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On the other hand, it may be noted that Rochester,
Butler, Mitra, and Rosser, wor»rig with a cloud
chamber covered with j.6.8 cm or less, of lead, found
among the secondary particles of hard showers, 14
positive lightly ionizing tracks and two negatives,
which, as noted by the authors, suggests that such
particles were mainly protons. And it is signifIcant that
of the slow particles for which the British authors were
able to recognize the mass, 23 were protons and 5
meso ns.

%e thus think that no real discrepancy can be found
between our result on the nuclear absorption of
m-mesons and any of the experimental evidence now
available.

Our lower limit of 1200 g/cm ' for A, seems therefore
to be signi6cant.

Finally, we would like to underline that from
Experiment III we conclude that the locally produced

~Rochester, Butler, Mitra, and Rosser, reported by G. D.
Rochester, Symposium on Cosmic Rays, California Institute of
Technology (June 21-23, 1948), Rev. Mod. Phys. 21, 20 {1949).

mesons detected with the delayed coincidence method
are mainly generated not in low energy processes by
secondary nucleons, but in high energy ones, and most
likely in the very 6rst nuclear collision of the arriving
nucleon. This supports the standpoint which we have
taken in the previous paper.

The average number of particles arriving on Tray C
from the lead block for every HS (AaBC) turns out to
be about four, from the average number of counters
discharged in Tray Cq (1.7) and the fraction of the sur-
face covered by the counters (1/2.25).
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The Dirac equation for an electron in the field of a Thomas-Fermi-Dirac atom is solved numerically on
the ENIAC for a large number of cases. The resulting wave functions are used to calculate the effect of
screening (by the atomic electrons) on allowed beta-spectra and on the internal conversion coef5cients of
gamma-rays. It is seen that the negatron spectra are essentially unaffected by screening; positron spectra
are affected appreciably in a direction such as to increase the number of low energy positrons. %'here a com-
parison can be made between the present calculations and previous ones in which the screening has been
neglected, it is seen that the effect of screening is to increase the conversion coefBcients slightly. Most of the
present calculations, however, are for the soft gamma-ray region, for which only approximate formulas for the
conversion coef5cients exist. Thus the results of this paper are used to test the accuracy of these formulas. An
attempt is also made to classify a number of experimentally observed gamma-rays.

r. INTRODUCTION

~HE purpose of the work described in this paper
is to obtain solutions of the relativistic motion of

an electron in an atomic potential, this potential being
supplied by the statistical model of the atom, and to
use the wave functions obtained to calculate internal
conversion coefIIcients and beta-ray spectra. These
results, when compared with those calculated using
Coulomb wave functions, give the so-called "screening
correction" due to atomic electrons.

Whereas the Coulomb correction to the shape of the
allowed beta-ray spectrum (obtained by using Coulomb

*This paper was written as a Ph. D. thesis in the Department
of Physics, University of Chicago, Chicago, Illinois.

*~ National Research Council Predoctoral Fellow; now at Los
Alamos Scientific Laboratory, Los Alamos, ¹wMexico.

eigenfunctions instead of free particle functions) is

quite large, giving a factor of about 100 for elements of
high nuclear charge and negatrons of low energy, the
screening correction is generally assumed to be small.
Approximate calculations of the screening correction by
Rose' and Longmire and Brown' have verified this
assumption, although the correction for low energy
positrons was found to be appreciable. More accurate
calculations of the screening correction seemed desirable
since the deviations from the theoretical spectra found
experimentally in Cu~ and S" (both of the allowed

type) have been interpreted" as a failure of the Fermi

'M. E Rose Phys Rev. 49 727 (1936)
~ C. Longmire and H. Brown, Phys. Rev. 75, 1102, 264 (1949).' C. S. Cook and L. M. Langer, Phys. Rev. 73, 601 (1948).
4 Cook, Langer, and Price, Phys. Rev. 74, 548 (1948).
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theory. It should be noted, however, that the more
recent experiments of Albert and Ku&6 with thinner
sources and source backings have shown that these dis-

crepancies are in part due to scattering of the higher

energy electrons in the source and backing.
An accurate knowledge of the internal conversion

coeS.cient is helpful in establishing the angular mo-

mentum state of an isomeric level and for determining
the mode of nuclear vibration when the level decays.
Accurate calculations of the internal conversion coef-
ficients (using relativistic Coulomb eigenfunctions) have
been made by Hulme, 7 Taylor and Mott& and Fisk'0 "
for the gamma-rays of radium C, and by Gri5th and
Stanley" and Rose and collaborators" for various
elements with Z&~40. All of these calculations are for
gamma-rays with energies greater than 150 kev; thus

the results should not be afkcted much by a considera-

tion of screening. Approximate formulas for the internal

conversion coefficient have been derived. by Hebb and
Uhlenbeck~' for light elements (non-relativistic calcu-

lations), by Dancoff and Morrison" for hard gamma-

rays, and by Drell" for magnetic conversion. The
results which are described in the present paper, when

compared with the other calculations, give essentially
the screening correction to the internal conversion coef-

6cient; actually many of our results are in a range

(heavy elements, soft gamma. -rays) not covered by
previous work.

II. OBTAINING THE WAVE FUNCTIONS

The 6rst step in computing the effect of screening is

to obtain the appropriate wave functions. These func-

tions are taken to be solutions of the Dirac equation for
a single electron moving in the Geld of an atomic nucleus

and the statistical average field of the atomic electrons.
When the Dirac equation for a central field of force is

separated in spherical coordinates according to standard
methods, the angular and spin parts of the wave func-
tion can be replaced by appropriate constants, and we

are left with an equation which involves only one inde-

pendent variable, r. We need now concern ourselves

only with the radial part of the wave function, which

has a two-component structure:

f'r 'F(r) )
&r 'G(r))

' R. D. Albert and C. S. Ku, Phys. Rev. 74, 847 (1948).
e C. S. Ku and R. D. Albert, Phys. Rev. 75, 315 (1949).
7 H. R. Hulme, Proc. Roy. Soc. A138, 643 (1932).
'H. M. Taylor and N. F. Mott, Proc. Roy. Soc. A138, 665

{1932).
'H. M. Taylor and N. F. Mott, Proc. Roy. Soc. A142, 215

{1933).
'o J. B. Fisk, Proc. Roy. Soc. A143, 674 (1934)."J.B.Fisk and H. M. Taylor, Proc. Roy. Soc. A146, 178 (1934).
'~ B. A. Grif5th and J. P. Stanley, Phys. Rev. 75, 534 (1949).
"Rose, Goertsel, Spinrad, Harr, and Strong, Phys. Rev. 76,

184 (1949). These authors have distributed privately an extensive
table of their results.

"M. H. Hebb and G. E. Uhlenbeck, Physica 5, 605 (1938).
'e S. M. Dancoff and P. Morrison, Phys. Rev. 55, 128 (1939).
'e S. D. Drell. Phys. Rev. 75, 132 (1949).

Here W is the total energy of the electron, V(r) is
potential energy, and j is the total angular momentum
quantum number. (In this paper, all distances are
given in units of h/mc, all energies in units of mc', and
all momenta in units of mc. ) The upper signs in Eq.
(2) refer to type o wave functions in which j =l+~~;
the lower signs to type b functions (j=l—r'). / is the
non-relativistic quantum number which gives the
orbital angular momentum.

The set of Eqs. (2) was integrated numerically, for
atomic potentials corresponding to sulfur, copper,
indium, polonium, and uranium, on the Electronic
Numerical Integrator and Calculator (ENIAC), which
is located at Aberdeen Proving Ground, Maryland.
Angular momentum values up to j=5/2, l=2, and
various energy values, 8', were considered. Most of the
wave functions calculated belong to continuum elec-
trons (or electrons of positive energy);" their energies
range from five to about 300 kilovolts. The integration
of the equations was started at a point quite close to
the origin, where the wave functions were assumed
Coulomb-like; and was carried out point-by-point to
a distance at which the functions could be converted
to their values at inhnity by means of an asymptotic
expression. The normalization condition was applied at
the end of the calculation. "

The potential energy, V(r), which was used in the
solution of Eq. (2), consists of several parts:

V= —V,—D+K,

where —V, is the electrostatic interaction between the
electron in question and the rest of the atom, —D is the
"exchange" interaction, and E is a potential correction
which may be necessary for the problem under con-
sideration. Since we would like to get V from the sta-

TAaLK I. Energy eigenvalues for the 1s and 2s levels.
Energy E=8'-1.

Ele- 1e level

ment X-ray T.F.D. Coulomb

2a level

X-ray T.F.D. Coulomb

Cu —0.01762 -0.017619 —0.022650 -0.00219 -0.002207 —0.005679
In —0.05472 -0.054995 —0.066147 —0.008318 —0.008485 —0.016677
Po —0.1820 -0.18507 -0.21002 -0.0833 -0.08407 —0.05893
U -0.2276 -0.23046 —0.25908 -0.04273 —0.04887 —0.06700

' 1s and 2s bound levels were also computed for copper, indium,
polonium, and uranium.

'e The wave functions and the details of the numerical integra-
tion of Eq. (2) will be described in a future publication to be sub-
mitted to the Physical Review; tables of the 240 radial wave
functions have been published by the University of Chicago
Physics Department: J. R. Reitz, Relativistic E/I tron Waec
Fundiows for a Thomas-I"e'mf Dirac Statistica/ Atom (Depart-
ment of Physics, University of Chicago, 1949).

The Dirac equation then reduces to a set of coupled
equations,

dF/dr+r '(j+ ,')F+-[W 1——V(r)]G=O,
-dG/dr~~ (,+,)G+(-W+I V(,)-jF=O.
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TABLE II. Screening correction factors (FT.F.D, /Fop']pub) to
allowed beta-spectra (negatrons).

TABLE III. Screening correction factors (FT.F ~ /Fop„lp~b) to
aI'lowed positron spectra.

Energy
(W —&)

0.003
0.01
0.02
0.04
0.05
0.08
0.10
0.12
0.20
0.25
0.30
0.40
0.50
0.60
0.80

S
Z =16

0.990
0.996
0.998
0.999*
0.999*
0.999
0.999*
0.999*
1.000*
1.000*
1.000
1.000~
1.000*
1.000*
1.000~

0.988
0.991
0.992*
0.993
0.994*
0.994'
0.995
0.995
0.996*
0.996*
0.996*
0.997*
0.99?
0.998*

0.965
0.971
0.973*
0.976
0.978*
0.979'
0.983
0.984*
0.985'
0.987
0.988*
0.9894
0.990

0.945
0.951*
0.954
0.956*
0.961
0.964*
0.966*
0.968*
0.971
0.973*
0.976*

(FT.F D, /Fop'&pmb) for the elements
Cu In Po
29 49 84

U
92

0.933
0.941*
0.944
0.947*
0.955~
0.958
0.960*
0.964*
0.9674
0.969
0.973*

Energy
(W —l. )

0.003
0.01
0.02
0.04
0.05
0.08
0.10
0.12
0.20
0.25
0.30
0.40
0.50
0.60
0.80
1.30

S
Z =16

8.08
1.745
1.325
1.150*
1.130*
1.083
1.072*
1.065*
1.051*
1.046*
1.042
1.038*
1.035*
1.033*
1.0304

5.44
2.20
1 38*
1.277
1.154*
1~ 123*
1.105
1.075
1.066*
1.060'
1.053*
1.048*
1.045
1.040*

7.71
2.64
2.09*
1.505
1.37*
1.29*
1.173
1.146*
1.128*
1.106
1.094*
1.084*
1.073

7.27
3.41*
2.62
2.18*
1.535
1.40*
1.32*
1.245*
1.203
1.176*
1.145*
1.110

(FT F g /Fcpulpmb) for the elements
Cu In Po
29 49 84

U
92

10.44
4.00"
2.93
2.41*
1.64~
1.478
1.38*
1.258*
1.233*
1.203
1.165*

~ Values obtained from graphical interpolation.

V,=
0,

p =4a(2Z/9n') &, n—=e'/kc.

for r&r~.

tistical model of the atom, we write

nZr 'rp(pr) a2/27r2 I'-'0, —for—r ~& r
(4)

*Values obtained from graphical interpolation.

The exchange energy, —D, can also be expressed as
a statistical approximation which is spherically sym-
metric. "The statistical form is

D(r p~) =4nI'$(I p'l /I')

Here q(pr) is the Thomas-Fermi-Dirac function, " "
which is a solution of the equation

d'cp(x)/dx'= x(d+ q '/x~)' d = (3/32m') tZ &. (5)

where

P(r) =
0, for r&r~,

a/x+ (n'/x +2 V,(r)) '*, for r &~r~,
(&)

Equation (5) results from Poisson's equation when we
make the substitution (4), assuming that the charge
density has been expressed statistically as p(V,). Eo is
the maximum Fermi energy for an electron bound in
this statistical distribution; r~ is the radius of the atom.
V„obtained from Eq. (4), represents a statistical or
semiclassical approximation to the Fock-Dirac self-
consistent 6eld.

The function q(pr) is determined by the boundary
conditions that y(0) =1, and for the case of a neutral
atom that the electric field vanishes at rg. This pro-
cedure for obtaining q assumes that r~ is known;
actually another condition is needed to determine both
q and r~. If we assume that the momentum, I', of a
particle with the maximum Fermi energy, Eo, is zero
for distances greater than r~ (this assumption is
reasonable, since valence electrons have essentially zero
binding energy compared to electrons deep in the
atomic cores), then we find that Ee——0. Making V,
continuous at r=r~, we get the other condition on q
and rz from Eq. (4), namely

nZr~ 'y(pry) = /2mn. —
(6)

Thomas-Fermi-Dirac solutions for various elements
have been given by Slater and Krutter" and Feynman. "

"See L. Brillouin, I Atome de Thomas-Fermi, Actualities Scien-
ti6ques et Industrielles (Hermann and Cie, Paris, 1934), No. 160.

s J. C. Slater and H. M. Krutter, Phys. Rev. 47, 559 (1935).
2' Feynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949).

and
1 1—m' 1++

&(m) =—+ ln
2 4w [1—wi

1.01
1.02
1.05
1.08
1.12
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.12

T.F.D. (Z, ~)

13.45
9.58
6.19
5.06
4.33
3.61
3.22
3.00
2.86
2.76
2.69
2.63
2.59
2.56

F+T.F.D. (~, I&)

0.001283
0.01273
0.0829
0.1536
0.228
0.325
0.400
0.444
0.474
0.496
0.512
0.524
0.533
0.542
0.549

Here p;(r) is the momentum of the electron in question
at point r. Thus Eq. (3) for the potential energy, V,
becomes

V= aZr 'y(IJr)+ n—'/2x'—
4nP(r) t(—

l p*l /I')+&(r) (g)

For bound-level calculations made on the ENIAC,
the neutral atom potential was used, i.e., E(r) =0. The

TABLE IV. FT.F.D.(Z, W) for copper.
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bound solutions were obtained essentially by trial and
error; first an eigenvalue was guessed, then an ENIAC
run was made. This procedure was repeated until a
well-behaved solution couM be interpolated from the
results; at this point the eigenvalue was good to about
five significant 6gures. Table I gives the eigenvalue as
determined by ENIAC solution using the potential (8),
(potential abbreviated T.F.D.). For comparison the
x-ray energies as computed from the K and I.l ab-
sorption edges~ and corresponding Coulomb energies
(Dirac eigenvalues for a Coulomb 6eld) are also given.
It is seen that the eigenvalues of these functions agree
with the x-ray energies within a few percent, whereas
the corresponding Coulomb eigenvalues may be o6' as
much as a factor of two.

For the continuum electron calculations, representing
electrons ejected by the internal conversion process, it is
necessary to correct for the absence of one of the bound
electrons (namely the 1s electron). The ejected electron
leaves the field of the atom in a time which is short
compared to an electronic rearrangement time, so that
the potential can be considered as made up of the
neutral atom potential minus the potential of a is
electron distribution. For this case then, K(r) equals
minus the potential created by a 1s electron distribu-
tion.

Wave functions were also evaluated for electrons
which are emitted in the beta-decay of nuclei. Here
again the electron traverses the atomic 6eld in a time
short compared to an electronic rearrangement time;
thus the potential is considered made up of the neutral
atom potential of the parent atom plus an attractive
term due to the excess positive charge on the nucleus
(i.e. , K= —n/r). For the case of positrons the "neutral
atom" part of the potential, due to the parent atom, is
of the opposite sign, and K(r) again equals —n/r.

Actually the re6nements to the potential which have
been considered here do not inhuence the results of this
paper. The principal effect comes from the screening of
the electric 6eld, and therefore in most cases, we could
have taken V= —V,. An exception is, of course,
K(r)= —a/r which is necessary in the beta-decay
problems to convert to the potential of the daughter
atom; on the other hand we could have used the V,
corresponding to the daughter and made K(r)=0.
Another possible exception is the exchange energy, —D,
for bound electrons; D(r, p;) is proportional to r & in
the vicinity of the nucleus and is thus less than one
percent of V, inside the E-orbit, but for bound electrons
it becomes approximately equal to V, in the outer
regions of the atom. Thus, the wave functions and
energy eigenvalues would be affected slightly if D were
neglected.

~ See A. H. Compton and S. K. Allison, X-Buys irI, Theory end
Experiment {D.Van Nostrand Company, Inc. , New York, 1935),
pp, 792-794 for a table of z-ray absorption edges.

= (R,/2P'r')LG «=o, ;=,&+F «=j, ,=1&]. (10)

Here the wave functions P, are evaluated at the nu-
cleus; r—'G and r—'F are the normalized radial com-
ponents of iP, given in Eq. (1). For the Coulomb field,
F(Z, W) reduces to (see Konopinski)'4

F i b(Z W)=4(2pR~)'* 'e

(r(s+f ZW/p)~ (1+s)
X ~, (11)

LI'(2s+1)j' 2

where R~ is the radius of the nucleus, and s = (1—a'Z') &.

In this expression the nuclear charge, Z, is to be taken
negative for positron emitters. For other atomic 6elds
where the wave functions are known in numerical form,
F(Z, W) can be evaluated from Eq. (10).

In Table II are given the screening correction factors
to the allowed beta-spectra of sulfur, copper, indium,
polonium, and uranium. The correction factors are
given as the ratios of FT.F.D.(Z, W) /F.,„&,~ (bZ)w))
where F FT.D.(Z, W) is computed from Eq. (10) using
the Thomas-Fermi-Dirac wave functions evaluated on
the ENIAC, and F~„i,~b(Z, W) is computed from (11).
These correction factors are listed in Table II for the
radioactive parent nuclei; although in computing the
F(Z, W), nuclear charges corresponding to the daughters
must be used.

Table III gives the screening correction factors to
allowed positron spectra; these factors were computed
in a similar fashion to those of Table II.

It is seen that the screening correction for negatrons
acts to decrease their number at low energies, but is
very small; for light elements the correction is almost
negligible, and for uranium it is only seven percent at
25 kev. For positron spectra, however, the correction
can be quite large, and has the effect of increasing the

2' E. Fermi, Zeit. f. Physik, 88, 161 {1934).
~4 We use here the notation of E. J. Konopinski, Rev. Mod.

Phys. 15, 210 (1943).

III. THE SHAPE OF THE ALLOWED
BETA-RAY SPECTRUM

According to the Fermi theory of beta-decay~ the
allowed spectrum is given by

F(P)dP ~
~

M ~'F(Z, W)P'(W, —W)'dp, (9)

where W is the energy and p=(W' —1)' is the mo-
mentum of the emitted particle, W'0 is the maximum
energy of particles emitted during the beta-decay, M
is the nuclear matrix element, and F(Z, W) is a factor
which gives the effect of the atomic field on the spec-
trum. '4 For wave-functions of spherical symmetry
normalized to one particle in a sphere of radius E„the
function F(Z, W) can be shown to be

1

F(Z, W)=2irR, p ' Q f,*p,
L=O

(j=—',, components independent of 8, e)
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number of low energy positrons. This increase in the
number of positrons was expected. since the Thomas-
Fermi-Dirac field overs a smaller potential barrier to
the positron than the Coulomb field. In fact the cor-
rection factors in Table III are in rough quantitative
agreement with the ratios of potential barrier factors
for the two fields.

Screening correction factors for nuclei with diferent
atomic numbers can be obtained by graphically inter-
polating the values in Tables II and III. The screening
correction can also be estimated from Rose's formula
although the formula may be in error by as much as
fifteen to twenty percent for positrons from heavy
elements.

Rose' derives his formula in the following manner.
First he splits up the atomic potential into two parts, one
for the region about the nucleus in which the screened
potential diGers from the Coulomb potential by an
average value Do, and the other for the region covering
the rest of space in which a K.K.B.solution of the wave
equation is effected. (D& equals a'Z(128Z/9s')& for the
case of the Thomas-Fermi screened Geld. ) He then com-
pares two states, one an electron of energy 8' in the
field of the screened nucleus, and the other an electron
of energy 5'—Do in the Coulomb field, and shows that
the quantity (dn/dW)

~
f~' at any point in the nucleus

is the same for both of the states. Expressing ~P' in
terms of F(Z, W) and noting that the state density per
unit energy range, namely (da/dW), is equal to F ] b(Z, W)= 2sy/(1 —exp( —2sy)),

y= aZW/p. (13)

The upper sign is for negatrons, the lower sign for
positrons. The factor in the brackets is close to unity,
thus Eq. (12) is essentially the same as the correction
recently given by Longmire and Brown. '

A comparison of Eq. (12) with Tables II and III
shows that the formula predicts the screening correction
fairly well for negatrons with energies greater than
about 4DO. For light elements like copper and sulfur,
Eq. (12) agrees with the tabulated values within one
percent down to 10 kev. For heavier elements deviations
start at higher energies; in polonium, for example, the
formula agrees down to about 70 kev, but is 2~ percent
low at 25 kev. It is known that the formula breaks
down for energies in the neighborhood of Do.

For positrons the agreement is not as good, prin-
cipally since the magnitude of the correction is so
much greater. For positrons from copper the formula
predicts a screening correction of 1.025 at 200 kev, is
six percent below the values in Table III from 30 down
to 10 kev, and becomes equal to the tabulated value at
about 6 kev. For polonium the formula gives a value of
only 1.05 at 500 kev, is about 15 percent low from
100 down to 40 kev, and equals the value in Table III
at 20 kev. In making the above comparisons, Eq.
(12) was evaluated completely, including the factor
in brackets; however, the non-relativistic approximation
for F„„&, b(Z, W) was used, namely:

l.2—
N (p)

l.O

.8

.4

/.'/
+ j

We may inquire how close the screening correction
factors of Tables II and III, which are computed, from
the Thomas-Fermi-Dirac potential, will agree with
those for the true atomic potential. Since for nega-
trons F(Z, W) does not change very much in going
from an unscreened to a statistically screened field,
there will probably be very little change produced in

going to the true atomic field. For positrons, however,
the value of the wave functions at the nucleus is quite
sensitive to the potential barrier, so we can probably
expect small deviations from the values in Table III.

IV. EXPEMMENTS ON BETA-RAY SPECTRA
2

/

0 .2 .4 .5 .8 l.O l.2 l.4 I.e I.S
P

Fzo. 1A. Negatron spectrum of Cu~. The solid line is the theo-
retical curve; the experimental results of Cook and I.anger (Q),
and Wu and Albert (+) are also given.

(E,W/~p) we obtain

FT.F.(Z, W)/F „(. b(Z, W)

=F,.„i. b(Z, WwDO)/F, .„i. b(Z, W)

pW —1&Dog ~ )W+i&DO~ ~/WWDoy
X] I ~ I/ ~. (12)

W —1 ) .. I W+1 & E W

In this section a few of the allowed spectra which
have been experimentally determined down to low
energies will be compared with the theoretical spectra
in which the F(Z, W) are computed for the Thomas-
Fermi-Dirac potential.

For S" the screening correction as obtained from
Table II is essentially negligible. Albert and Wu have
measured' the negatron spectrum and have found that
for sources thinner than 2'/cm', the results are in
agreement with the theory (for energies greater than
20 kev). With thicker samples they obtain a hump in
the spectrum at about 25 kev, similar to the one
previously obtained by Cook, Langer, and Price. 4

Cu~4 emits both positrons and negatrons; and since
the corrections are somewhat larger, a more detailed
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comparison between theory and experiment will be
made. In Table IV are listed the FT.v.D.(Z, W) for Cu;
these functions were computed by applying the screen-
ing correction of Tables II and III to the F««, mb(Z, W)
computed from Eq. (11).The F's, as given, are com-
pletely relativistic. (It should be noted that many
experimenters use the non-relativistic approximation
for F« ~o b(Z, W) given in Eq. (13); the relativistic
correction has been discussed by Longmire and Brown. '

Using Table IV, the positron and negatron spectra of
Cu'4 were computed, namely the F(p). These theo-
retical curves are given in Fig. 1, along with experi-
mental values obtained by Cook and Langer' and Ku
and Albert. ' The experimental points are normalized
on the high energy sides of the distributions. It is seen
that the results of Wu and Albert are in fairly good
agreement with the Fermi theory, and the small devi-
ations which still occur can probably be attributed to
the finite thickness of the source.

Cu" and N" are both positron emitters. Their spectra
have been investigated by Cook and Langer, ""who
found an increase in low energy positrons over that
predicted by the theory. The screening correction is in

the right direction but not large enough to explain the
discrepancy completely. It should be remembered,
however, that if many of the higher energy positrons
lose energy as they emerge from the source (of 6nite
thickness) and appear in the low energy region, then
this region will be greatly accentuated, since the theory
predicts almost no low energy positrons.

V. BETA-DECAY LIFETIMES

Theoretically the mean life of an allowed beta-emitter
is proportional to the reciprocal of f(Z, Ws), where

s (~o)

f(Z, We) = )f dPPs(lVs —lV)sF(Z, lV). (14)

For negatron emitters, the function f(Z, Ws) will be
essentially unchanged upon applying the screening cor-
rection to F(Z, W). For the screening effect to enter at
all into f, the maximum energy, Ws, must be quite low.
The H' beta-decay, for example, has a very low
maximum energy (We=1.0355), but no effect is ex-

pected because the Z-value is so low. '-'

For positron emitters of low maximum energy the
effect of screening is considerably larger, and f is
increased somewhat as a result. Thus the ft ~alue for

"C.S. Cook and L. M. Langer Phys. Rev. 74, 227 {1948)"Cook, Langer, Price, and Sampson, Phys. Rev. 74, 502 (1948}.
~' The effect of the coulomb field is usually neglected in com-

puting f for the H' decay. By considering the effect of the coulomb
field, one finds that f is 1.47 times larger than the value obtained
when the Geld is neglected. Taking ~M~s=3, one obtains ~M~' ft
=3000 sec., which is within a factor of two of the corresponding
value for Bee {see E. J. Konopinski, Phys. Rev. 72, 518 (1947)).
In calculating ft the author used WO=1.0355 {Curran, Angus,
and Cockroft, Phil. Nag. 40, 53 {1'N9)) and a half-life of 12
years {A. Novick, Phys. Rev. 72, 972 {1947)and M. Goldblatt,
Phys. Rev. 72, 973 (1947)).

positrons from Cu~ is increased by about five percent
(i is the observed half-life). Two positron emitters
which show a larger increase in their ft values are Co"
(We=1.51)" and La"' (We=2.64)." Both fi's are
increased about 10 percent due to screening.
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FIG. 18. Positron spectrum of Cu~. The solid line is the
theoretical curve; the experimental results of Cook and Langer
(Q), and Wu and Albert (+) are also given.

VI. INTERNAL CONVERSION COEFFICIENT
FOR THE K-SHELL

Following DancoG and Morrison" we define the
internal conversion coefficient to be the ratio of the
observed electronic Aux, X„to the observed Aux of the
gamma-quanta, iV„emitted by an atom during a
nuclear transition. Theoretically one calculates the
internal conversion coeKcient for a given multipole
character of the radiation, and for conversion by elec-
trons from a given atomic shell. Defining sV, to be the
number of E-electrons ejected per unit time, we have
as coeScient for the E-shell

tsx(D=ggT (g'

for electric 2'-pole radiation, and

Px'" = V./Ss

(15a)

(15b)

A=A exp( ivy)+A*—exp(ivt),
4'= tV exp( —ivt)+ i' exp(ivt),

then for electric dipole radiation

A. =Br 'exp(ivr), A =A„=O,
cp= Br—'L1—(ivr) tj exp(ivr). —

(16)

"J.J. Livingood and G. T. Seaborg, Phys. Rev. 60, 913 (1941).
~' J. B. Chubbuck and I. Perlman, Phys. Rev. 74, 982 (1948).

for magnetic radiation.
Let us designate the vector and scalar potentials of

the multipole field by
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FIG. 2. Internal conversion coeKcient for copper. The solid
lines are the results of this paper. The dashed curves are the
Hebb-Uhlenbeck and Drell formulas for copper, whereas the
broken curves are the Danco¹Morrison results. The Hebb-
Uhlenbeck curve for ED radiation was left oB the figure in order
that the other curves be clearly separated; it is ii percent below
our ED curve at v=0.04 and at v=0.10, and is 17 percent low at
v=0.20. Experiment points: + Zn" (Helmholtz), and Q Br"
{Siday).

The corresponding quantities for electric quadripole
and magnetic dipole radiations have been given by
Taylor and Mott and Fisk and Taylor, " respectively.
Here v is the gamma-ray energy (in units of mc'), t is
the time in units of t'3/mc', and B is the multipole
moment. One then obtains the electronic Qux from the
E-shell to continuum states f from the well-known
formula of perturbation theory:

X,=2(21m')P
~

lPg*{vl+n AI1PrrdT (R,W/xP). (17)

The extra 2 in the formula is because there are two
E-electrons; lent is normalized to one particle in a
sphere of radius E.„and the summation is over the
allowed final states. The 1P's which were used in evalu-
ating (17) are the Thomas-Fermi-Dirac functions
described in Section II; only the radial parts of the
wave functions are described there; however, the
angular dependence of central field wave functions has
been given by Rose" for the case of the customary
n and P-matri-ces. As a result of the angular integra-
tions, electric dipole (ED), electric quadripole (EQ),
and magnetic dipole (MD) radiations each allow two

' M. E. Rose, Phys. Rev. 51, 484 (1937).Rose gives the angular
dependence of CoNEomb eigenfunctions, however, since it does not
depend on the form of the potential, it is valid for all central
6elds. His f=r 'F g=r 'G.

FIG. 3. Internal conversion coeKcient for Indium. The solid
lines are the results of this paper. The dashed curves are inter-
polated from Rose 8 al. The broken lines are the Hebb-Uhlen-
beck and Drell formulas. Experimental points: + Mo (Huber
and Medicus), Q Tm"' (McGowan and DeBenedetti), Q Xe'"
(Metzger and Deutsch).

AT, = (4/3) nB'v

quanta per unit time, and by the EQ field

Eq (12/5) nB'v. ——

(18a)

(18b)

The internal conversion coefficient has been evaluated
for several nuclei for ED, EQ, and MD radiations using
the ratio of Eqs. (17) to (18) as expressed by Eq. (15).
The radial integrations in the matrix element of X.were
carried out in a straightforward manner numerically.
Wave functions for an electron in a Thomas-Fermi-
Dirac atomic potential were used for both initial and
final states. The E-shell binding energies which were
used to relate the energy of the ejected electron to
that of the gamma-ray were obtained from x-ray
absorption edges.

The results of the calculations are shown in Table V;
they are accurate to about one percent. No correction

final states in the continuum for the case of E-conver-
sion. For ED radiation they are P&~2(hm;=0) and
Pl, (Am, =0); for EQ, Ds~l(Am, =0) and Dq~2 (Am;=0);
and for MD, St (bm, =0) and D3(l (hm, =0)

In the calculation it is assumed that the nucleus
radiates as a classical multiple of the proper order.
Taylor and Mott have shown' that the number of
quanta escaping from a nucleus surrounded by atomic
electrons divers from the radiation of the bare nucleus
only by a factor of the order of magnitude 1/'137, which
may be neglected. Thus the energy radiated by either
dipole field (ED or MD) is



0.02762
0.03762
0.06762
0.13762
0.21762

0.07472
0.09472
0.13472
0.2547
0.4547

0.232
0.282
0.382
0.682

tel-(t)

15.5
6.63
1.23
0.150
0.0398

2.37
1.18
0.448
0.0728
0.0152

0.244
0.152
0.0732
0.0191

Copper

Ind1unl

Polonium

Uranium

411.
184.
28.0

2.16
0.401

17.6
10.5
3.83
0.542
0.0703

0.453
0.362
0.177
0.0532

13.3
5.33
0.965
0.142
0.0372

7.50
3.74
1.37
0.228
0.0487

7.72
4.40
2.01
0.416

was made for the change in the multipole field inside
the nucleus, so that the error in the magnetic dipole
coefffcients may be larger (the principal contribution to
the matrix element in this case occurs at small distances
from the nucleus).

The internal conversion coefFicients are presented in
graphical form (heavy solid curves) in Figs. 2—5. For
purposes of comparison the low energy calculations of
Rose,"Hulme, ' and Griffith and Stanley" (calculations
in which Coulomb eigenfunctions were used) are s.iso

given. In the region in which the calculations overlap,

TABLE V. Internal conversion coefficients as functions of
gamma-ray energy.

rection to the formulas from the known corrections for
copper and indium. The extension of this procedure to
higher multipole coefficients is rather risky, however.

The Dancoff-Morrison formula is given for copper.
Because the electron binding is neglected in its deriva-
tion, the formula is considerably in error in the energy
region shown.

VII. EXPERIMENTAL VALUES OF THE INTERNAL
CONVERSION COEFFICIENT

Experimental values of the conversion coefIicient for
the energy region covered by this paper are given on
the graph corresponding to the element of nearest
atomic number. Experimental errors are given whenever
they are quite large. The values of the coefficient have
been modified wherever necessary to fit our definition of
nl;&'& since some experimenters use the old definition,
namely ax' equals a+/(1+Qtot 1)

Helmholz33 has concluded that the 92.5-kev gamma-
ray from Zn" is EQ radiation; this conclusion is in good
agreement with the results of the present paper. The
K-conversion coefhcient of 0.79 found by Siday" for
the 49-kev gamma from Br" falls on the estimated MD
curve. Siday obtained his value by counting tracks in a
cloud chamber, and his experimental error is probably
large enough that ED radiation cannot be excluded.
The experimentally observed K/I ratio of 12 agrees

IO.

0.2776
03276
0.4776

0.178
0.125
0,0531

0.253
0.221
0.127

10.11
6.45
2.3 j

L
it is seen that screening by atomic electrons con-
sistently has the e6ect of increasing the coefficient
(from one to 13 percent in this region). The effect is
smallest for MD radiation and largest for EQ radiation.

In addition the Hebb-Uhlenbeck formulas for ED
and EQ radiation, and the Drell formula for MD radia-
tion are plotted for the elements copper and indium.
The Hebb-Uhlenbeck formula is given as a function of
two parameters, " v and n=aZ/p; in evaluating this
formula for the graphs, the electron momentum p was
obtained from v by using the x-ray binding energy, and
not the Coulomb energy. The formula is fairly good
(about 10 to 15 percent low) in the low energy region,
but shows rather large deviations from our results as
the relativistic e8ects become important. In evaluating
Drell's formula, the first form of the equation, " in
which the variables e and v are kept separate, was used.
The formula is about 25 to 30 percent low for Cu, and is
as much as a factor of two low for indium. Nevertheless,
one can probably obtain conversion coefIicients for
other nuclei of low atomic number, by using these
approximate formulas, and then estimating the cor-
"The notation is that of DancoA and Morrison, see reference 15."S.D. Drell, see reference 16, Eq. (4).
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I'IG. 4. Internal conversion coefBcient for Polonium. The solid
curves are the results of this paper. The dashed lines are inter-
polated from Rose et A. , except for ED radiation which comes
from Hulme, and GrifIIlth and Stanley. Experimental points:
Q Os"' (McCreary), + Ir'" and ~ Hg"' (Saxon), Ta'" (Chu
and Wiedenbeck), ~ Tl ' (Saxon), and Q RaC (Rutherford,
Chadwick, and Ellis).

~ A. C. Helmholtz, Phys. Rev. 60, 415 (1941).
~ R. E. Siday, Proc. Roy. Soc. A178, 189 (1941).



JOHN R. RE I TZ

IO.

7 L
XQD

I.O

j'

~S

.IO

~ Et.'&

QD

E

'
I~

~\

~ ~

.OI
.20,30 40 .50 .80 .70 .eo

FIG. 5. Internal conversion coeflicient for Uranium. The solid
curves are the results of this paper. The dashed lines are from
Rose et a/. Experimental point: Q Ra"' {Stahel and Johner).

"M. H. Hebb and E. C. Nelson, Phys. Rev. 58, 486 (1940).
'g O. Huber, H. Medicus, d al. , Phys. Rev. 73, 1211 (1948)."F.Metzger and M. Deutsch, Phys. Rev. 74, 1640 (1948}.
Ig F. K. Mcoowan and S. DeBenedetti, Phys. Rev. 73, 1269

(1948).
«'R. L McCreary, "A Study of Internal Conversion and

Beta Radioactivity of Light Nuclei" (Unpublished Ph. D. dis-
sertation, Department of Physics, University of Rochester, 1942).

better with the ED value (9.5 according to Hebb and
Nelson)" than with the MD value of 6.5. On the other
hand, the K/L ratio for MD radiation was computed
from the DancoG-Morrison formula which for the
E-shell is low by a factor of about 2.5 at this energy;
thus the question cannot be considered settled.

Molybdenum resulting from E-capture of 62 day Tc
has a gamma-ray at 201 kev (v= 0.393) which has been
investigated by Huber et a1.36 The value of the coef-
ficient is in accord with MD radiation. Metzger and
Deutsch" have measured coeKcients for several
gamma-rays from Xe'"* (radiations from P"). For
v=0.157 the radiation is probably MD a'. though ED
is possible; the conversion coe%cients of 0.05+0.02
and 0.019&0.005 for v=0.554 and 0.711 respectively
could be either MD or EQ since the two curves are not
well separated in this region. Tm"' (v=0.221) which

was measured by McGowan and DeBenedetti" checks
best with the EQ curve.

McCreary" has obtained a E-shell conversion coef-

scient of 2.83 for a gamma-ray (v=0.270) from Os'"
which results from beta-decay of Re'". The K/L ratio
is 0.4. MD radiation gives good agreement with the
coefficient and K/L ratio. Os'" beta-decays to Ir'"
which in turn emits a gamma-ray (v=0.250). According
to Saxon" it is converted, ax=0.41 and the K/L ratio
equals 1.4. EQ radiation is indicated.

Chu and Wiedenbeck" have measured the radiations
of IIfisi which beta-decays to Ta'" If their proposed
level scheme is correct, then the gamma-ray (v=0.254)
has a conversion coeKcient of 1.15, which is consistent
only with electric octopole (EO) radiation.

Several experimenters have observed conversion of
the 411-kev gamma of Hg"' which results from the
beta-decay of Au'". Saxon and Belier~ give nz =0.0356
which is consistent with EQ radiation. Saxon4' has also
measured the 286-kev gamma-ray of TP" and finds the
E-shell coefficient to be 0.18. The value checks with
EO radiation.

Three conversion coefFicients for RaC are shown in

Fig. 4; they are listed by Rutherford, Chadwick, and
Ellis" (under radiations from RaB) and are all in
accord with EO. Another EO coeScient is indicated for
the 190-kev gamma-ray from Ra"' measured by Stahel
and Johner. "

In most cases knowledge of the value of the E-shell
conversion coef5cient is not sufFicient to determine the
character of the nuclear transition. However, the E-coef-
ficient will in general give an independent determination
of the transition, others being provided by the K/L
ratio, the lifetime of the isomeric level and possibly a
proposed disintegration scheme between two levels for
which the spins are known.
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