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The quasi-chemical equations in the statistics of ‘regular” mixtures are deduced by assuming non-
interference among local configurations. This method is capable of yielding higher and higher approximations
by choosing a larger group of lattice sites as the local configuration under consideration. The comparative
accuracy of different approximations can be judged by a simple criterion. Further applications to ferro-
magnetism and to the order-disorder transition in alloys, and their results are discussed. Equations for
ternary mixtures or mixtures of even more components are given. The asymmetry of solubility of one
solute in two immiscible solvents and the order effect of Ag,HgI, serve as the interesting examples of the

ternary case.

1. INTRODUCTION

A MIXTURE containing atoms (or molecules) of

two or more kinds will be called a regular one if
it satisfies the following conditions: (a) All the atoms
are located on a set of lattice points (or sites). Each site
has the same number of nearest neighbors. (b) The
kinetic energy is either separable from the potential
energy, or else of no importance. And (c) the fields of
force of the atoms are spherically symmetric; and the
interaction energy of the whole system can be expressed
as the sum of closest neighbor contributions. The latter
condition implies that the interaction fields of different
atoms are almost equal at distances greater than that
between two nearest neighbors. The typical examples
of this model are of course substitutional alloys. It may
also apply to the so-called “regular” liquid mixtures (of
the hypothetical scheme adopted by Hildebrand! and
later by Guggenheim? and others) and liquids considered
from the viewpoint of the ‘“hole” scheme?® in which the
unoccupied sites (holes) act as atoms of one kind. Other
examples are ferromagnetism, solutions of hydrogen in
palladium, and monolayer (localized) surface adsorp-
tions. The existence of unoccupied sites leaves the
theory under consideration perfectly unchanged as far
as condition (a) is concerned.

A statistical method proposed by Alfred and Mark*
for binary regular mixtures may be briefly stated as
follows. The configuration of the system is described by
specifying the occupants of the nearest pairs whose
constituent sites taken together constitute the lattice,
rather than by specifying the occupants of each indi-
vidual lattice site. Assuming that the configurational
energy of the binary system is the sum of the interaction
energy of these nearest pairs multiplied by the ratio of
the total number of pairs in the binary system to that

* Now at the University of Illinois, Urbana, Illinois.

! J. Hildebrand, J. Am. Chem. Soc. 51, 66 (1929).

2E. A. Guggenheim, Proc. Roy. Soc. A148, 304 (1935); G. S.
Rushbrooke, Proc. Roy. Soc. A166, 296 (1938): Also R. H. Fowler
and E. A. Guggenheim, Statistical Thermodynamics (Cambridge
University Press, London, 1939), pp. 351-366.

3 J. Frenkel, Trans. Faraday Soc. 33, 58 (1937). Bresler, Acta
Physicochim. U.R.S.S. 10, 491 (1939).

4 T. Alfred and H. Mark, J. Chem. Phys. 10, 303 (1942). This
article will be cited as TA-HM.

of the reference set of pairs, they obtain the combinatory
factor of the partition function of the binary system by
considering the permutation of the reference pairs.
Their result leads to an equation similar to that of a
quasi-chemical equilibrium introduced first by Guggen-
heim to the theory of regular solution.

Recently Miller’ gave a critical analysis of the
Alfred-Mark method. By clarifying the meaning of
their assumption, he has shown that it amounts to
neglecting the restriction on the allocation of the nearest
pairs of different kinds (namely, A-A, B-B, and A-B
when the atoms of different kinds are denoted as A’s
and B’s). This restriction is basically inherent in the
arrangements of 4 and B atoms on the lattice sites.
In other words, Alfred and Mark have unknowingly
adopted the so-called assumption of non-interference of
local configurations. The term “non-interference,”
which was first used by Fowler and Guggenheim, comes
from the fact that actually the closest pairs are inter-
locked, i.e., they “interfere” with each other. Fowler and
Guggenheim® proved even earlier (1940) that their
quasi-chemical equation can be deduced by using this
assumption.

By using the same assumption, the present author
will develop a statistical method capable of yielding suc-
cessively higher approximations and accessible to regu-
lar mixtures containing more than two different kinds
of atoms. His procedure can be applied with a slight
complication to the problem of superstructure of alloys.
The results turn out to be the set of equations first
obtained by Yang and recently generalized by Li on
the general quasi-chemical theory of superstructure.’
We shall notice that the “pair” approximation (Fowler-
Guggenheim, Alfred-Mark) reaches qualitatively incor-
rect results for lattices with nearest interactions among
the first shell sites and larger local groups offer solutions.
Therefore, the general theory for successive approxima-

5 A. R. Miller, J. Chem. Phys. 15, 513 (1947).

6 R. H. Fowler and E. A. Guggenheim, Proc. Roy. Soc. A174,
189 (1940).

7C. N. Yang, J. Chem. Phys. 13, 66 (1945). C. N. Yang and
Y. Y. Li, J. Chinese Phys. 7, 59 (1947). Y. Y. Li, J. Chem. Phys.
17, 447 (1949). These articles will be cited as Ref. I, II, and III,
respectively.
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tions is not only useful but very necessary if this statis-
tical method should be good also for more tightly packed
lattices.

2. STATISTICAL METHOD

Let us consider a group of sites in a lattice which is
occupied by the atoms of a binary system. The whole
system is conceived as a superposition of such groups,
all of identical form. Each group consists of a (con-
nected) set of sites, but two different groups may have
sites in common. Alfred and Mark selected the simplest
and smallest groups. In addition they adopted a very
particular manner of taking them by cutting the lattice
of N sites into /2 nearest pairs in such a way that no
two pairs have a site in common. We intentionally
generalize the choice of local groups to any shape and
size, and also generalize the manner of taking them.

We denote?® the total number of atoms in the binary
mixture by NV; N6 of them being 4 atoms and N(1—6)
being B atoms. N is also the total number of lattice
sites. Let z be the number of nearest neighbors of each
site. In a given choice of the groups let there be # sites
and p nearest pairs in each group, and let the total
number of groups be M. The sites in each group will be
labeled by 1, 2, - -+, %, in one and the same way. We
shall let ¢.(:=1, 2, - - -, n) specify the occupant of the
ith site; g¢;=1 if the ith site is occupied by an 4 atom,
¢:=0 if it is occupied by a B atom. In a given distribu-
tion of atoms in the whole lattice let [g1, ¢, - - -, gn JM
be the number of groups having ¢;4 atoms in the 7th
site (¢=1, 2, -- -, ). Since the total number of sample
groups is M, we have

Z [‘11: Q2 lIn]= 11 (21)

where the summation is taken over all possible values
of the ¢’s. When the distribution of 4 and B atoms on
the whole lattice is purely random, the probability of
finding an 4 atom on the ith site of any one of the M
groups is simply 8. Consequently, we have

Z qil:qh qz "y qﬂ]= 9, (22)
q
giving # equations (with i=1, 2, - - -, #). The number of
ways of arranging the indistinguishable groups is
M!
= )
lay - anl [T {M[qs, -+, qu}!
q

with the summation 3 [q1, - - -,an] taken over all possible
values of [¢i1, ¢, * -, g»]’s which are subjected to the
limitation (2.1) and (2.2).

If there were no interlocking among the local con-
figurations (so far called groups), these M groups to-
gether should duplicate the binary system by a factor

81In this section we adopt almost the same notations as were
used in Ref. II.
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(Nz/2Mp), in which Nz/2 and pM are, respectively,
the total number of closest pairs in the binary system
and that in the M groups. Therefore, the assumption of
non-interference permits us to write the configurational
part of the partition function of the binary mixture as

P(N,6,T)
M!
II Mgy, -++, g2 ]!

] Nz/2Mp

- T w0

[qy + = 25)

1 Z [ n]
Xex M y "t
P ZMP q « 7

XX(QI; 0 Qn)/le

(Nz)'
2/

= 2 g0
[qp---.q,.lg v Nz
I (5 Lo -0 020!
e \2p
Nz
XeXP{“—Z [qla T qﬂ]
2? q

Xx(gs -, qn)/kr} 2.3)

where x is the configurational energy which depends on
the atomic distribution (g, -+, ¢n). Stirling’s ap-
proximation

{a(r+s)}!
B (ar)!(as)! @4)

(r+s)h«
{ rls! ‘

for large number r and s has been used. The factor
g(NV, ) is to be adjusted so that the total number of
configurations of the system is given by

N!

(NO)(N[1—06]) n 23)

P(N, 0, ).

It is not a surprise that g(iV, ) cannot be dispensed
with, for the assumption of non-interference of local
configuration should not be perfectly correct.

The most probable (equilibrium) value of the fraction
[q1, - - -, g ] can be obtained by maximizing the general
term of (2.3) under the condition (2.1) and (2.2). Using
Stirling’s approximate formula and undetermined La-
grange’s multipliers, we get

(91, 92 ***, @nleq

“wndn expl —x(q1, g2, -+, qn)/kT]

- (2.6)
2 w1 fpa®e - - pan expl— x(q1, g2, -+, gn)/RT]
q

H1fipgfa: -
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with py, « -+, pa to be determined by (2.2). By putting Nz Nz
Xpa=—[0,0=—exp{—Vn/kT}, (2.7¢)

=2 mBpa% - - pa% exp[—x(q1, ¢z, **, ga)/RT], 2 "2

q
(2.2) and (2.4) may be written as and so
dlne Xa8*=4X 44X pp exp{—2V/kT}
Wi p =6, (2.2) =(Na—Xa8)(Vp—Xap) exp{—2V/kT}, (2.8)
M
and where Vg, Va4, and V45 are, respectively, the inter-
G2 s G Jeq= —p1Gipa e+ - e action energy between A-B, A-A, and B-B nearest
Lo g 4ndea ‘pﬂl g K atoms; and V=3%(Va44+Vep—2V4p) is the “energy of
mixing,” or 2V is the amount of energy gain by creating
XCXPE— X((Ila g2 qﬂ)/kT] (24’)

Yang (Ref. II) has pointed out that a proof of the
uniqueness of the solution for the u’s of an equation of
the type (2.2') follows easily from Lemma 2.42 in
Fowler’s Statistical Mechanics, second edition.

(2.4) must reduce to the Alfred-Mark result when the
groups are nearest pairs as taken by them. With u;=pu.
given by (2.2) for this case we have the number of
A-B, A-A, and B-B pairs, respectively,

Nz
XAB=7{[07 1]8q+[17 Ojeq}

an A-A pair and a B-B pair at the expense of two A-B
pairs. (2.8) is seen to be the same as the quasi-chemical
equation used by Guggenheim, but rather is different
from Alfred-Mark result. The latter has the exponential
(—2V3z/kT) instead of simply (—2V/kT). However, this
extra factor z is erroneous due to a minor mistake in the
procedure of formulating their statistical method. Un-
fortunately, Miller did not pay much attention to this
difference between Eq. (11) of TA-HM and Guggen-
heim’s quasi-chemical equation but just omitted the
extra factor z in writing Eq. (14) of his article.

The present method is capable of yielding different

Nz approximations by choosing different groups. Conse-

=—u exp{—Vap/kT}, (2.7a) quently, we need a criterion to examine which group

4 will give the better result. We may consider the factor

Iz Nz g(N, 6) as representing to some degree the accuracy of

XAA=_2..[1, 1]6q=2_l‘12 exp{—Vaa/kT}, (2.7b)  the approximation. g(¥, 8) should be equal to one, if
4

the assumption on non-interference of local groups were

TasLE 1. Order-disorder transitions of the second kind calculated with the quasi-chemical equations. Eo= the energy of transformation

from perfect order to complete randomness, T.=the critical temperature of the order-disorder transition, and AC,= the discontinuity
of molar specific heat during the transition. The numerical values of the quantities given in the Table are for the atomic ratio §=3.
The range of @ gives the limits within which the superstructure may be formed. The “pair” approximation and “center and first shell”
give the same results as Bethe’s method. Local configurations are named as square, rhombus, or tetrahedron, when the lattice points
and the nearest interactions included in the local groups consist of, respectively, the vertices and the sides (or edges) of a square, etc.

Lattice Quadratic Simple cubic Body-centered cubic
z= z2=6 z=8
E, NV 3/2 NV 2NV
Second
Center Center Center shell
Local and first and first and first incom-
group Pair shell Square Pair shell Square Unicell Pair shell Rhombus pletes
m/2p 4 5/2 2 6 7/2 3 3/2 8 9/2 4 15/8
RT./E, 1.443 Same as 1.386 1.644 Same as 1.624 1.613 1.738  Same as 1.736 1.698
{(pair,’ “pair” &Kpair”
ACy/R 1.93 1.99 1.78 1.80 1.83 1.70 1.70 1.80
Super- 0.25 0.2696 0.1667 0.1705 0.1762 0.1250 0.1265 0.1360
struc- —0.75 —0.7304 —0.8333 —0.8295 —0.8238 —0.8750 —0.8735 —0.8640
ture
range
of 6
Source Ref.I  Unpub- Ref. I Ref. I Unpub- Unpub-  Unpub- Ref. I Unpub- Unpub-  Unpub-
of the lished lished lished lished lished lished lished
above else- else- else- else- else- else- else-
data where where where where where where where

a See Fig. 1.
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TasBLE II. Order-disorder transitions of the first kind calculated by the quasi-chemical equations. Q is the latent heat of the order-
disorder transition. The numerical values of Q and R7T./E, given above are for the stoichiometric atomic ratio #=% and }, respectively,
for the two different lattices.

Face-centered cubic Face-centered tetragonals
Lattice affs-type af-type
Eo 3NV/4 NV
Local group Pair Rhombus Tetrahedron Pair Rhombus Tetrahedron
zn/2p 12 6 4 12 6 4
RT./E, No superstructure Same as “pair”’ 1.097 No superstructure Same as “pair” 0.7306
can be shown by approximation can be shown by approximation
Q this approximation 0.294E, this approximation 0.288E,
Superstructure 0.17-0.34 0.43-0.57
range of 0 and
0.66-0.83
Source of the Unpublished Unpublished Ref. I, IT Unpublished Unpublished Ref. IIT
above data elsewhere elsewhere elsewhere elsewhere

* Only a slight deviation from cubic form is treated as a cubic lattice in its energy interactions among atoms.
correct. From (2.5) we obtain with p>n, yields a less accurate result, since

In g(.V, 6)= — N6 In6— N(1—6) In(1—6) s(nt1) = z(p—n)

20+1) 29 2p(p+1)

By a corner site is meant a site having only one nearest
neighbor in the group.

Nz
+ Z l:qh ) qﬂ:lefl(Tz x)
2p a

XIn[qi, -+, gnleaT==%) Finally we have the free energy function
nz F(N,0,T)=—kT InP
=-\/'<——1)[0 In6+(1—6) In(1—6)]. (2.9) Nz 2
2p = kT|lne—Y 0 lnut (n—-——)
2p i 2z

In the derivation of the foregoing expression we have

replaced as usual the summation of (2.3) by its maxi- _ .

mum term and used (2.2), (2.4") and the solution of X[ Ino+(1—0) In(1—=0)]¢. (2.12)
(2.2") at T==, ie.,

(1) - =0/1—10, (2.10)

3. THEORY OF SUPERSTRUCTURE

and It is commonly observed phenomena that many sub-
an stitutional alloys!® exhibit order at not too high tem-

(@) r—e=1/(1—0)". (2.11)

Now we see that g(.V, #)=1 only when nz/2p=1, or
p=np/2, ie., only when the local group is comparable
in size to the binary system. In practical applications of
the present theory, the use of a large group introduces
troublesome calculations; therefore, we have to work
with groups having #z/2p rather larger than 1. The
criterion which offers a guide in choosing the group,
may be stated as follows: A given approximation yields
a result that is not less accurate than another if the former
has a smaller nz/2p. It is quite interesting to notice the
following consequences: (a) A group containing a given
number of sites may yield a result less accurate than
another group with less sites, since the ration n/p acts Fie. 1. A local group taken from a body-centered lattice con-
as the gauge of accuracy not # itself. (b) A new group taining a center site, denoted by O in the figure, its first shell

. . . sites, @’s, and 6 sites, O’s, from the second shell. Solid lines stand
obtained by adding a corner site® to another group, for the nearest interactions and dotted lines for the lattice frame.

® For a special consideration on corner sites see Theorem (iv) 10 See the review article by F. C. Nix and W. Shockley, Rev.
of Ref. I. Mod. Phys. 10, 1 (1938).
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peratures. We shall consider a binary system and desig-
nate the atoms by 4 and B. We may regard that the
lattice sites as consisting of different sets of sublattices.
Under suitable conditions the 4 atoms and B atoms dis-
tribute themselves unevenly on the different sublattices.
In case of highly ordered states, some of the sublattices
have their sites completely occupied by 4 atoms and
the others by B atoms. The degree of the so-called long-
range order can be described by giving the probability
of finding A (or B) atoms on the sites of sublattices.
The division of lattice sites into suitable sublattices
must be made in such a manner that the resulting free
energy successfully describes the system. For simpler
cases only two sublattices (so called a- and B-sites) are
needed. Here we leave the number of sublattices, m,
unspecified.

Let! the number of sites on the sublattices L, be
Nry(h=1,2,---,m). In a given distribution of atoms
among the lattice sites, the number of 4 atoms on L,
is denoted by N7,0,. The M groups may now fall into /
different types with Mc, groups of the type A(A=1,
-+ +, 1), because it may happen that the ith site is on L;
in one group but on L in another group. In the place of
(2.1) and (2.2) we now get the limitation on the distri-
bution of atoms in the M groups at given 6’s in the

form
Z [91, Y Qn])\=c)q (3.1)
q
2 algy, -+, g h=r0ni 3.2)
q
Where M[qi, «-+, s\ is, of course, the number of

groups of type N with ¢; A4 atom in the ¢th site. 6,;= 0,
when the ith site of the group of type A is on L.
Further, we have

> rabn=0. (3.3)
h

By the same procedure used in the preceding section,
we get

P(Na 01: T 07", T)
= Z g(fv; 01’ ) 67n)
Lay -+ anly
Nz
2p
X
Nz
I (o 01!
ar \2p
Nz
XeXP' ——2 [gy -+ gnlr
2p ax

Xx(gs qn>/kT], (3.4)

U In this section we adopt almost the same notation as was used
in Ref. IIIL.

YIN-YUAN
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Cx
[qu Yy Qn])\(eq)=_—ﬂ)‘lm' © pan T
O\
XeXP{—X(QI, Ty qn)/kT}) (35)
where
=2 e exp{—x(qy, - -, ¢:)/kT}, (3.6)
with u’s to be determined by
a3 lngo)\
Mq = Ui
3#)\i
Further, we have
(Nz)
2/
g(N) 01) T 0m)
Nz
II (—[91, ey qn]mq)!)
a A 2P T=x
N!
I (Ve N[1—6, ]!
h
or
nz
Ing(N, 0y ---, 0m)=N(————l) S
2p h
X[Gh 1n0;,—l—(1—0h) ln(l“oh)] (3.7)

The derivation of the foregoing is quite similar to (2.9)
but one more relation

)“Z‘ aof(r)=n Zh 71 (0n),

has been used. Finally, we replace the summation of
(3.4) by its maximum term as usual and write the con-
figurational free energy function

F(ZV7 017 Tty 0m, T)
=—kT InP

Nz
= —_leZ Inex—2_ Ox: Inpa
2p Y i

2p
+ (‘ﬂ—'—‘) Z 1’1{0}. lnoh
z h

+(1—6,) In(1—6,)]¢. (3.9)

We see that our Egs. (3.2"), (3.6), and (3.9) coincide
with those of Ref. III. The reader is referred to Ref. I1I
for further work of finding equilibrium long-range order
and allied physical quantities,
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In the opinion of this author the argument of the
present theory is obviously more straightforward than
that of Yang’s theory which employed a chemical
analogy and a mathematical trick of solving an integra-
tion by a Legendre transformation. Nevertheless, the
fundamental assumptions of these two methods are only
superficially different. By drawing an analogy between
the local groups and the molecules in an ideal gaseous
system, Yang implicitly followed the exact line of the
hypothesis of non-interference of local configurations.
He also tried to deduce his quasi-chemical method by
adopting the hypothesis although with little success
(86 of Ref. I).

Although the statistical theory presented in this paper
does not obtain new equations it leads to a useful cri-
terion on the successive approximations. Because the
factor g(IV, 65) is hidden behind the scenes in Yang’s de-
duction, no criterion has been established in Ref. I-III.
In order to show the effectiveness of the criterion, we
collect the calculated results of different approximations
for several different kinds of lattices in Tables I and II.
(See also Fig. 1.) For the procedure of calculations in-
volved our readers are referred to Ref. I-III. In order
to conserve space no details can be given here.

Those with the order-disorder transition of the second
kind are shown in Table I which exhibits that in all
cases 7. and #z/2p vary in the same direction and AC,
in the opposite direction. Therefore, we may expect that
higher approximations would yield larger AC, in better
agreement with experimental data. In Table II the
simplest group which shows the superstructure phe-
nomenon of a face-centered lattice is the tetrahedron.
Both the “pair” approximation and ‘“rhombus” are
absolutely uncapable of describing the phenomena. It is
interesting to see that these two local groups do not
include in themselves the characteristic feature of a
face-centered lattice that there are nearest neighbors
among the first-shell sites of any site. On the other hand,
the simple cubic or the body-centered cubic lattice has
no nearest interactions among the nearest neighbors of
any site. This difference in their lattice structure might
be interpreted as the reason why the order-disorder
transition of a face-centered cubic lattice is a transition
of the first kind*?® (a sudden vanishing of long-range
order with the appearance of latent heat), while that of
a simple or a body-centered cubic lattice is a transition
of the second kind (continuous change to disorder with-
out latent heat). Calculations with different methods
(Bethe, Kirkwood, Fowler-Guggenheim, and Yang-Li)
have shown that an order-disorder transition is of the
second kind whenever there is no nearest interactions
among the nearest neighbors of any lattice site. It would
be interesting if we could prove in general that the order-
disorder transition of a superlattice with nearest inter-

2In a transition of the nth kind, the free energy function of the
two phases have the same derivatives up to the (z—1)th order,
whereas the nth derivatives are different. The zeroth derivative of
a function is. of course, the function itself.
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actions among the nearest neighbors of a site occurs as one
of the first kind. It roughly means that the order-disorder
transition happens much more abruptly than would be
the case if there were no nearest interactions among the
first shell sites. Work has been done only for a particular
case, Cu-Au alloy system (Table II or Ref. III).
Another important example is the Mg-Cd alloy system
(close-packed hexagonal structure).

Incidentally, we may mention that the usual classifi-
cation of the superstructures into those of af-type
(designated as “with equivalent sublattices” by Fowler
and Guggenheim®) and those of af8;-type (“with non-
equivalent sublattices”) is unessential and leads one to
the incorrect conclusion that order-disorder transition
of that with equivalent sublattices occurs as one of the
second kind for any crystal structure. We have shown
the incorrectness of the latter conclusion (Ref. ITT).

4. FERROMAGNETISM IN THE ISING MODEL

As remarked a few years ago by Peierls,!* the theory
of ferromagnetism can be presented in parallel with
that of the order-disorder of alloys and this parallel is
even closer when the Ising model' is assumed. In this
model the spin of § per atom is oriented either parallel
or antiparallel to a specified direction. It is equivalent
to disregarding the quantum mechanical combination
of two spins ¢=0¢14+0:=1 and ¢,=0, with the z axis
being the specified direction. Now we can think of two
kinds of atoms, A with a spin of +3 and B with a spin
of —3, although they are actually of the same chemical
element. The potential interaction of a nearest pair is
taken as

V= -2]5152—2(S1+SQ)BH,
VAA= _%J_2)8Ha
Ves=—4J+26H,

Vaip=3%J,

(4.1)

where J is the exchange integral,'® 8 the Bohr magneton
eh/2mc, and H the external field. Evidently we may
shift the zero level of energy by replacing V44, Vgs,
and V 4, respectively, with —J—28H, —J+2BH, and
0 in order to make the evaluation simpler.

(26—1)NB/v gives the magnetization M with v as the
volume of the domain under consideration. The atomic
ratio 6 now varies with the temperature instead of re-
maining constant as it does in chemical mixtures. Else-
where nothing is different from that discussed in Sec-
tion 2. Therefore, the equilibrium value of # can be
determined by

OF/36=0 0°F/06*>0, (4.2)

1BR. H. Fowler and E. A. Guggenheim, Statistical Thermo-
dynamics (Cambridge University Press, London, 1939), pp. 566,
598.

14 R. Peierls, Proc. Roy. Soc. A154, 207 (1936).

5 E, Ising, Zeits. f. Physik 31, 253 (1925).

16 See J. H. Van Vleck, Electric and Magnetic Susceptibility
(Oxford University Press, Teddington, 1932), Chapter XII.
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where F is given by (2.12). We find directly that

2p 0
> Inp;= (n———) In—, (4.3a)
i b4 1—0
and |
i) nu; 21) 1
> > (n————) , (4.3b)
i a0 z/6(1—6)

in the place of (4.2).

When the external field H does not exist, §=3 (and
so M =0) offers a solution of (4.3a) for any temperature
and this is the only solution for 7'=«. The mathema-
tical proof of this statement can be easily obtained from
the following relations, which are derived from (2.2).

Ft‘(e)#i(l—'o):l 1=1,2, -+, n, (44)
and

0
plT=0)=——.
1-6
Consequently, we conclude that at very high tempera-
tures ferromagnetism must disappear and it can only
exist below a critical temperature at which a root of
(4.3a) other than % starts to show the lowest free
energy. Above the critical temperature magnetization
only appears when an external field exists (paramag-
netism). The transition at the Curie temperature 7.
occurs as one of the second kind if §=1% is a double root
of (4.3a) at T,; i.e., when

= (5), = (7)

However, the transition may occur as one the first
kind, if two minima of the free energy F(6=%, T') and
F(0%3%, T) become equal at a temperature higher than
that for which =3 gives a double root of (4.3a). For
examples of the latter kind found in the order-disorder
transition see Fig. 7 of Ref. III.

Let us first take the “pair’” approximation (n=2,

p=1). The two sites are symmetric and so u;= o= p.
We have

4.5)

o=X+2pu+p*X, (4.6)
where
X=exp(J/kT), 4.7)

(2.2") reduces to
p(14pX)=0(X+2u+u2X).
From (4.5) the critical temperature 7', is given by
J/kT.=In(z/3—2), (4.9)

which indicates that a positive exchange interaction is
necessary for the ferromagnetism to appear. Using
(4.3a) we find that the equilibrium 6 below T, is deter-
mined by the implicit equation

(29_ l)gl—llz(l __0)1/1
[01-—1/:(1 _0)1/:]2__0(1 _0)

(4.8)

=X. (4.10)
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The reduced saturation magnetization M(T")/M (T=0)
is simply equal to 26—1.

From these established results we draw the following
conclusions: (a) Ferromagnetic transitions are transi-
tions of the second kind; the spontaneous magnetization
of domains vanishes gradually at a certain Curie tem-
perature. (b) The linear chain (z=2) should not exhibit
ferromagnetism at any temperature and two-dimen-
sional lattices should show ferromagnetism. And (c)
different lattice structures with equal coordinate num-
ber z, such as the hexagonal layer and the simple cubic
lattice, should have the same ferromagnetic character-
istics. Weiss? obtained similar results by applying
Bethe’s method to the Ising model. Our method is
capable of seeking higher approximations with ease.
Higher approximations have been tried. The results are
more sensitive to the lattice geometry; hence, conclusion
(c) is incorrect owing to the roughness of the “pair”
approximation. (a) and (b) remain true in higher ap-
proximations. However, the improvements offered by
higher approximations are not very significant, because
we are working with the Ising model which does not
agree with reality and only serves to show the character-
istics of the mathematical theory of ferromagnetism.
For example, (b) has been disproved by both Bloch’s
method of spin function’® and the Bethe-Weiss method.
They show that only three-dimensional lattices can ever
exhibit ferromagnetism.

It remains to be seen how we can modify the quasi-
chemical method to fit the quantum-mechanical spin
vector. This work will not only offer an alternative
method to the Bethe-Weiss method but will be more
effective in applications. Because the interactions
among the first shell sites introduce involved calcula-
tions, Weiss did not carry out the work on the face-
centered cubic and the close-packed hexagonal lattice.
From Ref. I-IIT we have seen that the quasi-chemical
method solves the face-centered cubic lattice without
much more trouble than the simple cubic or body-
centered cubic lattice.

Urbain et al.’® have found that the ferromagnetism
of metallic gadolinium (close-packed hexagonal struc-
ture) disappears suddenly at about 16°C (a transition
of the first kind). This phenomenon cannot be under-
stood by various theories so far established. Among
them Stoner’s collective electron theory,?® which em-
ploys the band scheme of electron energy on a “stand-
ard” form, predicts in any case a continuous vanishing
of ferromagnetism at the critical temperature. Bloch’s
method, being rigorous only at very low temperatures,
has nothing to do with phenomena near the critical
temperature. The Bethe-Weiss method suffers from in-
volved calculations in the case of a closed-packed hex-

17 P, R. Weiss, Phys. Rev. 74, 1493 (1948); also U. Firgau, Ann.
d. Physik 40, 295 (1941).
18 F. Bloch, Zeits. f. Physik 61, 206 (1930).
(ll’sgrbain, Weiss, and Trombe, Comptes Rendus 200, 2132
935).
2 F. C. Stoner, Proc. Roy. Soc. A165, 372 (1938).
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agonal structure, although this recent work improved
Heisenberg’s theory quite a lot by taking the actual
energy levels instead of a Gaussian distribution. Perhaps
the future work of a modified quasi-chemical method
could explain the phenomenon mentioned above. Other-
wise this experiment finding should be re-examined.

5. REGULAR MIXTURES CONTAINING MORE
THAN TWO COMPONENTS

Ternary alloys (substitutional) and complex salts
such as Ag,HglI, (with Ag, Hg atoms and vacancies, or
so called holes, distributed on a face-centered cubic
lattice?!) are the important examples of the systems to
be considered in this section. So far no theoretical work
has been done with them. Now let us consider a %
component mixture in general, with % unspecified. We
denote the atom of the Sth kind with 4, and their
number by N0s(S=1, ---, k). The designation of dis-
tribution (g1, - - *, ¢») of Section 2 has to be replaced by
(4sy, « -+, As,) when the ith site of the group is occu-
pied by an 4 g; atom (S;=1, - - -, k). Here we may con-
fine ourselves to the case of a random distribution, since
the theory of order can be formed by merely a refine-
ment. The conditions (2.1) and (2.2) now become

> [Asy, -+, Asa]=1, (5.1)
A
> [dsy, -+, ASa]=8,, (5.2)
Si=8

where J_ 4 is taken over all possible local configurations
and Y_si=s over the possible configurations with the ith
site occupied by an A4,. By an almost the same pro-
cedure as that employed in Section 2 we obtain the
following equations:

2 J. A. A. Ketelaar, Zeits. f. physik. Chemie 26B, 327 (1934);
30B, 53 (1935). At low temperatures Ag, Hg atoms, and ‘‘holes”
form a highly ordered superlattice which gives the minimum
energydwhen nearest interactions (Vag.He> VHg.Ag> Vag.4z) are
counted.
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1
[:Asly T ASRJZ_#(ASI) o '“(Asn)
©
XeXP[“X(ASl, T "lsn)/ijy (53)
¢=§) u(Asy)- - p(ds,)
XCXP[“‘X(ASh Tt ASﬂ)/kT]) (54)
and
dlng
ua(4s) =0;. (5.5)
aﬂi(As)

Each pi(4,) may be regarded as a k-dimensional quan-
tity and we may choose u;(4x)=1(=1, -- -, n) without
any loss of generality (as we did in Section 2). Alto-
gether we have n(k—1) parameters u’s.

The ternary equilibrium with a solute in two immici-
ble solvents usually has an asymmetric solubility. A
theoretical approach to this problem can be attempted
by applying the equations obtained in this section under
the supposition that all the atoms involved are non-
electrolytic and that the model of “strict regular”
liquids may be adopted.

The practical calculation of a problem with atoms of
more than two different kinds would be much more
involved than the applications we have made to
binary systems. For binary mixture we can write x as
V(=3[V4a+Vsr—2V 45]) times an integer number by
suitably choosing the zero level of the potential energy,
but in the case of ternary mixtures x consists of terms
of the type Vi=3(Vaa+Vps—2Vap), Vo=%(Vpgs
+ VCC—ZVBc), and V3= %(Vcc—}- VAA—ZVCA). It is
mainly the difficulties arising from this source instead of
those arising from the presence of more variable u’s that
makes the practical calculations for ternary mixtures
cumbersome.

It is a pleasure to express my sincere thanks to both
Dr. F. Seitz and Dr. J. S. Koehler for their interest in
this work and their kind help.



