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Conduction coefficients were calculated connecting the electric and heat currents with the electric field
and the temperature gradient, which are both assumed at right angles to the magnetic field. The coefficients
are represented in a complex fashion, the real part giving a flow in the direction and the imaginary part
giving a flow at right angles to the driving force. The calculation was carried through for the nuclear charges
one, two, and three and for the limit of very large nuclear charges.

I. INTRODUCTION

HE free electrons which are present in an ionized

gas will cause this gas to conduct electricity and

heat quite easily. This will be reduced in the presence of
a magnetic field because the electrons go in circles,
which limits their effective mean free path. A theory
of the behavior can be given by means of the kinetic
theory of gases. This theory describes the gas by giving
the distribution in space and velocity for each kind of
particle. These distribution functions must obey a set
of equations which are due to Boltzmann.! A simplified
treatment, which is based on the assumption that the
interaction between electrons is small compared to the
interaction between electrons and the nuclei, can be
carried out with relatively little effort. In this case the
conduction coefficients can be expressed as integrals
which contain the collision frequency of the electron.?
Such integrals were evaluated, for example,® for the
case where the mean free path is independent of the
velocity so that the collision frequency is proportional
to the velocity. In a completely ionized gas, one deals
with Rutherford scattering and a mean free path which
goes as the fourth power of the velocity. These integra-
tions are carried out in Section IV below as a check to
the validity of the method. In view of the possible
application of this theory to star atmospheres which
contain a large percentage of hydrogen, it was not
considered to be a safe approximation to neglect the
interaction between electrons, since it is of the same
order of magnitude as the interaction between electrons
and protons. This makes it necessary to go through the
much more elaborate theory which is the subject of this

paper.
II. BOLTZMANN’S EQUATION

The equations set up by Boltzmann for a gas mixture
express the rate of change of the distribution functions
in terms of the flow in phase space and of jumps in

* This document is based on work performed at Los Alamos
Scientific Laboratory of the University of California under Govern-
ment Contract W-7405-Eng-36 and the information contained
therein will appear in the National Nuclear Energy Series as
part of the contribution of the Los Alamos Scientific Laboratory.

1 A thorough discussion of this subject is given in Chapman and
Cowlings monograph: ‘“The mathematical theory of non-uniform
gases” (Cambridge University Press, London).

2 See 18.45 in reference 1.

3 L. Tonks and W. P. Allis, Phys. Rev. 52, 710 (1937).

phase space due to collisions. For the treatment of
conduction phenomena it is sufficient to look for the
stationary solutions which are obtained if these two
effects just balance each other. The presence of electric
fields, temperature gradients, etc. will produce a dis-
torted Maxwell distribution. This distortion will be
much smaller for the heavy nuclei than for the electrons,
and we will in this treatment neglect it altogether so
that we are only concerned with the distortion of the
electron distribution. This is introduced by assuming
the distribution functions F; for the nuclei to be given
functions. The index 1 refers to the specific nuclei which
may be present in the mixture. There remains then one
Boltzmann equation for the electron distribution func-
tion ¢, which is of the form

D(¢)=—Jee(¢)_zi]ei(¢Fi); (1)

where the operator D represents the changes due to
flow in phase space and the J’s the changes due to col-
lisions. Let us assume a magnetic field H in the y-direc-
tion and an electron field and a temperature gradient
both in the x—z plane. The operator D for this case is
(see reference 1, 18.2)

dp dp e v, ¢
D(d)):'vr_‘*"vz_"'_—((Ez-'“H -
dx 9z m c Jv,

Uz do
+(Ez+—H)—~). @)
c 07,

The operators for collisions between electrons and
nuclei have the form

Jef(¢Fi)=ffwae,-(w0)
X 1o Fi(v) —o(v)Fi(v/) }dvidQ. (3)

Let w=v—v,; and w'=v'—v; be the relative velocities
of the two colliding particles before and after the col-
lision. In the above relation w is the magnitude of w
and w’, ¢ the angle between them and d© is the element
of solid angle in the direction of v'. o.; is the Ruther-
ford scattering cross section for Coulomb collisions
between electrons and nuclei with charge Z;

oei= (Z:€/muw?)*(1— cosd) 2. 4)
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The operator for collisions between electrons is similarly

To(60)= f woo () [S(V)D (V) —$(V)B(v.) }dvd®, (5)

with
0ee= (26%/mw?*)2(1—cosd) 2. (6)

It should be pointed out that the cross sections given
in (4) and (6) lead to trouble if one were to use them
for very small ¢. This difficulty arises because of the
long range of the Coulomb forces.* We shall discuss
later how we get around this difficulty.

III. FORM OF SOLUTION

It was mentioned above that the nuclei will be
assumed to be locally in a Maxwell distribution. This
means we assume

Fi(xzV )= N:Bin~% exp(— Bv?), (7
where Vi(x2) is the particle density
Bi=[M/(2kT i(x2)) ]*. ®)
For the electron distribution we try the form:
o(xzv) = f(xzv) (14 vk, (2)+v.h.(v)), 9)

with
f=nB*r"% exp(—%?),
n=n(xz); B=[m/(2kT.(xz2))]".

In order to perform the operation D(¢) of Eq. (3) we
note that

(10)

19f 1dn T
= 3_52.”2)___ (11)
fox nox T, dx
and
1 9f
—-—=—28%, (12)
f 9v,

The significance of the approximation of Eq. (9) is that
electric fields and gradients of pressure and tem-
perature are considered as being small. To the same
degree of approximation it is sufficient to keep just the
terms which are linear in v, and v, in the Boltzmann
equation. In this way we obtain

eE, 1dn 1 97T,
D(¢>=( i %—B%?)—whz)vzf
kT, nox T, ox
eE, 10on 1 0T.
(- T Ak s, ()
kT, noy T. 0z

where we have introduced w=¢eH/mc. J.; can be greatly
simplified by the observation that the heavy particles
are much slower than the electrons so that w can be
replaced by v. In addition the combined effect of
Coulomb scattering which favors small angles and the
large mass-ratio has the effect of making the energy

* For a discussion of the point see reference 1, 10.33.
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transfer in a collision between electron and nucleus
negligible so that we can set v;//=1v;, ¥'=1, and obtain:

To6F ) =0f() f f 7eu(09)

XL(we—v" VoAt (v:— 2. )b, JF i(v:)dv.dQ.  (14)

Because of

f F.(vi)dvi=N;
this leads at once to
Jﬂ:=N,-'vf(v)faei(vd)[(vz—v,’)h,—i—(v,—vz’)hz:ldﬂ. (15)

We note again that "=v and carry out part of the
integration

Jei=Naf(v) (v,h,+vzhz)f¢re,-('vz?) (1—cosd)d cosd

2.2\ 2 v+ v.h,
=41r)\N1-(——) —f(v),
m 28

where \ is the integral evaluated in Section V. From
Egs. (5) and (9) we obtain

Jee= Jee(hz)_l"-]ee(hz)y

(16)

(17)
Jee(hy) = ff'wo'e(wo) (0uhu () + Veuhru(ve)

=0 hu(v') = e B (ves’) 1/ (0) f(ve)dved @ (18)

since by conservation of energy f(v)f(ve)=f(")f(2v.).
Terms which are quadratic in the /4 are neglected.

In the integration dv.dQ regions of integration which
are obtained by reflecting v, and w’, and therefore all
vectors, on an axis in the direction of v have equal
weight. We can therefore replace v., v/ and v.’ by their
components in the ? direction and obtain®

Jee(hw) = (v,0;/*) f(0) I ;(h), (19)
where
108 = [wof(a)Cosh(6)+ oo
— 0/ h(v") — e h(v.) Jdv.dQ. (20)
Now let us introduce
eE, 1dn 19T
A== —f— —,
RT nou T Ou
(21)

B,=(1/T)(8T/du),
C= 41!')\(64/"12)2 Av,'Z,'2¢,

54 is used as a dummy index.
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and enter (13), (16), and (19) into (1). We find that
the equation can be split into two parts as follows

c oI, (k)
Ax“ Bz((s,/z)—ﬁgvz)—whz+_3hz+ =07
z’

22

(22)
v;l (k)

Cc
Ao BA(5/2) = 8%)+ who — it —

These can be recombined into one complex equation for

TaBLE I. Computed values of the determinant ratios as functions
of w/v for values of the effective nuclear charge Z=1, 2, 3.

Ao/ A
w/v Z=1 Z=2 Z=3
0.0 1.950 1.160 0.8431
0.2 1.588 —0.7290¢ 1.051 —0.3162¢ 0.7912 —0.1844¢
0.5 0.8601 —0.9186¢ 0.7426 —0.5149¢ 0.6230 —0.3347:
1.0 0.3603 —0.7025¢ 0.4058 —0.50707 0.3970 —0.3790:
2.0 0.1246 —0.4192¢ 0.1618 —0.3582: 0.1827 —0.3098:
4.0 0.04274 —0.2287i 0.05777 —0.2074¢ 0.06714 —0.1927¢
6.0 0.02226 —0.1581: 0.03223 —0.1462i 0.03743 —0.13767
Aor/A
w/v Z=1 Z =2 Z=3
0.0 0.5546 0.4202 0.3425
0.2 0.3783 —0.2834: 0.3414 —0.1741¢ 0.2976 —0.1210¢
0.5 0.1040 —0.2713: 0.1549 —0.2271¢ 0.1688 —0.1842:
1.0 —0.008086 —0.1454:¢ 0.03030 —0.1557¢ 0.05244 —0.1480¢
2.0 —0.02389 —0.06047: —0.009445 —0.07675¢ 0.001288 —0.08094:
4.0 -—0.01703 —0.01926: —0.01425 —0.03178: —0.009804 —0.03708:
6.0 —0.01089 —0.008093: —0.01201 —0.01667¢ —0.01011 —0.02156¢
An/A
w/v Z=1 Z=2 Z=3
0.6636 0.5433 0.4626

0.4638 —0.18784
0.2681 —0.26144
0.1172 —0.2051%
0.04708 —0.12321
0.02276 —0.06231:
0.01538 —0.051017

0.4114 —0.1428;
0.2627 —0.22344
0.1207 —0.1922:
0.04591 —0.1190z
0.02053 —0.06607¢
0.01422 —0.047241

0.5278 —0.25637
0.2737 —0.3027:
0.1208 —0.2201¢
0.05364 —0.1328:
0.02507 —0.07933:
0.01467 —0.05803¢

QpN=OO0O
cocoswnive

h=h,+1h, if we set A=A4,+14, and B=B,+1B..

£ J()
=0.

A= ((5/2)— ) B+ (—+w)h+ (23)

In order to solve (23) we expand % in terms of Laguerre
polynomlals of order $.6 For convenience we shall omit
writing the 3 and use the notation L.(x). The L, form
an orthogonal set and the orthogonality relation is

c [(ntr/2)
f.\'t‘c“’Lr(;\f)L,L(x)dx=~-——~6m.
o I'(n+1)
We note that Lo=1 and L;=35/2—x. Let us substitute
h=Z2P,.L.(58%%) (25)
into (23). We obtain:

(24)

A —IL,B+2P, (——{—w) oli(L ’)]=O. (26)

6 For a discussion see G. Szego, Orthogonal Polynomials (Ameri-
can Mathematical Society) Ch. 5; also reference 1, 7.5. In the lat-
ter reference these polynomials are called Sonine polynomials.
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Now multiply (26) by [B%?/2#T'(5/2)] exp(—3%?)
X Ly(8*?)dv and integrate to obtain

5 I'(s+5/2)
“1503——351,«"{- - p PH?S_O; (27)
2 P(s4+1)T(5/2)

Hrs Hrs +er y (28)
__ P 202) Ly (L)dv, (29
M(S/z)f exp(—84) LT (L)dv, (29)
e fx L () L.(e)d 30)

rs —F(S/Z) , € s\ € r\€)AE, (

where in (30) we have made the substitution *?=¢e
and performed the angular integration. The integrals
(29) and (30) are evaluated in the appendix. The
problem now consists of solving the set of equations
contained in (27) for the coefficients p,. Actually we
need only the first two coefficients. We can write for
the electric and the heat currents:

j= —ef(v,—}—ivz)d)dv: —EZpsf'u?L,,fdv= —;—l-po, (31)
3 B2

and similarly
- f (vat-i.) (m) 2)0bdv = (SnET/48%) (po— p1).  (32)

We shall solve for o and p, in the approximation where
we cut the matrix H,, off beyond 7, s=2 and shall
check the error involved in this procedure for the case
of negligible e-e scattering. In Section VI we obtain H,,
in the form vk,, with v given by Eq. (62). We can then
write down the solution of (27)

33
. Aoy SAuB (39
S U ) ’
where
[hooti(w/v)]  ho oo !
h(n [h11+ (5/2)1(‘*’/")] hl2 ’ (34)
heo e [hast(35/8)i(w/v)]|

and A¢AnA;; are minors of the determinant A. If
1/p(0p/0u)=1/n(dn/0uw)+1/T(dT/du)=0, the electric
and heat currents will be linear in the electric fields
and temperature gradients. Still in complex notation

we can write
aT aT 1
= (——I—z——) —V T,
T

j=0¢E+1VT,

A= (35)
so that

q=—uE—KVT, (36)
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with
ne* Moo S nek Aoy

g=——"— T=-——"",
my A 2my A

(37)
5 nekT(A00+A01) . 25 nkgT(Am""’-Au)
= ), k=2 ).

2 my A 4 my A

The determinant ratios were computed as functions of
w/v and for values of the effective nuclear charge Z
(as defined in Eq. (66)) of 1, 2, and 3. This is presented
in Table I.

IV. THE CASE OF NEGLIGIBLE ELECTRON-
ELECTRON SCATTERING

If one drops the last term in (23) one obtains

A=[(5/2)=p=*1B+[(C/v")+iw]h=0.  (38)
Physically this means that one considers the effect of
scattering of electrons by other electrons as small com-
pared with the scattering by nuclei; that is, the case of
large Z. It is of further interest to us because one can
write # down at once and is therefore in a position to
check the theory based on the Laguerre polynomials.
Rewriting (38) we obtain

“‘A+BL1(€)
h=————, (39)
CB2e+iw
Now let
eleL;(e)Lx(e)
Dip= f T e (40)
Ce 41w

Then we obtain for the coefficients of expansion of /4

I'(r+1)
r= ‘-‘—"—"—(‘—A I)0r+Bl)1r>. (41)
I'(r+5/2)
If we set
£=(CB*w)i={[3(m)}/4]Zv/w}}, (42)
and introduce
€ eﬂe“‘t
(8= f de. (43)
0 §3+ e
We obtain the following expressions for the D:
Doo=w (£ 3—il,.5),
Doy=w ' [E((5/2)I3—14)—i((5/2)14.5—I5.5)],
(44)

Dyy=w! ’| E%[(25/4)I3_5[4+15]
—i[(25/4) 45— 5155+ 1651}
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The P, given by (41) with D;, given by (44) solve Eq.
(38) exactly. We can now compare the P, given by (33)
which is the approximation of the previous section with
the exact solution to check its validity. We want to
check the above coefficients over a region of field
strength where they vary by a factor of between 100
and 1000. This can be done best, by giving the error in
percent of the combinations ZAg/A; Z(Ag+Aer)/A
and Z(Ago+2A01+A1r)/A. Both the real and imaginary
part of each one of these combinations is directly con-
nected with one of the 7, and does not change sign.
We found that the real part of ZAy/A is off by as much
as 20 percent at w/Zv==6. One other combination has a
maximum error of 10 percent and all the other com-
binations have errors of less than 6 percent. In Table
II we list ZAg/A, ZAoi/A and ZAyi/A as functions of
w/vZ.

V. TREATMENT OF DIVERGENT INTEGRALS’

We have to evaluate integrals of the form

fo('u, #)(1—cosd)d cosd

where o~ (1—cosd®)™.
Now let

# 1—costt,
A:%f (1—cosd)~'d cos =3 log( ) (45)
) 1—cost

This obviously diverges if ¢#,=0.

Another, less catastrophic, difficulty arises out of the
uncertainty principle which excludes head-on collisions,
because one has to consider an electron as being spread
out over a region of the order of magnitude of its
deBroglie wave-length. To remedy the situation, we,
first of all, replace ¢ in (43) by the collision parameter p

TastLe II. Values of ZAy/A, ZAw/A and ZAy/A as
functions of w/vZ.

w/Zv  Z(Ac/A) Z(Ao1/A) Z(An/A)
0.0 3.3906 2.0625 3.250 X
0.2 1.720 —1.335: 0.2645 —0.7257¢ 0.4778 —1.053¢
0.5 0.7182 —1.139¢ 0.01457 —0.3345: 0.1203 —0.3770:
1.0 0.2712 —0.7254 —0.03051 —0.1635¢ 0.05925 —0.1798:
2.0 0.1055 —0.4073¢ —0.03463 —0.06695: 0.03674 —0.10707
4.0 0.04206 —0.22517 —0.02112 —0.01906: 0.01926 —0.073511%
6.0 0.02251 —0.1571¢ —0.01243 —0.007394¢ 0.01104 —0.05639:
through
ctgd/2= (mv*/ze*) p=p/p*, (46)
9
1+ (po/ p*)* R
A= 7 10g— ;—*. (4/)
9
14+ (p1/ p*)*

7 For a somewhat different treatment compare L. Landau, Phys.
Zeits. Sowjetunion 10, 154 (1936).
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The lower limit is the deBroglie wave-length

P1-«ﬁ/‘m1)
so that
p/p*=(137/2)v/c.

The upper limit is chosen so as to exclude collisions
which last longer than the time during which the
electron gas would be able to rearrange its density dis-
tribution so as to give a shielding effect. The rate at
which this takes place is determined by the frequency
of the plasma vibrations®

wpr=[(47ne?)/m A

The collision parameter will thus be given to the right
order of magnitude by the relation

(48)

(49)

P? ~ 'U/wPLa (50)

which leads to
1+[1/4wn(e?/mc?)?z*](v/c)®

2 lg ’
14-(137/2)%(v/c)*

(S1)

Il

for high velocities and small charges this is approxi-

mated well by
A=36.17—13 lgn+2 logv/c. (52)

In view of the somewhat uncertain character of the
cut-off procedure, this latter formula may be sufficient
for most purposes.

VI. CALCULATION OF THE MATRIX ELEMENTS

The integral (29) can be written as:

2n 38
: f wa . exp[ — B2(v*+v.2) ]Lv- (VL (v)

€
s —
™

+v.L.(v.)—V'L.(v)—v.,/L.(v,!))dvdv.dQ. (53)

For convenience we introduce the following notation

V=Vi; Ve=Vy; V=V v=vy
(54)
Wi=—Wy=W, W;=—W;=W,
2np38 v? o’
P O B
373 1—¢ 1—9
X (vov;)du.  (55)

Then considering the generating function of the
Laguerre polynomials

(I=&) exp(— te/1— &) =21 £ Li(e),

8See J. D. Cobine, Gaseous Conductors (McGraw-Hill Book
Company, Inc., New York, 1941), p. 132.

(56)
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we can write

Zr Za §n'H,0 = (1— £7%2(1—9y)%2
Xffil)o'ee(M1+M2—‘M:;"M4)de52. (57)

H,,* appears thus as a coefficient in expanding Eq. (57)
in powers of £ and #. The integration (55) leads to

M= A[1— Buw+C(w-w.)] exp[ — (Dw*— Ew-w.)] (58)

with
;[(1—5)(1*71) 52
P e
2—¢—n
1&tn—&n
B=——-"p,
3 2—%—n
12—¢—nt+é&n
C=——"—oi, (59)
3 2—t—n
1 2—&n
22—y
e,
22—¢—q

Now we form M+ M.— M;— M4 and expand in powers
of (1—cosd). Actually we will need only the linear term
of the expansion because the scattering cross section is
proportional to (1—cosd)~? so that contributions of
large angle scattering are negligible. With ¢.. given by
(6) we obtain for the integral in (57)

ffwaee(M1+M2—M3—M4)dwdQ

e2\? D?E+2D*C—E*—-2BDE
=64,r2(_) AE (60)
m (D2_E2)2
With the help of (59) this leads to
Zr Zs frnerse
1—1(t49)—1 +n)—3(£n)2
=m/Z( 3(&+n)—gEn(E+n)—§(En) En7 1)
[1—(&+n/2) 21— ¢n)?
where
v=(4VIT3)M(et/ BT )2 (kT /m)>. 62)
By expanding (61) we obtain
0 0 0 ]
(H,)=w2|0 1 3/4 ---|. (63)
0 3/4 45/16 ---)
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The integral (30) requires considerably less labor. As
before we make use of the generating function and
write

2 e Li(e) Li(e)de
= (1= (1)
X [ expl=[(/1= 9+ (/1= m+1Jekde

== (1—n)~i(1—tn)" (64)
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By expanding this in powers of £ and  we obtain

( 1 3/2 15/8 .- }
H,,=2Zv|{3/2 13/4 69/16 ---{, (65)
L15/8 69/16 433/64 -- J
where the effective nuclear charge Z is defined by
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The beta- and gamma-rays from 28 day Ce!! have been studied in a beta-ray spectrometer. The maximum
beta-particle energy is 560 kev and gamma-rays at 146 kev and 315 kev have been found. With the additional
aid of beta-gamma- and gamma-gamma-coincidence studies a disintegration scheme is proposed.

The maximum beta-energy of Pri*? has also been determined as 920 kev.

I. INTRODUCTION

N view of the fact that all previous measurements'—*
of the energies of the beta- and gamma-rays of Ce!*!
have been made by absorption methods, it seemed ad-
visable to make a more thorough study of the isotope
using a magnetic spectrometer. The investigation re-
ported herein is such a study. From it has resulted both
beta- and gamma-spectra of Ce!! and a beta-spectrum
of Pri#.

As a source of additional information both beta-
gamma- and gamma-gamma-coincidence studies of Ce'!
have also been conducted.

Using the results of the investigation, a possible decay
scheme has been proposed for Ce!‘l.

II. APPARATUS

The magnetic spectrometer used in these investiga-
tions is the same as used previously® in an investigation
of the nuclear radiations from Se”. The only significant
change in the instrument since the Se’ investigation
has been the replacement of the low resistance coils used
to supply the magnetic field by a set of high resistance

' W. H. Burgus, Plutonium Project Report CC-680, p. 13 (May
1943) as reported by G. T. Seaborg and I. Perlman, Rev. Mod.
Phys. 20, 585 (1948).

2 M. L. Pool and J. D. Kurbatov, Phys. Rev. 63, 463 (1943).

3 M. L. Pool and N. L. Krisberg, Phys. Rev. 73, 1035 (1948).

4+ W. Bothe, Zeits. f. Naturforschung 1, 179 (1946).

a ; ‘;I“)t;r-Pogossian, Robinson, and Cook, Phys. Rev. 75, 995

coils® and the replacement of the battery current supply
for these coils by an electronic constant current supply.”

Counters used with the spectrometer were of the
same design and employed the same argon-ethylene
filling mixture as before.* The window in the current
investigation was a thin zapon window with a low
energy cut-off at approximately 6 kev.

The circuit used for the beta-gamma- and gamma-
gamma-coincidence studies was constructed in this
laboratory by Mr. W. R. Konneker. It is built such
that either instantaneous or delayed coincidences may
be studied. In the present situation, only instantaneous
coincidences were investigated. The resolving time for
instantaneous coincidences may be varied in the range
from 10~7 to 105 second in order that the apparatus
may be used in conjunction with either scintillation or
G-M counters.

III. EXPERIMENTAL DETAILS AND RESULTS

In order to obtain the sample used for the current
investigation, cerium oxide powder was irradiated with
slow neutrons from the Oak Ridge pile. Spectroscopic
analysis (as supplied by Oak Ridge) of the sample used
for the bombardment indicated no impurities in the
sample except for a possible small quantity of iron. Slow
neutron bombardment of iron has been known?® to lead

6 We are indebted to the Moloney Electric Company, St. Louis,
and especially to Mr. Wooley of that organization for their kind
cooperation in making the new high resistance coils for us.

7W. C. Elmore, AECD-2208-G, 29 (1948).
8 G. T. Seaborg and I. Perlman, Rev. Mod. Phys. 20, 585 (1948).



