of the absence,
in the positron case, of exchange interactions (in the ordinary
sense) with the electrons of the solid.' Wave number units are used for the momenta p, y, p+.

Bl(p)dp=const. Q F+(k+)F (k ) ~4»+, & (P) ~'dp. (5)
k+, k-

In Eq. (5), F+(k+) is the probability of the annihilating
electron (positron) being in a state with wave number
kp. Thus, since the positrons are supposed thermalized,

F+(k+) = (const. ) exp[ —e+(k+)/a Tj,
while F (k ) =const. , for electron states in the com-
pletely filled 1s, 2s, -. , 5d bands, and
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To evaluate the integrals in Kq. (6) or in Eq. (7)
for C~+, ~ (p) one recalls the Fourier expansions of
coordinate space and momentum space wave functions
in a periodic potential:

XexpL —i(kp r'+2sgp r')]dr'

Xexp(2migp r), (8)

XexpL —i(kp r'+2ngp r')]dr'

n, and g, g+, g, being the volume of a unit cell, and
reciprocal lattice vectors, respectively. Substituting Eq.
(9) into Eq. (7), one then obtains:

4&+, & (y) =(2~)'g v '
~t Ph+ (r)P~ (r)

C tl

Xepx( i—(k++k +2mg) r]dr

Pg+(r) exp(-ik~ r) (a)

spherically symmetric within the atomic polyhedron
constituting the unit cell;

Pg~(r) exp( ik~ r) =—0 for r&r;; (b)

8/Brfgg+(r) exp( —ik+ r)]=0 at r= r„; (c)

r; and r„are, respectively, the radii of the Au+
ion and of a sphere equivoluminal with the atomic
polyhedron. The conditions (a), (b), (c), yield for

~o K. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
{1934).

X8(k++k +2mg —p). (10)

As already noted above, the int, egral in Eq. (10) for
@q+ ~ (p) indicates that the annihilation probability
e6ectively vanishes for all electrons except those in the
6s and, perhaps, the Sd bands, since it is only for these
last that the corresponding P& (r) can overla, p appreci-
ably with the fr+(r).

%e must now specify quantitatively the 6s and the
Sd electron wave functions and the positron wave
function within a unit cell of the metal's crystal lattice.
In accord with our previous assumption about the
positron wave function and with the general method of
%igner and Seitz, '" we may take:

r;&r&r~,

Pq+(r) exp( —ik+ r) = (const. ) sin[a(r —r,)]/ar
with ar„=tan[a(r~ —r;)]," which, for (r;)+„=1.0 A'
(see footnote 17), and (r~)&„=1.6 A', is not too badly
approximated by replacing sinLa(r —r,)]/ar by 1. This
last approximation, which is adopted below, may
actually be closer to the true fq+(r) than the previous
expression since: (a) the outer shells of the ion cannot
be considered as absolutely impenetrable to the posi-
tron, and (b) once the positron does penetrate the ion
more deeply it encounters an effective nuclear repul-
sion increasing much faster than (distance) '; both
(a) and (b) tend to produce a more precipitate variation
of P&+(r) expL —ik+ r) for r=r; than is described by
sinLa(r —r,)]/ur,

As regards the Au 6s electron wave function, Wigner-
Seitz-Slater type" calculations by Krutter" and by
Tibbs'4 for the homologous case of Cu, indicate that for
r, (r(r~, i.e. outside the Au ion, P~ (r) will be quite
well approximated by the free electron solution:
(const. ) exp( ik —r) Wi.thin the ion (r(r;) the
form of fk (r) approximates to an isolated atom
6s (+5d+. . ) wave function, but in any case, is
irrelevant for our calculation; this follows from the
effective vanishing of Pq+(r) for r(r; and the resultant
absence of electron-positron wave function overlap in
the ion interior, in the integral of Kq. (10) for C q+ q (y).

It remains to determine the Au Sd electron wave
functions. Krutter's calculations for Cu" indicate that
the energy ~ls. wave number dependence for the elec-
trons in the 3d band is rather more appropriate to
tightly than to loosely bound electrons and so implv
a form for fz (r) (within any particular atomic poly-
hedron) not too different from that for an isolated atom
3d wave function. '4' Now in an isolated Cu+ ion, Hartree
type calculations show rather small extension of the 3d
wave function beyond the ion radius;" in the absence
of definite information to the contrary we assume that
the same situation holds in the analogous case of the Sd
electrons in an isolated Au+ ion and, so, in an Au+ ion
in the metal. It would then seem not too poor an ap-
proximation to suppose a very small effective overlap
between LP& (r)]&q and g~+(r), and hence to neglect
completely the Sd electron contribution to the anni-
hilation probability. This procedure should at least
give a reasonable lower limit to the theoretical Pp„and
really cannot be avoided in the absence of any actual
calculations of the Au metallic Sd wave functions.

"In accordance with the general theory of reference 20 one has:
positron energy in state Pg+=(h'aP/2')+(k'k+g/2m).

~ See reference 10 and J. C. Slater, Phys. Rev. 45, 794 (1934);
Rev. Mod. Phys. 6, 209 {1934).

"H. M. Krutter, Phys. Rev. 48, 664 (1935)."S.R. Tibbs, Proc. Camb. Phil. Soc. 34, 89 (1938)." Note added irI, proof. —A similar implication may be drawn
from an examination of Fig. 1 in a note of Steinberger and Wick
(Phys. Rev. 76, 994 (1949)) where plots are given of the 3d
electron wave function in an isolated Fe atom and in metallic Fe.

'~D. R. Hartree, Proc. Roy. Soc. 141, 282 (1933); see par-
ticularly Table III on p. 297.
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Our Pq+ and gj, having been specihed, it is now a
straightforward matter to evaluate the integral in Eq.
(10) for 4~+, ~ (y), and, then, the sums in Eq. (5) for
X(p). We obtain:

pt.

+q+, k (y)=const. P bs, o—— sin(2agr, )

and

—(2z.gr, ) cos(2a.gr, )
(2a.gr, ) '

X6(k +k +2ag —p) (11)

-'l(p)=4 p'~(1)

r 2v;)
=const. 4a.p' g„. (p)l 1——

l

gl

1rvp-'r 2
+-I —

l expl -~''p' -I (»)
2&v) E ~-" ) '

p= piv(p)lp ~ x(p)dp
0 Jo

3
=—hk„„

4.

1—2v, /@+ 1.80(v;/v) ~

(13)
1—2v;/a+ 1.03(v,/v)

whence, using v = 1/4 (Au lattice constant) '= 1/4
(4.07 A')' and v;/v= 1/4 (r,= 1.0 A'), we obtain:"

p~„——-',kk, [1.6]=0.8 mc/137. (14)
'~ These mathematical approximations break down if v,ju is too

close to q (or betvreen $ and 1). Another method must then be
used. It should also be noted that strictly speaking, the X{p) of
Eq. (12) is the annihilating pair center of mass momentum dis-
tribution calculated at the absolute zero of temperature; i.e. we
have taken P+(k+}=(const)b{h+) and F {k ) =(const}y& {k ).
The E{p) distribution at room temperature however is not very
different from that at T=O since xT, &&k~k ~j2m.

"The numerical value of r; which we employ is obtained from
the location of the 5d' electron charge density maximum in Au+
by using Slater's (isolated atom) hydrogenic vrave functions. See
J. C. Slater, Phys. Rev. 36, 57 (1930). However, as emphasized
by H. Jones (Physica 15, 13 (1949}) the large excess of the ob-
served value of the bulk modulus in Au over that calculated from

several purely mathematical approximations being
introduced to carry out the sums over k and k+ in

Eq. (5)."In Eqs. (11), (12), r; and v are, respectively,
the volumes of the Au+ ion and the Au atomic poly-
hedron (unit cell); k =2a (3/(8a v))& is the maximum
value of

l
k

l
for an electron in the half-filled 6s band

(at T=0);

g, (p)=1 if p(k, „„„and q~ (p)=0 if p)k„,,.„.-.

As in the case of the experimental .4 (p) distribution,
we shall use the (qualita, tively similar) theoretical X(p)
distribution only to calculate the mean momentum of
the annihilating pair centers of mass. Equation (12)
then yields,

It will be noted from Eqs. (12), (13), that. 43rsk

(0.5 mc/137 for Au) is the value of p~„obtained in the
limit a,/v-+0 i.e., obtained on the assumption that both
the 6s electron and the positron have wave functions
which are of the free particle form:

pqp(r) = (const. ) exp(ikp r)

throughout the whole volume of the metal (including
the ionic interiors). Thus, the factor in the square
brackets in Eqs. (13), (14), arises from the deviation of
Pqp(r) from the free particle form, i.e., from the
approach of P~ (r) to the isolated atom 6s wave
function within the ionic interior and from the effective
vanishing of P~+(r) in this interior. In accordance with
the comment made in footnote 16, practically the whole
observed value of p at room temperature arises from
the zero-point motion of the electrons and the positrons,
the temperature variation of p being very slight

((p(T)),„=(p(0) )«[1+y(KT/k'k, „'/2m)'] with y~1).
A point worthy of examination is the possible eftect

on the annihilation photon angular distribution of the
so far neglected Coulomb attraction between the
members of the annihilating pair. It would seem that
there is no such effect, at least in erst order, since the
operator corresponding to the pair's center of mass
momentum commutes with the pair's Coulomb energy
operator. "For the sake of completeness, we should also
mention the possibility of the formation of positronium
atoms within the solid with an ultimate two photon
self-annihilation out of their ground '5 states. "Here
it appears possible that the angular distribution of the
two annihilation photons might be shifted in a direction
appropriate to smaller apparent electron-positron
center of mass momenta. Such a shift will occur if, (a):
the center of mass momentum of the positronium atom
upon formation, (equal to the vector sum of the
momenta of the combining electron and positron

the ~ {k }es. h dependence for the 6s valence electrons, indicates
a relatively large (repulsive) interionic overlap energy and hence a
relatively large value of e;/e, probably & +4. Such a value of e,%
would increase the theoretical value of pA„{Eqs. (13), (14)) and
would thus improve its agreement with the experimental value
(Eq. {3)).

"This Coulomb attraction may, however, be expected to
decrease somewhat the positron mean life for annihilation by
increasing the electron density near the positron. See Pomeranchuk,
reference 2; J. W. Shearer and M. Deutsch, Phys. Rev. 76, 462
{1949),and the comment in footnote 31."J.Pirenne, Arch. D. Sci. Phys. et Natur. 28, 273 (1946};
29, 121 (1947);J. A. %heeler, Ann. New York Acad. Sci. 4S, 219
(1946); A. Ore and J. L. Powell, Phys. Rev. 75, 1696 {1949);
L. D. Landau, Dokl. Akad. Nauk. U.S.S.R. 60, 207 {1948);E. M.
Lifshitz, Dokl. Akad. Nauk. U.S.S.R. 60, 211 (1948);I. Pomeran-
chuk, Dokl. Akad. Nauk. U.S.S.R. 60, 213 (1948). These authors
also show that if any positronium annihilates itself out of the
ground '5 state, three photons are simultaneously emitted. Further
Ore and Povrell show that the ratio of the total cross sections for
three and for' two photon annihilation of slovrly moving (but
mutually unbound) electrons and positrons is ~ 1/370. Remember-
ing in addition, the roughly isotropic three photon angular
distribution and the solid angle factor, it is seen that the con-
tribution of the three photon process to the observed breadth (and
background) of the tvro photon angular distribution (C(X) of Eq.
(11)) must be completely negligible.
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mc/137), is decreased to values ~(4ttttrT) & by ther-
malizing collisions with lattice atom vibrations, in a
time short compared with that required for annihila-
tion, ~ and (b), the positronium atom is not dissociated
in any of these collisions. Item (b), however, is rather
doubtful since the positronium atom in the crystal
lattice probably has a very small positive or even a
negative binding energy and is thus quite unstable.
This last conclusion follows from the fact that the
(isolated) positronium first Bohr orbit diameter (2 A')
is not much smaller than the distance between nearest
neighbor Au lattice ions; the positronium wave function
is then greatly compressed to enable the atom to ht
into and move through the lattice, and such a com-
pression involves a very large decrease in binding
energy. "

DISCUSSION

The agreement between the experimental value and
the (lower limit on the) theoretical value of pa„(Eqs.
(3) and (14)) is perhaps as good as can be expected
considering the rough and preliminary nature of both.
Several obvious uncertainties affect our theoretical
formulas, in particular a somewhat dubious numerical
value for v;/v (=1/4) has been used (see comment in
footnote 17). On the other hand, our expression for p
(Eq. (13)) is not too sensitively dependent on the
necessarily somewhat arbitrary magnitude of v;/v;
values of this ratio of 1/5 and 1/3, for example, yield
values of 2ta„of 0.75 mc/137 and 0.9 mc/137, respec-
tively, Nevertheless it is quite clear that any really
quantitatively reliable values of p and $(p) will
necessitate Wigner-Seitz type calculations (with the
proper ion core 6elds in the individual atomic poly-
hedra) for the appropriate electron and positron wave
functions.

Certain additional. experiments are immediately sug-
gested by the general form of Eq. (13) for p. Thus, if one
should use as positron absorbers the members of a
chemically homologous series of solids possessing the
same crystal structure, e.g., the various a1kali metals;
Li, Na, K, Rb, Cs, one couM expect about the same
value of v;/v for the diiferent members of the series r"
so that their p would vary directly with their k or
inversely with their lattice constant. Since the lattice
constant increases by a factor of 1.75 from Li to Cs, the
corresponding decrease of p should be easily observable.
Another interesting test would involve the use of two
series of alkali halides, e.g. : (a) Li+Cl, Na+Cl,
I+Cl, Rb+Cl-, and (b) Na+F —Na+Cl —,Na+Br-,

~ The ground 'S state annihilation of positronium has a mean
life of 1.25X10 "sec. (see reference 19).

~ Thus, A. Sommerfeld and H. Welker, Ann. d. Physik 32, 56
(1938), show that the lowest discrete energy of the H-atom
becomes positive if the atom is confined in an impenetrable sphere
centered at the atom's center of mass and having a radius ~1.835,
the radius of the (isolated) H-atom Bohr orbit.~"For a discussion and criticism of such an expectation, see
e.g. F. Seitz, j/loden Theory of Solids (McGraw-Hill Book Com-
pany, Inc., New York, 1940), Chapter 2.

Na+I . Then, since one expects that, to a 6rst ap-
proximation, the positron annihilates only against the
fairly tightly bound outer shell electrons of the negatively
charged halogen ions, and has a wave function immedi-
ately before annihilation determined mainly by the
electrostatic potential of these ions, one should hand

about the same value of p for all the members of the
(a) series and a monotonic variation in p along the (b)
series. In general, it is clear that the study of the
angular distribution of annihilation radiation with
scintillation counters in coincidence will help throw
light on electronic momentum distributions, in the
atoms and molecules of gases and in liquids and solids.

APPENDIX I

Thermalization Time of the Positron

In conclusion, we shall present an estimate of the time interval
r, required for the thermalization of positrons in a metallic solid.
It will be recalled that practically all the positrons survive the
atom ionization (and excitation) process without annihilation;
then, having ceased to lose energy by kicking electrons from the
half-filled 6s and the all-filled 5d, Sp, ~, 2s, 1s bands into unoc-
cupied states in the overlapping 6s, 6p, ~ ~ bands {p+( mc/137),
the positrons begin to lose energy by collisions with the thermally
vibrating lattice atoms (or ions) exciting these into states of higher
vibrational energy. The net rate of positron energy loss as a result
of such collisions is given, on the average, by

d de 2r—-"(k.) =& —(k+1&.-1k+—e—. 2 g)
dt

+ +
tt (2 }'l. tt

y b(e+(Q) —e+(k+—e—27f g) —ha)(e))

22l- 2——(k~ 1
H;,t„lk~+e+2rg)

X b(~+(Q) —e+(k„+e+22i-g)+ Ao)(e)) Aced(e). (15)

In Eq. (15), the first term describes the mean rate of positron
energy loss in collisions in which a vibrational quantum of wave
number e and energy Acr(e) is transferred from the positron to the
lattice vibration, the positron making a transition from a state
fg+ to a state pg+ =pg+ —e—z g, g, as before, is a reciprocal lattice
vector, the transitions to the states P&+ mentioned being the only
allowed by the linear momentum conservation selection rule. 2~

In a similar way, the second term in Eq. (15) describes the mean
rate of positron energy gain in the "inverse" collisions where a
vibrational quantum is transferred from the lattice vibration to
the positron. The transition probabilities for both these types of
collisions are given by the absolute squares of the corresponding
matrix elements,

1(k+I&.~.lk+~e~2rg) I'

multiplied by 22'-/h and by the appropriate 8 functions which
maintain the conservation of (unperturbed) energy in the col-
lisions.

The matrix elements in Eq. (15) may be expressed in accordance
with the usual methods of the theory of metals, 23 by

(k+1Ht~~, lk we&2rg) = I pa+*(r) lexp(&ie r}ae grad V(.r)1

&(e)+1
( )d 4,„(16)

~ See Eq. (9), where yg+(p~) and yg+'(p+') vanish unless

p = p++22fp+, p+ =Q +2&g+ . Then, since one must have
p+'= p+~e, one immediately obtains k+'=Ir+~e+2~(g+ —g+').

~' F. Bloch, Zeits. f. Physik 52, 555 (1928); A. Sommerfeld and
H. A. Bethe, Hupdbuch der Physik 24, II (J. Springer, Berlin,
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the positron —lattice interaction potential, P; t,„being taken
appropriate to the Bloch deformable ion approximation»4 as

v&A(e) exp(ie- r) grad V{r)+comp. conj.

Here, V(r} is the time average (static) periodic potential of the
lattice. A(e) is the e-normal mode lattice vibration amplitude.
The quantity v& appears because of our present normalization:
J;I/a+(r) I'dr=1. The square root in Eq. (16) times ~, the
e-normal mode polarization unit vector, is just the matrix
element of A(e} with respect to the vibrational eigenfunctions in
transitions in which a vibration quantum is created or destroyed;
in this square root, M is the vibrating atom mass and
n(e}= fexp(hco{e)/~T} —1$ i is the number of vibrational quanta
of energy h~(e) and wave number e present just before the
occurrence of the transition.

In the case g=0, the integrals in the matrix elements of Eq.
{16)may be transformed by an integration by parts and use of
the Schrodinger equation satisfied by pic+{r};assuming in addition
that in a given atomic polyhedron (unit cell) $1c+{r)exp( —ik+. r)
satisfies the signer-Seitz boundary conditions, is spherically
symmetric, and depends only weakly on k+, one obtains 2'

pk+*(r) fexp(+ie r}ae grad V{r}gpicpe(x)dr

2 h'
=&-i(r — Igradgs+(r) exp( ik+ —r) I'dr

3 2m

&p+')A

3 2m
(17)

where (P+2)A& is the mean square positron momentum in the state
with k+——0, so that (p+»)A&/2m is just the positron's bottom-of-the-
band zero-point kinetic energy. On the other hand, when g /0,
it does not seem possible to obtain a simplified expression for the
matrix elements in Eq. (16). Ke confine ourselves, therefore, to
the remark that in this case, the oscillating factor exp(+2mig r)
in the integral over v (arising from &1c,~e~2 g) will tend to
decrease this integral's value (at least, for fairly large g}; in
addition, the energy and momentum conservation laws governing
the collisions, yield:2'

'

k+ (rr+2)rg) le+2)rgl mrs((r)

Ik+I lcr+2)rgl 2lk+I )ilk I l(rg2)rgl

and this condition cannot be satisfied, even for the smallest non-
vanishing 2'.g, once hk+ becomes smaller than =-,'ho, »' (which
is, =-',mc/137 for Au). Thus it would seem as if our subsequent
complete neglect of the g /0 collisions will yield a positron (net}
average energy loss correct for (2m~T}&&hk+&=4'mc/137 and
somewhat underestimated for hk+) -', mc/137; since most of the
time required for thermalization, however, is spent in the range of
positron momenta from 4mc/137 to (2m~T)& (see footnote 30)
it is clear that the ultimate overestimate of v will not be large.

1933);J. Bardeen, Phys. Rev. 52, 688 (1937);F. Seitz, Phys. Rev.
73, 549 (1948}.In Seitz's paper, Peierls' criterion for the validity
of the general type of time-dependent perturbation theory used,
is given in convenient form. It may be verified that this criterion
is satisfied in the situation which we consider.

4 See particularly J. Bardeen, reference 23,
2~ See A. Sommerfeld and H. A. Bethe, reference 23, pp. 512,

513, for the wholly analogous calculation in the case of metallic
electronic conduction.

»6This condition gives those e and g values for which the
argument of the 8 functions in Eq. (15) vanishes, and which,
therefore, specify the allowed collisions that make a contribution
to the Zg J'de. ~ .

»~ This conclusion is a consequence of the fact that, for example,
in a face centered cubic lattice like Au,

22'& 2x 3 &

(4v)& (4v)& x
and so, the Grst term on the right-hand side of the inequality will
necessarily be greater than 1, for all possible e and 2mg/0 if
k+&$(A—(3/~)&)o . As regards the second term, it is numeri-
cally negligible for all hk+ of interest fhk+~(2mgcT)&j.

9m. 2m

——~+(k+) =A; hk+& ho „/2, (20-I')

——c+(k )=A + 1—

m vier, hveq2k+

ho /2~hk+& mv„{20—II'}

+—~+(k+) =A '
8 exp —1

mv„~hk+, (20-III')

where, forT»hv o /gc=—TDebi e»2mv„'/a one can expand both
exponentials in the usual way. » The second inequality is easily
satisfied in Au, and indeed in all meta1s. The thermalization time
v, is now given by,

KT de+ 2 mc/137
'r =

mc'/2 137' fdic+/dt j Amho'~ ri~~,./2

p&~max/2 d(hk+)
Am8 ~t2mKT)& (hk+)»

3 h 3I (ho }2 ho.

2m (P~')A„/m m (P+2)A„(2m~T) &

(2micT) & 8 mc

her 3 137ho

=015X10 '0 (21)(.).,/2m
sec.,

As before, qso(x} = 1 if x&xo, gx~(x}=0 if x&xo.
"Equations for the energy loss of an electron in an almost

empty conduction band of an electrical non-conductor, entirely
analogous to our Eqs. {20-I', II', III'), have been independently
derived by Mr. %.R. Heller of this laboratory in the course of an
investigation on the dielectric breakdown of non-polar insulators (to
be published). Note added in proof.—F. Seitz (Phys. Rev. 76, 1376
(1949)) has also independently derived essentially these equations
(for the energy loss of an electron) in his work on electron multi-
plication in crystals.

We may now use Eqs. {17) and {16) for the collision matrix
elements in the energy loss Eq. (15). With cos8, —k.e/ko, one
has, ~

(~,) f,=*"'a-.( )f;.("'" )—
'

h» h'o '
X (n(e)+1)8 —2k cose,— —hw(e)

2m
+ '

2m

—h» h'o'—n{e)B 2k o cos8 — +ha(e) (18)
2m 2m

and, carrying out the integration over 8„
d v((P+2)A, /2m)' m——~+(k+) = " — doo'g, ,„(o)
dt 921-hk+. M 0

XI~,„.{}— ( }(&.„,.()—~I,, I()I, (19)

where a=2mv„/h, v„=co(e}/~, being the (longitudinal) acoustic
wave velocity=1. 8X10' cm/sec. for Au.

Equation (19) indicates that there are four distinct cases in
the energy loss expression; I: 2k+~o +a; II: o +a&2k+
&o. —a; III:o. —a~2k+&a, IV: a~2k+, and, since o &&a,
these essentially reduce to three: I': k+&o /2; II': o „/2~k+
&mv /h. III'. mv /h~k+. Evaluating the integral over o. in
Eq. (19) gives explicitly, with
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P( k )
I vs+(P+= +) I'

081
&p+I ~+(p+) I'

2svS g~ „8(~+(p+=2svSa ') ('
g+

'
&p+l ~+(p+) I' ' '

(24)

2~2 g+ 6~ yg+(p+=271-2a ') ~~

g+ ~p+I a's+(p+)I

P(p+ =221.g+ &22r2/a) =0.
Thus, the mean square positron momentum in the state P&+ is

(p ')q+=0.81{kk+)'+0.14(2ma ')'+0.05(2m2a ~) ~ (25)

and the mean square zero-point positron kinetic energy (p+~)A&/2m,
becomes, using a)s~=4.07A'=7.7X137k/mc,

(p+')A, (p+')g+ 0.81(kk+)' mc'

2m 2m 2m
' 1372'

(22)~=3&10 ~0 sec.

It may be mentioned that, according to Eq. {21),r is relatively
insensitive to variations in temperature.

On the other hand, the mean life for slow positron annihilation,
assuming that only the 6s valence electrons are accessible to the
positrons, is

(
es

c~ =25X10 "sec.=8r."
mc

It is thus indeed quite probable that, as we have supposed through-
out, the instant of annihilation will find the positron occupying
states with hk+~(2m~T)&; such thermalized positrons possess
therefore a total momentum very close to the bottom-of-the-band
zero-point value, which, on a root-mean-square basis, is the

((p+ )A&)& used above.
It remains to justify the formula (p+')A„/2m)+„=0. 22 mc'/137'.

We have, with our choice of Pp+(r) and with Eq. (9),

We may conclude by noting that it is not quite correct, to
assume that the electrons alone contribute to the center of mass
momentum of the annihilating pairs and thus to picture the
positrons as electively stationary targets for annihilation. ' This
follows since, as we have just seen, even a thermalized positron
has probabilities of the order of 14 percent and 5 percent, respec-
tively, for possessing momenta as large as 27rv3a '=1.4 mc/137
and 221-2a '=1.6 mc/137. Indeed, our discussion makes use of no
such assumption and obtains the probability amplitude for the
momentum of the center of mass of the annihilating pairs,
directly from the corresponding electron and positron coordinate
space or momentum space wave functions (Eqs. (6), (7)).

28' Vg

I qg+(p+) I'=const. Z Bg 0 1——+ — sin(2mg+r;)
C+- $t 'V

2 9—(277g+r;) cos(227g+r;) —,8 4++221-g+—p+ . (23)
{227.g~;)'

where, to obtain the last expression, we have used T=300'K and value p+..~'

ka~7s~ =0.8 mc/137. Then, with (p+s )A,/2tn]s, =0.22 mcs/137s

(see below) we finally have»

Thus, recalling that for a face-centered cubic lattice (like Au) the

g+ of smallest magnitude are 0;

&a '(e~+e2-e3), &a '(e2+e3—e~), +a ~(e3+e~—e~),
a '(ei+e2+e3); &2a 'e~, ~2a 'e', ~2a-'ea;

etc. (here a is the lattice constant=(4v)& and, e~, e2, e8, unit
vectors along the cubic axes), one gets with e,%=-,', r;=1.0A',
P(p+), the probability of the positron momentum having the

' From a calculation analogous to that in Eq. {21), the time
required for the positron to slow down from a momentum

—',ho;«~=,'-(mc/137) for Au,

to a momentum (2m~T)& is only 35 percent shorter than r. This
justifies the statement made previously, in the discussion of the
neglect of the collisions with 2~g /0.

"The fact that one should use, in the Dirac formula for the
annihilation mean life, the number of valence electrons per unit
volume, and not the total number of electrons per unit volume,
was first pointed out by Pomeranchuk, reference 2. It should,
however, be mentioned that our estimate of the annihilation time
may be too long by a factor of 2 to 4, because of the possibility of
occasional annihilation against a 5d electron and because of the
neglect of the Coulomb attraction between the annihilating elec-
tron and positron (involving multiplication of the annihilation
rate bv

&I p- p+1 & Ip— p+l A

We may also note that our time for annihilation is short com-
pared to a reasonable estimate of the time required to trap the
positron at a lattice defect (i.e. an Au+ vacancy, etc. For analogous
estimates in the case of electron trapping, see N. F. Mott and
R. W. Gurney, E/ectronic Processes irI, ionic Crystals (Oxford
University Press, London, 1940), p. 131 6'.).

APPENDIX II
The Annihilation Matrix Element

The integral of Eq. (6) for Cp+, p (p) is proportional to the
matrix element of the annihilation transition in which an electron
jumps from an originally occupied initial state with wave number
k, energy =mc~ to an originally unoccupied final state with wave
number —k+, energy =—mc', with the simultaneous emission of
two photons with total momentum p. This can be straightfor-
wardly shown from the usual two-step perturbation theory deriva-
tion of the annihilation probability based on the interaction of a
Dirac electron with the quantized radiation field (see, e.g. W.
Heitler, reference 6, pp. 204-208) provided that, (a): the wave
functions of the intermediate (virtual) states of the process are
treated in the free particle approximation, and (b): the wave
functions of the initial and final states are treated non-relativisti-
cally, i.e. replaced by the corresponding Schrodinger wave func-
tions (Pg (r), fg+*(r) which appear in Eq. (6)) times

1 0
0 0
0 and

0 0

respectively. Then, remembering that the electronic momenta
involved in the intermediate states (~mc) are much greater than
those involved in the initial and final states (~mc/137), and, using
the orthonormality of the space parts of the intermediate state
free particle wave functions, one can perform the sum over all
the possible intermediate states and obtain Eq. (6) for 4»+, & (p).
Eq. (7) for ~+, tg (p) follows immediately from Eq. (6) by use of
the Fourier transform relations between Pg~(r) and gory(~). It
may also be mentioned that the above method yields most readily
the known result'9 that the matrix element of the two-photon
annihilation is proportional to the sine of the angle between the
photon polarization vectors.

~ We have used, in the first approximate equalities, the fact
that for the positrons of interest, 4+~ h '(2maT)&&&2~VSa ', etc.


