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The oytical Detection of Radiofxetluency Resonance*
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Calculations are made of the frequency, intensity, and polarization of the light emitted by an atom in
a 'P-'S transition in a weak magnetic field having an oscillating component. Near resonance, or when the
frequency of the oscillating component approaches the Larmor frequency of one of the two states involved
in the radiation process, all of the quantities calculated are modified. Qualitatively similar results are to be
expected for other transitions. Observations in very weak fields would be of particular interest because they
would give information on nuclear spins as well as atomic g-factors. Under such conditions, the Zeemann
components will in general not be resolvable. There will, however, be a change in the polarization of the
edges of a spectral line at resonance. It is shown that very small changes in this polarization structure are
theoretically detectable.

A HOPE of drastically extending our knowledge of
nuclear structure lies in further application of the

resonance method, i.e., the direct measurement of the
spacing between the hyper6ne-structure components of
an energy level. A new method is here proposed to detect
the condition of resonance when it is established—
namely a change in the radiation emitted by an atom
when it is subjected to an oscillating 6eld at the reso-
nance frequency in the above sense.

For simplicity, the discussion is con6ned to the reso-
nance line ('P—'S) of an atom having one optical elec-
tron, and it is further assumed that there is no hyper6ne
structure. The resonance to be investigated is that
corresponding to the Larmor frequency of the system
in very weak 6elds, or, in other words, corresponding
to the Zeemann splitting of one of the levels concerned.
Although this discussion specihcally excludes nuclear
e6ects, it is clear that any method of following the
ordinary Zeemann eGect into the region of very weak
6elds will produce information about nuclear moments
when the Zeemann splitting becomes of the same order
of magnitude as any hyper6ne structures which may
exist.

The wave functions describing an atom in a magnetic
6eld having an oscillating component are known. ' They
are the solutions of the Schroedinger time-dependent
equation, and contain one arbitrary constant which is
usually so chosen as to define the initial state of the
system. In an atomic-beam experiment, for instance,
this constant speci6es the state of the system when it
enters the oscillating 6eld, and the solution makes it
possible to specify the probability of 6nding the system
in any particular state at any subsequent time. The
problem here proposed is physically somewhat diBerent.
Consider a gas of the atoms under consideration at
extremely low pressures so that collision eGects may be
neglected. All the atoms in the container holding the
gas are subjected to the same 6eld. In this case, the
arbitrary constant in the wave function of the atoms
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in the ground state must be so chosen that, if the os-
cillating 6eld is slowly removed, the wave functions go
over into the normal wave functions for the atom in a
constant magnetic 6eld.

For an atom having J= ~~, the desired solutions are
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where 8 is a number measuring the approach to reso-
nance and de6ned below. At resonance 8=0; on one side
it is positive, and on the other negative. It is evident
that these are the desired solutions in the sense that,
far from resonance, they reduce to the standard forms
describing the system for m=-,' and m= ——', . The mean

Hz

FIG. 1. Zeeman splitting of J= ~ level in the presence of
an oscillating field whose frequency is co/2m.
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FIG. 2. — ——Normal Zeemann lines; ———Zeemann lines
at resonance in the 'S~ state.

value of the energy of the system in these states is

gpoH* 6+Ho/H*
lV= +

2 (1+8')&

where po is one Bohr magneton; H, is the constant
magnetic held; 5= H*/HOX (cv co—o)/coo, Ho is the ampli-
tude of the rotating magnetic field. This field is at right
angles to the constant field; ~ is the angular velocity of
the rotating 6eld; coo is the Larmor frequency gpoH /h;
and ge/2mc is the gyromagnetic ratio. The derivation
of Eqs. (1)—(3) is given in Appendix A.

We are now in a position to consider the effect of the
rotating magnetic field Ho on the Zeemann effect. The
resonance line width in the above discussion is deter-
mined entirely by the amplitude of the rotating field.
In actual gases, the levels will be broadened due to other
causes. Investigations of resonance in the ground state
will be of particular interest because of the sharpness of
these levels.

From Eq. (3) it is clear that the energy levels have
their normal positions except near resonance, where the
level corresponding to m=2 changes places with the
level corresponding to m= —-', . A schematic plot of the
effect on the energy levels is shown in Fig. 1, and the
effect on the position of the Zeemann components is
shown in Fig. 2.

The intensity and state of polarization of the lines
can be readily computed. For the sake of brevity, we
write u and b for the coefFicients of the spin-wave func-
tions in Eqs. (1) and (2), and x', Y', and s' for numbers
proportional to the squares of the components of the

electric dipole moments along the x-, y-, and z-axes.
The results are

~P3/, —2S, m=~2
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These results state that the resultant intensity and
the polarization of all the light given off in any direction
is independent of 8, and is the same in all directions.
Further, since on one side of resonance a=0 and b= 1,
while on the other side of resonance u= 1 and b= 0, it
would seem from Eq. (4) that there are certain differ-
ences in the Zeemann effect above and below resonance.
When the interchange of the energy levels is taken into
account, it appears that the Zeemann e6ect presents
exactly the same appearance on either side of resonance.

Equation (4) does, however, predict certain changes
in the position, intensity, and degree of polarization of
spectral lines in the vicinity of resonance. The following
consideration indicates that these changes will not be
easy to detect experimentally. Kith specially con-
structed light sources having a very small Doppler
effect, and with the best available instruments, usable
resolving powers of 10' can be achieved. Since visible
light has a frequency of the order of 0.5 X 10 ",we have
for the smallest resolvable frequency difference be-
tween two spectral lines

hv
=10 ',

v 0.5X10 "
»=0.5X10'.

This is of the order of magnitude of the frequencies to
be applied. It is therefore clear that the detail of the
predicted phenomena will not be easy to observe. The
presence of resonance can, however, be detected without
resolving the Zeemann components, as may be seen
from the following argument. Consider, for example,
the polarization structure of the line resulting from the
transition 'P; to 'S; in a field which is too weak to
produce an observable resolution of the components.
Although the line as a whole would be unpolarized, the
edges would show a slight excess of cr-polarization, and
the center of the line a slight excess of m-polarization.
At resonance, this polarization structure disappears.
Resonance might be detected by noting a change in this
polarization structure. Extremely small effects of this
kind can be observed by means of an optical system
which transmits only the excess polarized light at the
edge of a line, and by modulating the amplitude of this
transmitted component by going in and out of resonance
at some selectable frequency. The limitations of such a
scheme are further discussed in Appendix B.
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APPENDIX A

The equation to be solved is

where

Pp
zklff =g—(t7]H] +cJ'»H»+ 0'3H3) p

o are the spin matrices;

Hi =H p coscdt;

H»=Hp sincdt;

H3=H, .
The normalized solutions are

@=C)P)+C pk ),
C&=A i sinai»t+A» cosa.e'»

C ~= —A» sino. e '»'+Ai cosa.e '»',
cx = integration constant,

Cd Hp Cdp

pi= ——+——(&+1)',
2 H j 2

Cd Hp Cdp

p, = ————(a+1)~,
2 H, 2

Ai= a+(a»+1)~ ~

2(5»+1)~-
—S+(S»+1)» ~

2(9+1)~

The expression for the energy is found by evaluating

W = —(h/i)PP

In general, the energy is a function of the time, and this is
interpreted as periodic emission and absorption from the rotating
field. This is not true for the particular solutions in which we are
interested, corresponding to ca=0 or m/2.

As we have seen, above and below resonance the magnetic
moment is parallel or a'ntiparallel to the constant field H, . At
resonance 8=0, and the expression for the energy becomes, ac-

cording to Eq. (3),
+g(j o/2)Ho,

that is, the magnetic moment is parallel or antiparallel to the
oscillating field Hp. No work is done on the atom by the rotating
field, and therefore the energy is constant.

APPENDIX B

The problem is to detect a very small amount of polarized light
in the presence of unpolarized light. The intensity of the polarized
component alone may be modulated, for instance, by passing the
light first through a rotating polaroid and then through a fized
polaroid. **If such light is used to activate an electron-multiplier
tube whose output contains a tuned amplifier, very small amounts
of polarization can be detected. Let the current through the output
of the tube be

Gip(1+f coscdt),

where f=fraction of total light falling on the tube which is
originally polarized, and therefore modulated, and G=gain of
tube.

The signal-to-noise ratio across a tuned circuit through which
this current Bows may be estimated as follows:

signal voltage =L(di/dt) =GLfi pcd sincdt;

noise voltage =Grip(2eb/ip) &;

b =band width of amplifier;

signal/noise =Qf(ip/2eb} &.

Intense light sources are advantageous. Assuming that the light
intensity can be increased to the point for which the limiting
factor is the tube current i, =ip „G, we see that the smallest
detectable fraction of polarized light is

f= 1/Q(G2eb/i, „)&

for Q=100, G=10',i, =1 ma, b=l cycle/sec. , f 10 '.
**More elegant ways of doing this by means of a vibrating glass

block have been developed by Prof. H. Mueller of the Massa-
chusetts Institute of Technology.


