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Motion in a Constant Magnetic Field
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The motion of a charged particle in a constant magnetic 6eld is treated in both relativistic and non-
relativistic quantum theory. Operators representing the center of the orbit, which obey the commutation
law for conjugate variables, are introduced and their connections with energy, angular momentum, and

magnetic moment studied. Energy eigenfunctions in an operator form are obtained by factorization.
Previously derived eigenfunctions in coordinate space are obtained and are shown to be eigenfunctions for
the operators for the center of the orbit as well as for the energy. Corresponding relativistic eigenfunctions
are derived by a simple device which enables one to construct solutions of the Dirac equation from solutions
of the Schrodinger equation.

I. INTRODUCTION

'HE motion of a charged particle in a constant
magnetic field has been treated in the quantum

theory by many authors. ' In the present work two new
features have been added, a more complete interpreta-
tion of certain operator integration constants and a
general method for the construction of energy eigen-
functions.

In a mell-known paper, Kennard' integrated the NR'-

operator equations of motion and obtained the operators
as explicit functions of time. We, however, will effect the
integration by finding operators which are constants of
the motion. In so simple a mechanical problem, the
difference in procedure would appear to be trivial.
Actually the second procedure can be easily extended
to relativistic motion and leads naturally to a discussion
of certain integration constants, namely the coordinates
for the center of the orbit, which obey commutation
relations typical of conjugate variables. These topics
as well as the relation between the center of the orbit,
energy, angular momentum, and magnetic moment are
the subject matter of Section II.

Most of the work cited above' has been concerned
with stationary solutions of the wave equation. The
solutions may be in a variety of forms because of the
infinite degeneracy, expressed in classical mechanics

by the fact that the axes of helical orbits with the same
energy may lie anywhere in the plane perpendicular to
H. As we shall see, this degeneracy in the quantum
theory is connected with the existence of the integration

' Non-relativistic motion and wave functions are discussed by:
E. H. Kennard, Zeits. f. Physik 44, 326 (1927); G. C. Darwin,
Proc. Roy. Soc. 117, 258 (1928); L. Landau, Zeits. f. Physik 64,
629 (1930); L. Page, Phys. Rev. 36, 444 (1930); Uhlenbeck and
Young, Phys. Rev. 36, 1721 (1930). Relativistic wave functions
are discussed by: I. I. Rabi, Zeits. f. Physik 49, 507 (1928); M. S.
Plesset, Phys. Rev. 36, 1728 (1930); I. D. Hu6', Phys. Rev. 38,
501 (1931).

'Notation: NR is an abbreviation for non-relativistic. Sy an
energy representation is meant any representation whose basis is
a complete set of energy eigenfunctions. The constant magnetic
field, H, of magnitude X, is taken along the s axis and is derived
from a vector potential A. The mass and charge of the particle
are es and —e, respectively. Its momentum and position are
designated by p and r. The quantity Ib is Planck s constant divided
by 2x. The velocity of light is c and Gaussian units are used
throughout.

s.„=(AC/mc) s;= (os-.,

mt=~.

(5b)

(Sc)

(6)
3 This was 6rst observed by Landau who thereby obtained the

eigenvalues of the energy in the NR motion.

constants mentioned above and, indeed, the integration
constants may be conveniently used to classify the
eigenfunctions.

A general operator solution for the energy eigen-
functions can be obtained by formulating the problem
in terms of the kinetic momenta, ~,

~= p+eA/c.

The Hamiltonian, together with the commutation rela-
tions satisfied by ~, which then define the eigenvalue
problem, no longer contain r. The system of equations
is formally identical with the harmonic oscillator' and
the eigenfunctions can be deduced in a familiar way by
the factorization technique. Details of this method are
given in Section III where it is also shown that pre-
viously obtained eigenfunctions can be easily derived
from the operator solution. The method is extended to
relativistic motion by a simple device for constructing
solutions of the Dirac equation from solutions of the
Schrodinger equation.

II. INTEGRALS OF THE EQUATIONS OF NOTION

The NR equations of motion may be derived from
the Hamiltonian

H= (1/2m)s' (2)

where ~ it related to the linear momentum by Eq. (1)
and therefore satisfies the commutation relation

~y m = —(ieh/c) H.

The equations of motion can be obtained from the
definition of a time derivative

SB=i[H, 8],
where [a, b] is the commutator ab ba Rememberi—ng.
that 8 is along the s axis' it follows that

+ = —(eae/mc) 7r„= —con.„, (5a)
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It is immediately evident that x, is constant, the motion
along the s axis is that of a free particle.

Two integration constants for the transverse motion
result when x and pr„are eliminated between Eqs. (5)
and (6)

whence

d/dt(pr, +mopy) =0,d/dt(harp

mpox—) =0,

yp =y+ x./mrs,

xp ——x—m.„/moo.

(7b)

The integration constants xp and yp necessarily com-
mute with the Hamiltonian. It is easily verihed that
they also commute with both x, and x„so that with
respect to the Hamiltonian they behave as unit opera-
tors. However, they do not commute with each other,

t xp, ypj=ihc/eX=iX'. (9)

The length A, is characteristic for the quantum me-
chanical treatment of this problem.

Equations (5) through (8) have the same form as the
corresponding classical equations. We will therefore
identify the operators xp and yp with the coordinates for
the center of the orbit. In agreement with this inter-
pretation the expectation value of xp in an energy
representation' is equal to the expectation value of x.4

The commutation relation (9) is identical in form
with the commutation relation satis6ed by a coordinate
and its canonically conjugate momentum variable. A
well-known consequence is that the eigenvalues of xp
and yp coincide with the continuum of real numbers.
Since xp and yp behave as unit operators with respect to
Hamiltonian, each energy state must include ag. infinite
manifold of eigenfunctions corresponding to the eigen-
values of xp or yp or of some function of xp and yp. Thus
the energy is infinitely degenerate, just as in classical
mechanics, because it does not depend on the location
of the center of the orbit in the xy plane.

In Section III eigenfunctions corresponding to eigen-
values of xp will be given explicitly. Kigenfunctions
corresponding to eigenvalues of rp',

rp'= xp'+yp', (10)

will also be given. Because the characteristic value
problem contained in Eqs. (9) and (10) is formally
identical with the one-dimensional harmonic oscillator,
we can immediately conclude the eigenvalues of rp' are
X'(2l+1) where t is any positive integer. The "zero
point" value of rp' indicates that the origin of a coor-
dinate system can only coincide with the center of the
orbit to an accuracy of ).

The commutation relation, Eq. (8), also implies that

Ax&yp ~& X'/2, (11)
' In an energy representation the expectation value of a time

derivative of a quantity which does not involve s is zero because
the diagonal elements of a commutator with H then vanish.
According to Eqs. {5a}and {5b}x, and ~„are such derivatives.

where exp and Ayp are the uncertainties in any possible
experimentally determined values of xp and yp from
which the orbit may be predicted. If the radius, rl, is
introduced by means of Eq. (8)

rP= (x x—p)'+ (y y—p)'
= (mco) '(pr.'+ pr ') = 2H (/mes' (12)

where II& is the transverse energy. Thus, in an energy
representation, ri' is exactly known and the uncertainty
in locating points on the orbit is solely due to the
uncertainty in locating the center of the orbit.

A measurement of the orbit's center may, for example,
be made by simultaneously determining the transverse
coordinates and momenta which are subject to the
uncertainty relations

axap, &h/2; ayhp„&it/2. (13)

The coordinates of the orbit's center can then be cal-
culated from Eqs. (8) expressed in terms of the canonical
momenta'

xp ——x/2 —pp/moo, (14a)

yp ——y/2+ p, /mes. (14b)

The uncertainties in xp and yp are arising from the
uncertainties in Eq. (13) are then necessarily related by
Eq. (11).

The energy eigenvalues can be written as

E=E +p'/2m, (15)

where p is an eigenvalue of x, and E„is an eigenvalue
of the transverse energy

Hg=(1/2m)pr '+pr„'). (16)

Equation (16) and Eq. (3) again de6ne an eigenvalue
problem identical with the one-dimensional harmonic
oscillator so that

E„=lpco(n+ 1/2),

where n is any positive integer.
The angular momentum, I.„about the 3 axis is

L,=(rXp),=x,—y .—(m /2)(*'+y'). (18)

Hence by Eqs. (3), (5), and (6)

Ltp = X7l y
—$7l z+ x7l y

—y7l z—(mco/2)(xx+xx+yj+ jy) =0,
and I., is an integral of the motion. However, it can be
expressed in terms of rP and rpP by Eqs. (8) and (12)

L,=mco[x(x xp)+y(y yp) '(—x'+yp) j——-
2= (mes/2) (rP —rp'), (19)

which is the same as the classical relation between these
quantities. Since rP is proportional to the energy by

~ Here, as in what follows, the vector potential {HXr}/2 has
been used. Any other vector potential can only dier by the
addition of ~f where f is the gauge. If another vector potential
were used, the equations of motion can be brought back to our
form by the contact transformation 5=exp{ief/kc).
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= —(e/mc) (xn „—yn. ,) (20)

is not a constant of the motion. However, again using
Eq. (8),

M= —(e o/o)c[rc'+ ox(x—xo)+yo(y —yo)] (21)

In an energy representation the expectation values of
g —xo and y —yo are zero so that the expectation value
of M is given by the energy through Eq. (12).

The relativistic equations of motion follow from the
Dirac Hamiltonian which, in conventional notation, is

H=ca oo+Pmc'.

By application of Eqs. (3) and (4)

x', = —e3.n„,

~„=eXcx„

(22)

(23a)

(23b)

Eq. (12), I., is not an independent integral of the motion
From Eqs. (17) and (10), its eigenvalues are h(e —l).

The magnetic moment, de6ned by

BH t' ct% z 8% rl

cl~j

J,= (2mo&) '(7r,o+7r„o+ehX&r, /c) moor—oo/2
= (2eBCc) '(H' —c'or '—m'c') —moor o'/2. (31)

Again J, is not an independent integral of motion and
its eigenvalues, according to Eqs. (10) and (29), are
h(n —l+s/2).

The magnetic moment

BH 8~
M = ——= ca —= e(a,y n„x—)

BX BK
(32)

is not constant. In virtue of Eq. (23)

M=BC '(ys.o+xo'r )
=K '[d/dt(xx, +y~„) H+cn—.7r.+/me '], (33-)

zero and, with the exception of n=0 and s= —1, are
doubly degenerate.

The total angular momentum along the s axis is

J,= (rXp).phd. /2
=xor„—y7r, —(mo&/2) (x +y )+ho,/2 (30)

and is easily shown to be constant in virtue of Eqs.
(22), (23), and (26). Expressing x and y in terms of xo
and yo by Eq (8)

(23c) which can be written

l'= co.'. (24)

If a is eliminated between Eqs. (23) and (24), Eqs. (7)
and (8) s,re obtained again. Therefore the previous dis-
cussion of the integration constants xo and yo applies
without change to the relativistic motion with the
exception of Eq. (12) and the accompanying remark.
(The quantity r&' is no longer a constant of motion. )

To complete the equations of motion, expressions for
the time derivative of n and P must be added. With the
help of Eqs. (3) and (4) and of the commutation rela-
tions for e and P

M=BC 'Id/dl(x~s+y&o) [djdl(n,—7r,+Pmc)
+Ho —con', o —moc4]H

& I . (34a)

The expectation' value, 3f, in an energy representation,
is given by the last term"since the expectation value
of the time derivatives is zero,

M = —(E' c'p' m 'c4—)/E—- (34b)

It is noteworthy that M is positive for negative energy
states, This can be understood by the characteristic
behavior of negative states in which the acceleration is
in the opposite direction to the applied force.

where

AP= —2ice ~P,

ha= 2cooXo+2imc'aP,

a = i (n~. , n,n—„n~),
&=2c~X0..

It is convenient to use

H'= c'~'+ m'c4+ ekc3Co.„

(25)

(26)

(27a)

(27b)

(28)

III. ENERGY EIGENFUNCTIONS

The eigenvalue problem for the Hamiltonian H&

(Eq. 16) and the commutation relations for x, and w„

(Eq. 31) is the familiar one-dimensional harmonic oscil-
lator and the eigenfunctions may be obtained by fac-
torization. ' It is convenient to use the notation

7f + ll Q~ ZXpe

rather than H, to discuss energy eigenvalues. Taking
or, diagonal with the eigenvalue p and ~, diagonal with
the eigenvalue s(= &1),

H'=2mc'H, +c'P'+m'c'+ehcXs. (29a)

With the aid of Eq. (17) the energy eigenvalues are now
given by

E= &[c'p'+m'c4+ ehcK(2n+ s+1)$& (29b).
The energy states are symmetrically arranged about

Then if P„ is an eigenfunction for H&,, so also are m.+&P„

and n. &P„ for the eigenvalues ho&(m+1+ ', ) and-
ho&(n 1+o), re—spectively. By expressing the normaliza-
tion integral for &p„ in terms of that for f„+& or f„~, it
is easily seen that for a series of eigenfunctions nor-

Equation (34b) can be immediately obtained from the theorem
(cf. W. Pauli, Handbuch der Physik 24, No. 1, 161) that the
diagonal elements of BH/B3C in an energy representation are equal
to BE/BBC. Using Eq. (29b) for E, .Eq. (34b) results.

7 P. A. M. Dirac, Quantum Mechanics (Oxford Pxess, 1947), 3rd
Ed., p. 136.
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malized in the same way,

p = (22L) &(X2r+/I'2)Q„L, (36a)

y. ,= (2~)-'*(Xx /IL)y„. (36b)

The lowest state function must be a solution of 2r $0=0.
The energy eigenfunctions are therefore determined by
the equations

inserted after the diRerential operator, f„,is unchanged
because 8/Bx+207/By commutes with any function of
x+iy. We then obtain

P„,=(i/V2) "(( )422!)
XexpL(2!f2) '(iy(x —2a) —(x a)—')+ops/hj

XH (x—a/X), (43)
II.(t) = (-1)"~'(~/~&)". 0'-

p.= (2"22!) '(&x+/&) "$0,

or $0=0,

or A'0 0&

(37a)

(37b)

(37c)

These are the eigenfunctions used by Landau and by
Uhlenbeck and Young. '

We will next consider solutions which are eigenfunc-
tions for ro'. Again, since ro' commutes with m+, this
requirement is a condition on $0

xofo= ago, (40a)

where a is the eigenvalue of xo. Making use of Eq. (14a)

(x/2+ 828/By)4 o =ago (40b)

and its eigenvalues are given by Eq. (17).
Equation (37) may be used to find the eigenfunctions

in either coordinate or momentum space. We will
confine our attention to the 6rst case for which, ac-
cording to Eq. (1),

fr~= ih[8/—L7x+i(8/By)+2/X(x~iy)5, (3ga)

2r, = i fi(B/Bz—)

The solution of Eqs. (37b) and (37c) is readily found.

Po=f(x iy) ex—P[iPz/I'L (x'+y—2)/4%5, (39)

where f is an arbitrary function.
The appearance of an arbitrary function in Eq.

(37a) corresponds to the infinite degeneracy already
discussed and allows us to impose other conditions on
$0. FirSt We Will COnSider eigenfunCtianS fOr Xo. SinCe

xo commutes with x+, this requirement is a condition
Oil $0

&0+0=V(2l+ 1)fo, (44a)

where X2(2l+1) are the eigenvalues of ro' (1 any positive
integer). ' From Eq. (14)

2+y
2 (1/4) (x2+y2)

8 8 ) fL'L7 8
+a '] x——y—)

—X'( —+ (. (44b)( L7y L7x) f,L7x2 07y2I

Inserting Eq. (39) into Eq. (44),

(x 2y)f'=—lf (44c)

The solution of Eq. (44c) gives

$0, L
= (2'+' lor!) &X '(x—iy/lf') '

XexpL —(x2+y2/4li2)+zpz/fL5, (44d)

where the normalization is to unit charge density after
integrating over x and y. After repeated use of the
identity in Eq. (41) we find

Q„L——( i) "(2"—+L+Lorl!n!) 0X '

x'+y' ( 8 L3 )"
Xexp +2pz/k (

+i-
4X2 . (Bx By)

f'= —(x iy+ 2a) (a'n')—'f. —

The solution of Eq. (40c) gives

(40c) t'x —zy) '

I expL (*'+y')/2"'5 (43))
Po, ,= (orli2) & ezpL —(2l~) '

x (x2+y' 2a'+ (x —iy 2a)')—+iP—z/It5. (40d)

The normalization constant has been chosen to make
the charge density unity after integration over x.
Upon inserting Eq. (40d) into Eq. (37a) we obtain the
desired eigenfunctions. The resulting expression after
repeated application of the identity

2r~ exp(x'+y'/F2)
= $e x( p+x2/ y2X 4)52( i')(8/Bx—+i(8/L7y) (41)

ls

p„,,= ((or) 17 2"22!)—&(—i7)"
X [exp(2lf, ) 2(x'+y'+ 2a")5(8/L7x+-iL7/07y)"

Xexp( —(2li) '(2x'+2y'
+(- —y —2 )')+ Pz/&5 (42)

If now exp(x+iy —2a/2lf, )2 is inserted before the dif-
ferential operator and the reciprocal of this quantity is

If polar variables, p, @, are introduced'
—2m(2n+L 12rf f22 f)

—
)if

—1(—/g) nl.—

x exp[ p2/4lf'+i p—z/A+i(22 f)@5-
~ Z„,(p'/2X'), (46)

L(k) = ( 1), "e'(~/~f—)"A '

' Since eigenfunctions for H and rP are necessarily eigenfunc-
tions for L, (cf. Eq. {19)),the condition can also be written as

~$0/~ p =—~4'o

from which Eq. (44d) immediately follows.' Since f(x+y) commutes with 8/Bx+i8/By each derivative
may be multiplied by (@+ay) and (x—iy) multiplied by (@+ay)'
provided a factor {@+ay)" ' is placed on the left of the difkrential
operator. The function to the right of the differential operator
then depends only on p'. Now

(X+iy) '(8/a~+Za/ay) =p '{8/Op+i p 18/Bq).

Since p does not appear explicitly, 8/Bq may be set equal to zero.
When p '(8/Bp) is expressed as a derivative with respect to p'
Eq. (46) is obtained.
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These functions are related to the solutions given by
Page. ' They are clearly eigenfunctions for I, with the
eigenvalues h(e —f).

The interpretation of our eigenfunctions is obvious
from their derivation. The solutions of Eq. (43) cor-
respond to a uniform distribution of orbits with the
same energy whose centers lie on the line x=a while

the solutions of Eq. (46) correspond to a uniform dis-

tribution of orbits whose centers lie on the circle
p='X(2l+1)». The connection between the solutions
may be obtained by expanding Pa, as a power series
in x—iy. The terms in the expansion are the functions

0, l.
The relativistic eigenfunctions are solutions of the

Dirac equation

If X are eigenfunctions for o.,
o.,X,=sX, (50)

for the eigenvalues s= +1, the second order equation
becomes (using EP from Eq. (28))

I H ~+ (1/2mc') (c'p'+ m'c'+ ehcXs E')—I X,=0. (51)

Then X1 and X 1 satisfy separate differential equations
which are formally identical with the NR wave equa-
tion, the eigenvalues of E being given by Eq. (29b).

The spinors X, are not yet completely specified. We
may, among other possibilities, take them to be eigen-
functions for P with the eigenvalue 1.

PX,=X,.

In this way we obtain the two spinors

0where H is given by Eq. (22). Solutions of Eq. (47)
may be constructed from solutions of the second order
equation

n —1

0
p ) &~—1nX1, n —1=

0
, 0,. 0

(H' —E')X= (H —E)(H+E)X=O.

Clearly if X is a solution of Eq. (48) then

4 = (H+E)X

is a solution of Eq. (47). Equation (49) is an empty
identity if X is also solution of the first-order equation. The energy eigenfunctions are now given by Eq. (49)

(48)
where P„are the NR eigenfunctions given by Eq. (37a).
The eigenvalues of the energy corresponding to the
spinors of Eq. (52) are

E=&[c'p'+m'c4+2ehcKm j».

4 g, „g= (H+E) G ' =0
0
0

~(~ac'+E)P„;
0

cx,»t

cx+»t „g

'(mc'+E)P. g'

0
cp»t

, (2chcSen)»P. ,
p

C,, „=(HyE) ~" G-=
0

, 0,

0 p

(mc'+E)P„G, (mc'+E)P„
c7r P„(2ehcXe)»f„g

c'Irzfz —cp»»

(54)

G= L2E(E+mc')]»

The four spinors of Eq. (54) (two for the positive sign
and two for the negative sign in Eq. (53)) may be con-
structed from any ortho-normal set of energy eigen-
functions for the NR motion.

Special relativistic solutions can now be obtained
from the previous solution of the NR problem. In par-

ticular eigenfunctions for xo (HufP) are obtained by
using Eq. (43) for P„while eigenfunctions for ro (Rabi')
are obtained by using Eq. (46) for»t„. The only dif-

ference between our solutions and those previously
given is in the initial choice of the spinor X; to obtain
the latter, symmetric and antisymmetric combinations
of the spinors in Eq. (52) must be used.


