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each in V,? and V,¢. These terms have their origins in the more
difficult and subtle questions connected with auxiliary conditions.
In one development of these interactions by the writer they do
not appear at all. In another they are replaced by innocuous
terms. It must be noted that the uniform introduction of the
factor ax in all coupling constants or the equivalent device com-
monly employed,® while giving interactions which satisfy tests
II and III, is not permissible according to test I. In particular the
Newtonian and Coulombian static fields then are lost in the limit
of zero-meson mass.

Assuming tentatively that the pi-meson is. the principal nuclear
force meson then (ax)?=(m/M)2~1/40. We come then to the
important physical conclusion that only if the fine structure
constants (e, for pole coupling and aq for dipole coupling) are
related by aa~40qa, will the static interactions arising from dipole
coupling be of the same order of magnitude as the static pole
interaction. Since aq is then greater than one we are forced to
strong coupling for this part of the interaction. On the other hand
if we assume ag~a, we find that the effects of dipole coupling are
small compared to the static pole interactions and, in fact, are of
the same order of magnitude as the relativistic pole interactions.
Thus the assumption of simultaneous pole and dipole coupling is
an undesirable complication. Indeed, the complication is even
greater than indicated by Kemmer’s treatment which does not
bring out the pole-dipole interference terms and which discards
contact interactions.® We can, nevertheless, utilize the Kemmerian
interactions, with the suggested modifications, by regarding them
as eight distinct interactions four of which, the pole cases, have a
more elementary nature. Three of these cases, the scalar-scalar,
the vector-vector and the pseudovector-pseudovector” have large
static terms, but they are not promising nuclear interactions. The
pseudoscalar-pseudoscalar, a synthesis of the first two,® and the
four dipole cases give rise to more interesting interactions which,
however, are too small in the case of a one-meson field for a<1.
In a later communication we shall discuss the possibility that these
latter interactions, in conjunction with a generalized multiple-
meson field, may contain the correct nuclear interaction.
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Mass Assignment of Xenon Activities
Produced in Fission
SIGVARD THULIN, INGMAR BERGSTROM AND ARNE HEDGRAN

Nobel Institute for Physics, Stockholm, Sweden
July 25, 1949

HE electromagnetic isotope separator! of this Institute has
been used in order to ascertain the mass-numbers of the Xe
isotopes produced in fission. The gaseous fission products from
neutron irradiated uranium oxide were fed to the ion source and
the active isotopes collected on a thin aluminium plate. This
method has recently been used by J. Koch, Copenhagen, in an

TABLE I. Summary of results.

Parent isotope
(according to Seaborg's

Mass tables and our
Element number Half-life measurements)
Xe 133 ~5.4d
Xe 135 9.1 hr.
Xe 137 3.5 min. 1137 22.0 sec.
Xe+Cs 138 30.0 min. 118 5.9 gec.
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. Fic. 1a. Theactivity of the 5.4 d and 9.1 hr. xenon isotopes. Dotted curve
is the 5.4 d activity, measured 3 days after the 9.4 hr. activity and drawn to
a § times larger scale.

investigation of the Kr isotopes produced in fission (private com-
munication). The method of determining the mass numbers,
corresponding to the different activities, was the same as used for
the mass assignment of 43™ Hg!99 2 and 539 Hg29.1
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F1G. 1b. The activity of the 3.5 min. Xe isotope measured immediately after
separation and 8 minutes after stopping the cyclotron.

Figures 1a, b, and ¢ show the measured activity as a function
of the position on the collector plate and the results are sum-
marized in Table I. This confirms that the assignments of these
isotopes in Seaborg’s tables? are correct (the mass numbers 137
and 138 were classified as B and D).
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F1G. 1c. The activity of the 17 min. Xe and 33 min. Cs isotopes.
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TaBLE 1I. Summary of 8-spectrometer investigations.

Isotope B-max. kev B-lines hy
Xelss 315 25.6 (Auger, medium)
30.9 (Auger, weak)
46.5 (K 1, very strong) 82.4
59.3 (K 2? weak) 95.2 (?)
77.9 (L 1, medium) 83.6
200 (K 3 weak) 236
Xels 930 214 (K) 250
242 (L)
Xelss 2680

The activities of Xe!33) Xel35 and Cs'® on the collector plate,
were sufficient for B-spectrometer investigations. The B-spec-
trometer data are summarized in Table II.
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Second Sound and Classical Heat Flow® *

JonN R. PELLAM
National Bureau of Standards, Washington, D. C.
August 1, 1949

HE reversibility of the thermomechanical effect in liquid
helium IT and the inertial characteristics of the associated
heat flow result in the true wave characteristics of second sound.
In the portion of a second sound cycle where heat flows toward
cooler regions, mechanical energy is stored as energy of internal
convection. During the opposite half of the cycle heat flows
toward warmer regions at the expense of this stored energy. The
resulting average mechanical energy content of the wave provides
a net mechanical energy flow or imfensity in the direction of
propagation.

Considerations of second sound are simplified by assuming
square wave pulses, logical justification lying in the known
absence of frequency dispersion. This obviates the distinction
between instantaneous and average values. If heat flow density
H (cal./sec. cm?) is sustained by liquid helium II during the
generation of a one-dimensional square wave heat pulse, the
temperature is raised by 7 within a heated region which is
progressing at the rate of second sound velocity ;. This requires™*
that .

H = pc,7vs, 1)

where p is the density and ¢, the specific heat capacity per gram
for helium II. The generation of this second sound actually requires
slightly greater heat input than the heating rate H, to provide the
kinetic energy of internal convection stored in the pulse. At the
abrupt front of the temperature pulse heat flows continuously out
toward the ambient temperature region, cooler by amount 7.
According to the second law of thermodynamics** the rate of
mechanical energy generation, or intensity v, is related to tem-

perature by )
y/H=1/T, (2)

where T\ is the ambient absolute temperature (°K). The intensity

becomes®® )

Y= TH/T0= pc vvz‘rz/To. (3)
This expression*** is equally significant with respect to classical
heat flow within ordinary materials.

Finally, combining (1) and (2) the expression for total energy
flow (thermal plus mechanical) becomes

energy flow= pcver[147/T] “@

indicating the flow of mechanical energy within a second sound
packet to be but the fraction 7/T, of the associated heat flow.
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Second sound possesses a wave momentum and a radiation
pressure. At a chosen position and instant, whichever fluid com-
ponent happens to be moving in the direction of propagation
possesses greater than ambient density, whereas the other com-
ponent is necessarily retrogressing at less. Accordingly therefore,
in the identical manner as for classical sound, the wave momentum
flow J for the pulses equals the mechanical energy density divided
by wave velocity, equal in turn to radiation pressure Praq.

Pra=J=pc.1*/To (5)

or twice (5) for reflection from a thermally non-conducting bar-
rier.¥*** Although of second-order magnitude, this is the sole
existent pressure for second sound! This should not be confused
with the small amount of first sound coupled® to second sound by
the thermal coefficient of expansion of helium II. (It should be
noted that the method of deriving the expression automatically
includes both kinetic and potential energy density; for continuous
waves a factor 3 would appear). Thus under appropriate experi-
mental conditions there would be a “sound current” associated
with second sound (as with ordinary sound) of velocity ¢,72/v2T.

Thermal boundary conditions early employed by the author
(for setting up ““thermal impedances”) in design of second sound
systems were the continuity of temperature and heat flow density
between liquid helium IT and adjacent classical solids. Thus for
second sound normally incident upon a classical barrier

T:+Tr=7'lr, Hi_Hr=Htr, (6)

where the subscripts (z) and () refer, respectively, to incident and
reflected second sound, (#7) to transmitted classical thermal waves.
Employing (1) we obtain from (6)

Tin _ TrHr _ TtrHLr
T, To To

where complex conjugates are not used since instantaneous values
are desired. Equations (1) and (6) can also be employed to show
that for most cases not all of the incident second sound energy is
reflected ; thermal impedance! 7/H equals [pc,v2 ]! for helium II
[see (1)] and is entirely real, and may for solid boundaries possess
a real component as large as the imaginary component. The
essence of (7) is therefore that the temperature wavef entering
the solid possesses an intensity TH/T, in the same manner as does
second sound. (This is likewise required for the converse case of
second sound waves in helium II being set up by thermal waves
emerging from an adjacent solid.) But the well-known expression
for classical thermal waves involves rapid damping, so that the asso-
ciated energy thereby lost reappears in other forms.

Certain speculations may be made in this regard. The “kinetic
energy”’ density of the thermal pulse may tentatively be regarded
as associated with the mass flow inherent to thermal conduction.
Correspondingly “potential energy”’ density should be related to
pressure alterations accompanying thermal flow. The second law
of thermodynamics as given by (2) thus holds for thermal con-
duction across a layer of classical material of thickness less than
the thermal wave-length. Analysis based on the thermal impedance
concept* reveals that second sound pulses should be transmitted
without distortiontt or appreciable loss through layers of classical
material of such thinness immersed in liquid helium II, thus con-
forming to conditions of complete reversibility. Arguments similar
to those employed by Rayleigh? for a classical sound pulse indicate
that the mechanical energy flow 7H /T, involved is shared equally
between kinetic and potential forms, not only for second sound
but also for classical thermal waves.

When penetration of thermal waves into classical materials
exceeds several mean-free-path lengths, the reversibility between
heat flow and mechanical energy stated by (2) is necessarily
affected by the natural collisions occurring between particles or
between phonons. Accordingly the well-known damping sets in
and converts the ‘“mechanical energy” content of the thermal
wave to acoustical or thermal forms, depending upon the geometry
and the substances (thermal coefficient of expansion) involved.
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