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Apart from this, it will be sufhcient here to give results only.
Taking the mass of the r-meson to be 900 m, and that of the
~-meson as 285 m, the process r+~ +~++2r+ is found to have
a reciprocal lifetime

—.5, 10".sec. '.g~ gr
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Nothing is known of the value of g,2/kc, except that it cannot be
very small compared to unity; g 2/Ac we now know to be of the
order of unity therefore, Eq. (1) seems a fairly reasonable result,
in keeping with experimental lower-limit for the lifetime, r & 10-11

sec. suggested by an analysis of Powell's photograph. Nakamura
has calculated the lifetime for this process, by the former per-
turbation method. Assuming both r and x to be spin —1 particles,
his preliminary results suggest a somewhat shorter lifetime for the
decay.

The alternative process of disintegration suggested by Powell,
~z. ~~+y+p, , has also been considered by the same methods,
Here r and ~ are considered to be spin —0, pseudoscalar particles,
as in the previous case; the p,-mesons, which it is now known are
very weakly coupled to nucleons, are considered as spin —q
particles, which are coupled to nucleon pairs by a Fermi-like
interaction of the form:

g4'(1)4'(2) 9 (1)P(2) g (2)

P being the nucleon wave-function, and q the p,-meson wave-
function, and P=P*P ~here P* is the usual complex conjugate
transpose, and P is the usual Dirac operator. We assume, following
Tiomno and Wheeler, ' as coupling constant, the Fermi g 2.2,
10 4' ergs cm'. This process again leads to a logarithmic divergence
in its matrix elements. When dealt with as before, by the intro-
duction of a "regulator, " and with the same conditions (a) and

(b), it gives a reciprocal lifetime for the process r ~~ +y++p,—

r = —2, 102 sec.gx gr
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which seems rather too long. There is also a rather severe criticism
against this second viewpoint, which is that the form of the
interaction (2) fixes the relative sign of the charges of the r- and
2r-meson, in fact here they must be of the same charge. From the
photograph, however, they appear to be oppositely charged. The
r-meson appears to be positively charged, since, if negative, it
would almost certainly have been absorbed by a nucleon during
its passage through the plate, and have given rise to a star, as in
Leprince-Ringnet's photograph, rather than to this spontaneous
disintegration. The ~-meson, which subsequently gives rise to a
star, is certainly negative. Thus the most likely process would

appear to be r+~ ++++@+.This cannot be dealt with by a
simple interaction of type (2); it is a higher order process: there-
fore, interaction (2} seems to impose too severe a restriction on
the process considered.

Finally, it is interesting, though rather puzzling to compare the
lifetime for r 3m-decay with those of the competing processes:

(i) r+~+++.
(ii} r+~++y,

(iii) r+~m++2y.

If we consider only pseudoscalar mesons, with pseudoscalar
coupling, process (i) is forbidden. If, on the other hand, we con-
sider the H-meson as a scalar particle, this process would be
permissible; it would again give rise to a logarithmic divergence,
which would be regulated as in previous cases. Its lifetime would,
of course, depend on what mass we assume for the +-meson;
there is no experimental evidence for this, but if we take it as
being almost the same as that of ~+, this process would have a
reciprocal lifetime of the order
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Process (ii) is forbidden. Process (iii) gives a reciprocal lifetime

r-1~ 1012 SeC -1g~ gm

Ac A4,
.

A New Formulation of the Variational
Principle for Scattering Problems

SU-SHU HUANG

Yerk'es Observatory, University of Chicago, Williams Bay, Wisconsin
July 27, 1949

~ ~

~

~ ~

~

IXCE the stationary property of the phase shifts for a two
particle collision was first established by Hulth6n, ' various

authors' have derived variational principles for determining the
wave functions belonging to the continuous spectrum. In recent
communications the present author' has generalized these for-
mulations to the case of electron scattering where more than two
particles are involved in each encounter. Moreover attention has
also been called to the relative merit of the difFerent formulations
of the variational method. The very general nature of Hulthbn's
method sufFers from the defect of being very cumbersome in
practical applications, since it involves a process of successive
numerical approximation in which at each stage of the approxi-
mation we have to solve a set of simultaneous equations. On the
other hand, in spite of its relative simplicity, Tamm s method is
restricted by the use of a trial wave function of a very special type.
However it appears that a formulation of the variational principle
can be given which combines the merits of the methods of Hulthbn
and Tamm without their disadvantages.

Considering the head-on collision of two particles, we have the
wave equation

(~/dr2)+ t
k2 —V(r) Q(r) =0.

Substituting
P(r) =f(r) sinkr+g(r) coskr

in Eq. (1), we obtain the pair of equations:

(d2f/dr') —2k(dg/dr) —Vf=0

(2)

(3)
and

(d2g/dr')+2k(df/dr) —Vg =0. (4)

The boundary conditions for f(r) and g(r) are that lim, f(r)
and lim, g(r} exist; also f{0}should be finite, and g{0}=0.

It can now be shown that Eqs. (3) and (4) are the Euler equa-
tions of the following variational problem:

gf F(f„g„f, rg)dr=0, (5)
where

P=—f1'+gP+2k(fg1 —gf1}+V{f'+g'}, (6)
and subscripts denote difFerentiation with respect to r.

Once the variational problem has been solved, the phase shift
yp can be obtained from the relation

tanyp ——lim, Q(r)/f(r) j. (&)

if one takes the r-meson as scalar, with scalar coupling, and the ~
as pseudoscalar, with pseudoscalar coupling. This process is con-
vergent in this case. Taking both mesons pseudoscalar, again
leads to a logarithmic divergence. When regulated in the usual
manner, it gives a slightly larger probability for this process, by
about a factor 102 or so. In any case, this process and the r 3m.—

decay seem to have roughly the same order of probability, process
(iii) being a little more frequent; and yet this process has not yet
been observed experimentally.
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The foregoing method is not limited to head-on collisions only.
For collisions with higher angular momenta, we assume the wave
function to be of the form:

&7(r) =f(r}(mkr/2) &J7+)(kr)+g{r)(xkr/2) &J 7 )(kr)) (8}

where Jy(7+))(kr) denotes the Sessel function of order +{l+$).
Substituting Eq. (8) into the wave equation, we can derive

after suitable transformations a variational integral of the type
given by Eq. (5). Thus for /= 1, we find

7=—L1+(1/k'r') g(fl2+gl2)+2k(gfl —fgl)
+D+(1/k'r') j~{f'+g') (9)

From this w'e infer that the functions f(r) and g(r) for the case
/= 1 must be of order at least r' for r~.

The foregoing method can also be generalized for the S scat-
tering of electrons by a neutral hydrogen atom. We now assume

P= (e "&/rs)[f(rq, re, rq~) sinkrs+g(r&, rs ru} coskrsg. (10)

Substituting this form for P in the appropriate wave equation in
the variables rl, rg and rig, we Gnd that the resulting pair of dif-
ferential equations obtained by putting the coeKcients of sinkr&

and coskr2 equal to zero, are the Euler equations of the variational
problem

ex) oo rI+rr,
drlx'~{fl f2, fl2 gl, g2, gl2, f, g;rl, r2, rn) =0,

I rl-rg)
(11)

where

F= (e~'&/ra~—) Lrqry ~s(f2+ fss+ 2fn~+g P+gss+2gqP)
+r2(rl' —r~'+rid )(glg12+ fifle}+ri(ra' —rl'+rl2 )
X (f2fl2+g2giz}+2krirwl2{g~ f—f2g)
+krl(r2 —rl2+rlm ){glmf—gfl2) —2rl(rim —rq) {f'+g')J, {12}

and fl, f~ and fl~ are derivatives of f with respect to rl, r~ and rl2,
respectively.

The advantage of the variational principle in the form derived
here is its simplicity for practical applications. Examples of the
application of this formulation will be given in a later paper.
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'ITHERTO, it has been supposed that Lorentz's theory of
the non-point electron could not be made covariant without

either: (a} making electrodynamics non-linear, or (b) taking into
account the effects of non-electromagnetic forces which are
assumed to hold the charge together. We wish to report here
preliminary results concerning a method of making Lorentz's
theory covariant, without resorting to either of these alternatives.

The principal difIjLculty is that one must describe the change of
shape of the electron as it accelerates and simultaneously preserve
conservation of charge-current without which Maxwell's equations
become inconsistent. Let the world line of the center of the electron
be parametrically described by the 4 vector g„(s}, and let the
shape be described by another 4 vector, v„(s), which may be, but
is not necessarily the same as dp„/ds. (A criterion for correct
equations of motion is that the two should tend to be the same
for steady motion. ) The following charge-current distribution is

found to be conserved identically.

ri ) f=~ ~t" )~(. "",)('—"-;" ."
),

where r =xe—P, F and g are arbitrary functions and the integra)
is over the whole world line. This expression contrasts in two ways
with the ordinary expression'

j„'(x)=f de—n. g(x.—g.).dg„
(2}s

First, the b-function kernel is replaced by F(r r )g(r v /(v v )&)

so that the charge distribution is spread out. Secondly, there is
added to the current a spin-like term involving the anti-symmetric
tensor, Pv"—8"v"—=S"".This latter turns out to be essential for
conservation of charge. The present theory differs from that of
MacManus and Peierls' in that now the charge associated with
a given center can be localized in time as well as in space. The
theory of MacManus and Peierls results in convergence factors
which are functions of au' —k', where co is the angular frequency of
the electromagnetic wave and k is its wave number. Thus, for a
light wave, it leads essentially to a point electron. It is able to
yield Gnite self-energies in classical theory, but the effects of
quantum Geld fluctuations would not in general be affected. The
localization of the charge in time, as well as space, would remove
all inGnities.

To obtain the equations of motion, one adds to the usual free
particle Lagrangian the term

Jj„(x)A "(x)d4x, (&)

where j„is evaluated from (1).Variation of this Lagrangian leads
to covariant and Gnite classical equations of motion. We have not
investigated these equations in detail nor have we succeeded as
yet in quantizing them. We believe, however, that quantization
will inolve methods closely related to those proposed by Yukawa. 3

The "shape variables, " v", can be described in an alternative
way which suggests a close relation to Dirac's equation. In three
dimensions, a rigid body is described by three rotations, which
may, for example, be speciGed by the three Euler parameters. In
four dimensions, one needs three more complex rotations, repre-
senting the Lorentz transformations needed to transform the
electron to the shape it has when at rest. These six rotations are
conveniently represented in terms of the eight quantities cor-
responding to real and imaginary parts of a 4 component Dirac
spinor, among which there are two covariant relations, leaving six
independent quantities. Representing such a classical spinor by
p(s} one then obtains

(4)

with p+P= ~1, /+~=0. The f's are now the basic coordinates
replacing the v's. We are now investigating the possibility that
the Dirac equation wave equation is an approximation to the
lowest quantum state of this system. If this were so, then the
"Zitterbewegung" could be related to quantum fluctuations in
the shape of the electron.
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A VARIATIONAL method which can be used to treat integral
equations of the form

f(x) f, f(x') G(=]» [x)d JxG(( x ]
}—dx = 1 (1)

has recently been described by R. E, Marshak. '


