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Isotope P-max. kev

Xe133

P-lines

25.6 (Auger, medium)
30.9 (Auger, weak)
46.5 (K 1, very strong}
59.3 (K 2? weak)
77.9 (L 1, medium)

200 (K 3 weak)

TABLE II. Summary of p-spectrometer investigations.
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Second sound possesses a wave momentum and a radiation
pressure. At a chosen position and instant, whichever Quid com-
ponent happens to be moving in the direction of propagation
possesses greater than ambient density, whereas the other com-
ponent is necessarily retrogressing at less. Accordingly therefore,
in the identical manner as for classical sound, the wave momentum
flow J for the pulses equals the mechanical energy density divided
by wave velocity, equal in turn to radiation pressure P z.

Xe135 930 214 (K)
242 (L)

250 I'~g= J=pc, r'/Tp

Xe138 2680
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'HE reversibility of the thermomechanical effect in liquid
helium II and the inertial characteristics of the associated

heat flow result in the true wave characteristics of second sound.
In the portion of a second sound cycle where heat Rows toward
cooler regions, mechanical energy is stored as energy of internal
convection. During the opposite half of the cycle heat Rows

toward warmer regions at the expense of this stored energy. The
resulting average mechanical energy content of the wave provides
a net mechanical energy flow or intensity in the direction of
propagation.

Considerations of second sound are simplified by assuming

square wave pulses, logical justification lying in the known
absence of frequency dispersion. This obviates the distinction
between instantaneous and average values. If heat Row density
H (cal./sec. cm) is sustained by liquid helium II during the
generation of a one-dimensional square wave heat pulse, the
temperature is raised by T within a heated region which is

progressing at the rate of second sound velocity v. This requires' '
that

H= pc„rv2,

where p is the density and c„ the specific heat capacity per gram
for helium II.The generation of this second sound actually requires

slightly greater heat input than the heating rate H, to provide the
kinetic energy of internal convection stored in the pulse. At the
abrupt front of the temperature pulse heat Rows continuously out
toward the ambient temperature region, cooler by amount T.

According to the second law of thermodynamics** the rate of
mechanical energy generation, or intensity p, is related to tem-

perature by
y/H= T/Tp, (2)

where Tp is the ambient absolute temperature ('K). The intensity
becomes"

y= TH/Tp ——pc„v2r'/To. (3)

This expression*** is equally significant with respect to classical
heat Qow within ordinary materials.

Finally, combining (1) and (2) the expression for total energy
Qow (thermal plus mechanical) becomes

energy flow = pc,v2T I 1+r/Tp j (4)

indicating the Row of mechanical energy within a second sound
packet to be but the fraction r/Tp of the associated heat flow.

The activities of Xe'", Xe'", and Cs'~ on the collector plate,
were sufFicient for P-spectrometer investigations. The p-spec-
trometer data are summarized in Table II.
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or twice {5) for reflection from a thermally non-conducting bar-
rier. ****Although of second-order magnitude, this is the sole
existent pressure for second sound! This should not be confused
with the small amount of first sound coupled' to second sound by
the thermal coefficient of expansion of helium II. (It should be
noted that the method of deriving the expression automatically
includes both kinetic and potential energy density; for continuous
waves a factor ~ would appear). Thus under appropriate experi-
mental conditions there would be a "sound current" associated
with second sound (as with ordinary sound) of velocity c,r2/v2Tp.

Thermal boundary conditions early employed by the author
{for setting up "thermal impedances") in design of second sound
systems were the continuity of temperature and heat Qow density
between liquid helium II and adjacent classical solids. Thus for
second sound normally incident upon a classical barrier

r,+r,= r]„H;—H„=H]„ (6)

where the subscripts {i)and (r) refer, respectively, to incident and
reflected second sound, (tr) to transmitted classical thermal waves.

Employing (1) we obtain from (6)
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where complex conjugates are not used since instantaneous values
are desired. Equations (1) and (6) can also be employed to show
that for most cases not all of the incident second sound energy is
reflected; thermal impedance4 T/H equals )pc„@21 ' for helium II
Lsee (1)j and is entirely real, and may for solid boundaries possess
a real component as large as the imaginary component. The
essence of (7) is therefore that the temperature wavet entering
the solid possesses an intensity 7H/Tp in the same manner as does
second sound. (This is likewise required for the converse case of
second sound waves in helium II being set up by thermal waves
emerging from an adjacent solid. ) But the well-known expression
for classical thermal eaves involves rapM damping, so that the asso-
ciated energy thereby lost reappears in other forms.

Certain speculations may be made in this regard. The "kinetic
energy" density of the thermal pulse may tentatively be regarded
as associated v ith the mass flow inherent to thermal conduction.
Correspondingly "potential energy" density should be related to
pressure alterations accompanying thermal Row. The second law
of thermodynamics as given by (2) thus holds for thermal con-
duction across a layer of classical material of thickness less than
the thermal wave-length. Analysis based on the thermal impedance
concept4 reveals that second sound pulses should be transmitted
without distortionft or appreciable loss through layers of classical
material of such thinness immersed in liquid helium II, thus con-
forming to conditions of complete reversibility. Arguments similar
to those employed by Rayleigh' for a classical sound pulse indicate
that the mechanical energy Qow TH/To involved is shared equally
between kinetic and potential forms, not only for second sound
but also for classical thermal waves.

When penetration of thermal waves into classical materials
exceeds several mean-free-path lengths, the reversibility between
heat Row and mechanical energy stated by (2) is necessarily
affected by the natural collisions occurring between particles or
between phonons. Accordingly the well-known damping sets in
and converts the "mechanical energy" content of the thermal
wave to acoustical or thermal forms, depending upon the geometry
and the substances (thermal coeKcient of expansion) involved.
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For propagation along the x axis the "source strength" of such
converted energy is just Re(8/Bx)(rII/Tp).

Thus, whereas liquid helium II provides the only example of
complete thermal and mechanical interdependence, the more
limited thermomechanical properties of ordinary substances are
evident from general thermodynamic considerations. Further
implications are being investigated.

The author expresses his sincere gratitude to Professor Philip
M. Morse for helpful and stimulating discussions.

a Supported by the ONR, Contract Na-onr-12-48.*Since this study was undertaken, related work by several other inves-
tigators has appeared. Where overlap does now occur, the independently
obtained results of the author are believed to present fresh viewpoints.~ A particularly clear derivation of the velocity of second sound has
been given by Peshkov (see reference 3) based on the use of the second law.

~~* In reference 5 the author gave the equivalent expression in mechanical
terms. The thermodynamic properties of liquid helium II lead to a direct
conversion. between the two forms.

++4'4' We are indebted to H. W. Woolley for an independent derivation of
a form equivalent to (5).t Peshkov mentions in reference 3 that the expression applies to materials
other than helium II but without interpretation or consideration of the
inherent decay.

gt The thermal impedance of a classical layer of thickness L backed by
helium II is (icop&c&a&)~ coth[(i~pcc& /a&)&t+coth ~{i~p~&/a&)&/pc&og], where
pc, ce, and Kc are, respectively, the density, heat capacity, and heat con-
ductivity of the material. For a thin layer this approaches (pc~@2) '+a/K,
independent of frequency and nearly equal to the thermal impedance of
helium II.
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N interference spectrograms** of a Zr"-enriched sample of
- - zirconium*** in a hollow cathode source, ' the 4d'5s' Pp-
4tPSs('P)5p 3S& line' at vl7777 presents the following structure,
showing that the spin, I, of the interesting' nucleus 4pZr" is
undoubtedly 5/2 units:

(I+1) —0.0701+0.0010 cm ' 4

even isotopes (arbitrary) 0.0000&0.0012 cm ',
(I) +0.0273+0.0010 cm —',
(I—1} +0.0983+0.0010 cm ',

I, from the Lande interval rule 2.69+0.58
~ ~

TAsLE I. Computed triton binding energy.

Trial functions
(see text)

S-state D-states

Triton binding energy
In percent

In Mev of 8.3 Mev

(Finite power series)
I
I
I II, III, IV
(Extrapolated)

I
I II
I II, III, IV

(Gerjuoy and Schwinger;
S-state and D-state

(Feshbach and Rarita)
S-state alone
S-state and D-state

{estimated maximum)

1.80
3.74
5.60

1.80
3.88
5.80

21.7
45.1
67.5

21.7
46.7
69.9

21
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exchange factor, which has very small effect on the triton binding
energy, this is the same problem as that studied by Gerjuoy and
Schwinger' and by Feshbach and Rarita. ' The same variational
method was used here, but a much more elaborate trial function
was inserted. The calculations are still in progress, but the results
so far obtained (and reported in Table I) show that other D-states
not included in the previous calculations&' make a substantial
contribution to the binding energy.

The basis for the present method is the construction of a de-
numerable series of orthogonal functions which form a complete
set for the nuclear three-body problem. With the type of potential
that was assumed, the triton ground state can include only a
selected group of these functions, characterized by even parity, byJ=~ for the total angular momentum, by T=~ for the total
isotopic spin, and by Tl = —$ for the third component of isotopic
spin (to denote two neutrons and one proton). This sub-set of
functions may then be arranged in order of increasing kinetic
energy (which is roughly equivalent to the order of decreasing
importance} and introduced systematically into the variational
principle.

In setting up the system of orthogonal functions the usual
relative coordinates, r:(r, 8, p) and p:(p, g, P), have been trans-
formed to a six-dimensional spherical coordinate system, with a
single radial variable,

R = (-'r'+4~') ' (1)
and five angular variables. The angular parts of the orthogonal
functions are hyperspherical harmonics Iz;I. which satisfy the
defining equation:

Details, including the structure of other lines, will be submitted
later. with

V'(R~ v&, L,) =0 (2)

*Work done on Navy contract N7 onr-285TO 41, NR 019 107.
~~ With auxiliary dispersion produced by a special Hilger spectrograph

bought with funds granted by the University research committee.***Produced by the Y-12 plant, Carbide and Carbon Chemicals Cor-
poration, and obtained by allocation from the AEC.' O. H. Arroe and J. E. Mack, Phys. Rev. 76, 173 {1949).' W. F. Meggers and C. C. Kiess, J. Research Nat. Bur. Stand. 9, 309
(1932).

a E. Feenberg and K. C. Hammack, Phys. Rev. 75, 1877 (1949), especially
pp. 1882 and 1893.

4 The quantities preceded by the symbol & have been made larger than
the spread of the data by amounts judged to be enough to make it highly
improbable that the true values lie outside the ranges indicated.
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VARIATIONAL calculation of the binding energy of the H'
nucleus has been performed using the Rarita-Schwinger'

interaction (square well with tensor force}, as modified to include
a charge-exchange factor (—-',v; e,}. Except for the charge-

V'2= $V'„2+27' ~. (3)
These harmonics can be classified by their value of L into S, P, D,
etc. , states, and combined with suitable spin and isotopic spin
functions to give the admissible set of 2S~, 2Py, 4P~, and 4D~ triton
functions. With each harmonic F~, L, there will also be a radial
factor R~ f(R), where the function f(R) need be defined only for
R)0 and may therefore be written as a function of R'. The form
chosen was a Gaussian multiplied by a power series:

f(R) =e "~ (a+bR +t;R4+ ~ ~ ). (4)
In Table I are listed the binding energies resulting from the

successive inclusion of one 'S-state function (I}and three 4D-state
functions (II, III, IV). The S-state is essentially the same as that
used by Gerjuoy and Schwinger and by Feshbach and Rarita, and
function II corresponds to their D-state, but functions III and IV
contain D-states which they omitted. The binding energy is given
in Mev and in percent of the experimental value which they used,
8.3 iVIev. **

In the present calculations, the same Gaussian parameter p
was used for all of the four functions. This does no harm if each
power series is sufficiently long. The power series for functions I,


