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The discussion of vacuum polarization in the previous paper
of this series was con6ned to that produced by the 6eld of a pre-
scribed current distribution. We now consider the induction of
current in the vacuum by an electron, which is a dynamical sys-
tem and an entity indistinguishable from the particles associated
with vacuum Buctuations. The additional current thus attributed
to an electron implies an alteration in its electromagnetic proper-
ties which will be revealed by scattering in a Coulomb 6eld and
by energy level displacements. This paper is concerned with the
computation of the second-order corrections to the current opera-
tor and the application to electron scattering. Radiative correc-
tions to energy levels will be treated in the next paper of the series.
Following a canonical transformation which eGectively renor-
malizes the electron mass, the correction to the current operator
produced by the coupling with the electromagnetic field is de-
veloped in a power series, of which 6rst- and second-order terms
are retained. One thus obtains second-order modifications in the
current operator which are of the same general nature as the
previously treated vacuum polarization current, save for a con-
tribution that has the form of a dipole current. The latter implies
a fractional increase of a/2~ in the spin magnetic moment of the
electron. The only Raw in the second-order current correction is a
logarithmic divergence attributable to an infra-red catastrophe.
It is remarked that, in the presence of an external Geld, the
6rst-order current correction will introduce a compensating di-
vergence. Thus, the second-order corrections to particle electro-
magnetic properties cannot be completely stated without regard
for the manner of exhibiting them by an external 6eld. Accord-
ingly, we consider in the second section the interaction of three
systems, the matter 6eld, the electromagnetic Geld, and a given
current distribution. It is shown that this situation can be de-
scribed in terms of an external potential coupled to the current

operator, as modi6ed by the interaction with the vacuum electro-
magnetic 6eld. Application is made to the scattering of an electron
by an external field, in which the latter is regarded as a small
perturbation. It is found convenient to calculate the total rate at
which collisions occur and then identify the cross sections for
individual events. The correction to the cross section for radia-
tionless scattering is determined by the second-order correction
to the current operator, while scattering that is accompanied by
single quantum emission is a consequence of the 6rst-order current
correction. The 6nal object of calculation is the diGerential cross
section for scattering through a given angle with a prescribed
maximum energy loss, which is completely free of divergences.
Detailed evaluations are given in two situations, the essentially
elastic scattering of an electron, in which only a small fraction
of the kinetic energy is radiated, and the scattering of a slowly
moving electron with unrestricted energy loss. The Appendix is
devoted to an alternative treatment of the polarization of the
vacuum by an external field. The conditions imposed on the in-
duced current by the charge conservation and gauge invariance
requirements are examined. It is found that the fulfillment of
these formal properties requires the vanishing of an integral that
is not absolutely convergent, but naturally vanishes for reasons
of symmetry. This null integral is then used to simplify the ex-
pression for the induced current in such a manner that direct
calculation yields a gauge invariant result. The induced current
contains a logarithmically divergent multiple of the external cur-
rent, which implies that a non-vanishing total charge, propor-
tional to the external charge, is induced in the vacuum. The ap-
parent contradiction with charge conservation is resolved by show-

ing that a compensating charge escapes to infinity. Finally, the
expression for the electromagnetic mass of the electron is treated
with the methods developed in this paper.
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the matter and electromagnetic 6elds. The latter is
described by

Se[o]
ihc =X(x)+[a],

bo(x)

spinor W '[op(x) W[o] obeys the Dirac equation for a
particle of mass ra= rs'o+brrr, the experimental mass of
the electron. Accordingly, the expectation value of the
current operator can be computed as

(j.(*))=(+[o],j.(x)K ]),
where

X(x)= —-j„(x)A„(x). h%'[o]
ihc =X(x)+[o],

bo(x)
(1.7)

Among the eBects produced by this coupling is the
electromagnetic mass of the electron, as contained in
the self-energy operator K~, o(x). In order to describe
the electron in terms of the experimental mass, we
write (1.1) as

with the understanding that the experimental electron
mass is to be employed.

If a solution of the latter equation is constructed in
the form

+[ ]=UL ]+o,

where

N'[o ]
ihc = (BC' o(x)+X(x))+[o],

bo (x)

the expectation value of the current operator becomes

(j,(*))= (+o,U-'[o]j,(x)U[.]+o)= (+o,j.(*)+o), (1.9)

X(x)=K(x)—SCLp(x).

The canonical transformation

4'[o j-+W[o]4'[o],

bW[o]
ihc =K, o(x)W[o],

bo(x)

then replaces (1.2) with

j.(*)= U '[o]j.(x)U[o]

The unitary operator U[o] obeys the equation of
motion

1.4 SU[o]
zhc - = X(x)U[o],

ho(x)

(1 3) in which the latter version describes the effect of the
coupling between the 6elds by changing the current
operator into

. ~K.]
ihc =W '[a]x(x)W[o]%[o],

bo (x)
(1.5)

while the operator representing the current becomes
W '[o]j„(x)W[o].Now, as we have shown in II, the

which may be supplemented by the boundary condition

U[—~]=1, (1.12)

in accordance with the supposition that coupling be-
tween the two fields is adiabatically established in the
remote past.

The operator j„(x) can now be evaluated by remarking that

r
j„(x)=j„(x)+ I (4' (U '[o']j„(x)U[o'])

ho'(x')

=j„(x)—— dco'U '[o'][j„(x),x(x')]U[o'].
ke&

(1.13)

This process can be continued according to

0'
trs

lf

des'U '[o'][j„(x),x(x')]U[o']= A)'[j„(x),X(x')]

and yields j„(x) in the form of an infinite series,

red

+ Cko' dor" (U—'[o"][j„(x),X(x')]U[o "]), (1.14)
So"(x")

till ( i ) 2 Pll Pll

j,(*)=j„(x)+
~

——
) dor'[j„(x),x(x')]+ ]

——
~

d4P' dor"[[j„(x),x(x')],X(x")]+ . (1.15)
hc) ~ „ ( h )

An equivalent procedure, which exhibits j„(x) in a form that is more symmetrical between past and future, is
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based on the following observation,

oc e

d(o'e[o, o'] (U '[o']j„(x)U[o']) = de' (U '[o']j„(x)U[o'])
bo'(x') bo'(x')

+ d (U 'L ] ( )UL ])=( ( ) ( ))+( (*) U 'L ] (x)UL ]) (11")
I( I)

where

z p
j„(x)=-, (j„(x)+5-7„(x)5)+

~L

—
~

d~'. [o,.']U ['-][j„(x), X( x')]U[o'],
2hc) &

S=UL ], UL — )=1

(1.17)

(1.18)

is the collision operator which describes the real transitions that permanently alter the state of the system. This
process can be continued and 6nally yields

j„(x)= —,'(k„(x)+S-'k„(x)S),
in which

k„(x)=j„(x)+
~

— —

~
d~'e[o, o'][j„{x),X(x')]

t'

2hc
z 't'

+ ~

—--
(

de'dco"e[o, o']e[o',o"][[j„(x),X(x')],X(x")]+ . (1.20)
2hc)

The further terms in the series are not required to compute the second-order correction of the current operator.
The collision operator S can be constructed in a similar manner. Thus,

i
S—1= d U[ ]=——

~ ~X(x)U[ ],
bo(x) hc~

(1.21)

whence,

U[o]——,'(5+1)=- t des'e[oio'] U[o']= — des'o[a. ,o']X(x') U[o'],
2~ „bo'(x') 2hc

l' ' ) l'" (5—1=
I

— —
i

~ d(ox(x)(5+1)+2~ —
~ ~

d(od(v'e[o, o']X(x)X(x') U[o'].
2hc) ~ „ 2hc) & „

(1.22)

(1.23)

Continuing in this manner, we obtain

5—1 t iq {" ) iy'p"
d~X(x)+

I I
II d~d~'e[o, o']X(x)X(x')+

5+1 i 2hc) J . (1.24)

Only the indicated terms need be retained for the desired degree of approximation. In view of the absence of real
first-order eBects, as expressed by

pOO

3C(x)da) =0, (1.25)

the leading terms in (1.24) are of the second order:

5—1 i p" z r"
d(o — —

il ~(x—x') [3C(x) 3C(x') ]dc'' —3C&, 0(x) .
5+1 2kc~ „4kc~ „

According to (II 3.14) and (II 3.71), (the vacuum term 3Co, o is of no consequence),

r"
6(x x )[X(x))Xi(x )](kAI 3C1, o(x)+3C2, Q(x)+3C1, l(x)i

4hc~ „
whence,

[3C2, o(x)+3Cr, )(x)gdra,
2~J

(1.26)

(1.27)

(1.28)
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which describes the real eGects involving either two particles or one particle and a light quantum. Since we shall
be concerned only with second-order e6'ects referring to a single particle and the absence of light quanta, such real
processes do not come into play and S is efkctively unity. Consequently, the current operator is modiaed only by
virtual processes, and is completely symmetrical between past and future. Thus, to the desired order of
approximation,

j„(x)=j„(x)— II dco'p[o, o'][j„(x),3C(x')]+
~

dco'p[a, o'][j„(x),X1 p(x',)]

2 QO

+ { I i

dco'dcp "p[o,o']p[o', cr"][['.( x),~( x)],~(x")].
2hc) ~ „ (1.29)

The correction to the current operator may now be written

where
1.(x) j.(x) =—bj."'(x)+bj "'(x),

Z
QO

bj„&'~(x)= I dcp'p(x —x') [j„(x),j„(x')]A„(x'),
2kc'

(1.30)

(1.31)

Qc

(bj„c"(x) ) 1, p ——— dco'dco "c[cr,cr']p[cr', o"][[j„(x),j„(x')]A „(x'),j1(x")A1,(x")]1,p

4k'c'~ „
Z

QO

dco'p(x —x') [j„(x))K1p(x')]1 (1.32)
2kc~ „

are the first- and second-order corrections, respectively. In the latter, the subscripts emphasize that we are only
concerned with second-order effects involving a single particle and no light quanta. To simplify (1.32), note that

LLj.(*),j ( ')]A.(*')j (*")A (*")],o=l[A.(*'),A (*")]{Lj.(. ),j.( ')]j (*")}

whence
+-', {A,(x'),A1(x")}p[['j„(x),j.(x')] j1c(x")71, (1.33)

(bj„c'&(x)), ,= d~'d~ "p(x x') D(x' —x"){[j„(x—),j„(x')]j„(x")},
4kc'~ „

dco'dcp "p[o,o']p[o,cr"]D (x' x')[[J„(x)—»„(x')7»„(x")]1+
~

dco'p(x x') [r„(x),—3C1, p(x )]1, (1.34)
8kc'~ 2kc~ „

in consequence of
', p(x' x"—)[-A„( —

)x,A ( 1)x]= ihcb„r, D(x' x")—
{A„(x'),Aq(x") }p =Acb„1D&' (x'—x").

(1.35)

(1.36)

The double commutator in (1.34) is easily evaluated,

[[j.(x),j (x')],j (*")]=-~~[0(x)v.S(x-x')vf(x') 0(x')v4(x' x)v-A(x), 4(x")v.-f(x")]

=ie P(eP(x)y„(Sxx')yQ(x' x")y„P(—x")+P(x")y„S(x"—x')yD(x' —x)y„P(x)

—P(x')y, S(x'—x)y„S(x—x")y,P(x")—P(x")y,S(x"—x)y„S(x—x')y„P(x')). (1.37)

The one-particle part of {[j„(x),j„(x')],j„(x")} can be constructed in the manner employed in II. We have only
to notice that [j„(x),j„(x)]has a non-vanishing vacuum expectation value. Thus,

{[j.( )» ( ')»j ( ")} —2[&.(*)»'(*')]o~'( ")
= —~e'{(f(x)V»S(x—x')V4(x') —0(x')V.S(x'—x)VA (x))1,(f(x"h.4 (*"))1}1
= —e'c'(ij (x) r„S(x—x')y.{P(x'),g (x")}py,f(x")—P(x")y„{P(x"),g (x') }py,S(x'—x)y„P(x)

f(x')r4(x' x)r{f(—x) P(x")}pygmy—(x")+$(x")y„{f(x")P(x) }py S(x—x')y P(x'))1, (138)
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and

{{.j.( ),j.(x')],j (x"){ =2Lj.(*),j.(x')] j.(*")

+e'c'g (x)y„S(x x—')y„S&'&(x' x—")y,P(x") f—(x")y,S&'&(x" x')—yP(x' x)y—„f(x)

f—(x')yQ(x' x—)y„So&(x x—")y„P(x")+P(x")yPo&(x"—x)y„S(x—x')y,P(x'))i. (1.39)

On inserting (1.37) and (1.39) into (1.34), we obtain

Z
rsoc

(i&j„o&(x) ) i, 0
——

,
Cko'des "e(x x') [j—„(x)j,(x')]0D(x' x"j)—.(x")

2kc'"

M
da&'dry" (P(x')yP(x' x)y—„S"&(x x)—y„P( x)+P( x)yP" (&'x—x)yP(x —x")y„P(x"))i L&(x'—x")

2a~

S8
du'des" (P(x')yP(x' x)yP—(x x")y—„P(x"))&D &' & (x' —x")

2h

'M

+ — Ck)'g(x)yP(x —x')y(x')+@(x')8(x' —x)y„P(x))i
h~ „

d~'~(x —x')(4(x)v.B(x)~&, 0(x')]+L4(x) Xi.o(x')]rA(x))i (140)

where (see II (3.78))

y(x) = —— de'y, (L&(x—x')S&'&(x—x')+D"'(x—x')S(x—x'))y,P(x')
2—

= Smc'P(x).

The third term of (1.40) is derived from

pe ~00

d 'd "( L . ']- {,."])I.',."](~(*')~~(*'-*)~S('-"')~,y("')),D (*-'-)
Sk& „

(1.41)

(1.42)

with the aid of the identity

and the null value of
(e{a,o'] a{ , —0]0)e{ ', 0]0=e{o,o']~{o,o "] 1, — (1.43)

d(a'da)" (P(x')y„S(x' x)y„S(x x")y—,g (x"))&D—&'&(x' —x")
QO

d 'd "(f(x')Y.{4(x'),f(x)}7.{4(x),4(x"){7.4(x")) {~.(x'),~ (x"){o (144)
hc

The latter is an immediate consequence of (1.25), expressing the absence of real first-order transitions.
The insertion of the expression for 3C&, 0(x), (II (3.77)),

~& 0(x) k ('k(x) 4'(x) +4'(x)4'(x) )»

enables the last two terms of (1.40) to be combined into

ie—(4(x)V,X(x)+X(x)VA (x))i,
2k

where

X(x) = ~ Ao' S(x—x')y(x')+ —e(x—x') {g(x),y(x'))P(x') .
2

(1.45)

(1.46)

(1.47)

(1.48)

It will 6rst be observed that the integrand of (1.47) vanishes, in virtue of the relation 4 (x) = bmc'P(x), since

2
—e(x—x') {f(x),4 (x') }P(x')= —S(x—x') l&mc'P(x').
2
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On the other hand, integrals of the form

)I dk0'8(x —x')P(x') (1.49)

are divergent, since f(x') and S(x—x'), respectively, obey homogeneous and inhomogeneous equations associated
with the same differential operator. It is convenient to express the latter integral as the limit of the finite quantity
obtained by an alteration of the differential equation satisfied by f(x), in which the mass parameter a is replaced
by f~+bE and the limit Sf':—4 is taken. The differential equations

imply the relation

whence

+K+8~ lf(x') =0, — 8(x—x')y„—KS(x—x') = ki(x —x'),
E "ax„' ) '

ax„'

a
[8(x—x')/pe(x') 7+kiKS(x —x')iP(x') = ki(x —x')y(x),

OX'

1
dk)'8(x —x')P(x') =Lim if (x).

8~~0 $g

(1.50)

(1.51)

(1.52)

It ms.y be inferred that a non-vanishing value will be obtained for y(x) if the spinor, of which (1.47) is a linear
function, is subject to the Dirac equation with the mass parameter ff:+6~, and Sf': is allowed to approach zero. In-
deed, according to (1.48) and (1.52),

y(x) =Lim ~t d(a' S(x—x')(4 (x') —bmcg(x'))
b~~O J

or

=Lim—(4 (x) —kimcg(x)),
Blr-+Ops

1 e' t"
x(x) =Lim ——— Cko'y (D(x—x')8&'&(x—x')+8&'&(x—x')8(x —x'))y„P(x') —bmcg(x) .

o BE 2~

(1.53)

(1.54)

A suitable representation of the solution of the Dirac equation with an altered mass parameter, P„+i„(x), in terms
of the actual spinor, P„(x'), is provided by

8K 8
6+i (x ) =4' (x )+—(» -») 0 (x )

K i9Xy

since
( 8 P 8x 8

,+~ it+i.(x') =~. ,P
(x')

E ax„' ) g ax„'

= —Sg,(x'), (1.56)

which establishes the validity of (1.55) to the first order in kikk. The latter is so constructed that f„+i„(x)=p„(x),
whence,

e~

x(x) =— da)'y„(D(x —x')So&(x—x')+D"'(x—x')8(x —x'))y„(x),—xg') p(x').
2fI.~ „ BXg

The resulting expression for the second-order correction to the current operator is

(1.57)

Z ie' ~"
(bj„"'(x))i,p= i' da)'e(x x') P„(x)j„(—x')7oklA„(x')

~

do)'d4i" (P(x')E„(x'—x)x—x")P(x"))i, (1.58)
2kc' 2k~

j.
iiA„(x) =— des'D(x —x'j)„(x'),

gJ

E„(x' x,x x")= E„"&(x' —x,x —x")+E &'&(x' ——x x——x").

E„'(P, )=,(~(g) P ()S(g+ )+S (g) P()fl(g+ ) 8() P() ( )),

(1.59)

(1.60)

(1.61)
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and
8 1

E:."'($,V) = V—.t'&(5) nn. (D(n)5"'(~)+D"'(~)5(n))V. —— bV.(L&($)5"'(5)+D"'($)~(k))V.&(n)V. (1 62)
2K Bg)t, 2«BQ

An equivalent form can be given in terms of the functions

5~(x) =8(x)a-5&'&(x),
2

Thus,

and

Z

Dg(x) = D(x)&—D&'&(x).
2

1
&."&(E,n) =M.(5 ($)V.Si(n)D ((+~) 5 (—k)V-5 (~)D-(5+-n))V.,

(1.63)

(1.64)

1 8 1
SC„&»(P,&)= —V„S(g) &,~„(D,(&)5,(&)—D (&)5 (&))V,

2K Bg)&, z
1 8 1—$ ~„(D ($)5 ($)—D ($)5 ($))V„&&(»)V„. (1.65)
2«8$&,

The first term of (1.58) is the current induced by the electromagnetic field that accompanies a given current dis-
tribution, as discussed in II. It is the second part of (1.58), expressing the additional effects involved when the
current is associated with the matter held, rather than an external system, that merits our attention.

In order to evaluate K„(x'—x,x—x"), we shall substitute Fourier integral representations for the various func-
tions involved, (II (A.10), (A.31)),

1 p 1
8(x) = ~' (dk)e"*(ivk «)—

(2&r) 4 ~ k2+ «i

1
5"'(x)= i~(dk)e'*(iVk «)b(k—2+«')

(2&r)'~

1 p 1
~ (dk)e"*—,

(2x)4~ k'

1
D&'&(x) = (dk)e'~*6(k'), (1.66)

in which the principal part of 1/(k'+«') and 1/k' is understood. We have employed the simplified notation ab to
denote a„i&„, the scalar product of two four-vectors. The functions (1.63) have the following Fourier integral
representations,

1 &. ( 1
5+(x) = ~ (dk)e"*(iVk «)

I

—&xif'&(k'+«') I,
$2+ K2

1 p (1
D~(x) =

I& (dk)e"*I —a&rib(k') I.
(2x)4J &. k~ )

These expressions cag be written more compactly by observing that

1 (I.im = I.
'~+o $W&e '-+&& &.P+e' P+e' j

1
=P w~ib(g), -

(1.67)

(1.68)
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whence,
1 1

5~(x) = ~ (dk) e'"*(iyk —«)
(2)r)'~ k'+ «'Wi 2

1 p 1
Dg(x) = (dk) e""*

(2)r)p~ k'Vie
(1.69)

in which the limit ~+0 is understood.
The form obtained for K„"' from (1.61), is

K„"'(x' —x,x—x")= (dk) (dk )(1dk )«e {~+22') (s'—x)ei(2+2") (x—x")
(2x)"~

b(k~2+«2) b(k~~2+«2) b(k2)
Xy„(2yk' «)y„—(iyk" «)y,— + +

(k«2+ «2) k2 (k12+ «2) k2 (k 2+ «2) (k«2+ «2)

It is convenient to replace k„' and k„"by

P' =k.+ko' P" =ko+ko"

(1.70)

(1.71)

which enter directly in the coordinate dependence of the Fourier integral. Since K„~ '(x' —x,x—x") is to be multi-

plied by )P(x'), )P(x") and integrated with respect to x' and x", only such values of P„' and P„"occur for which

As a result of this transformation,
p 2+«2 p 2+«2 —0 (1.72)

1
"(dk)(dP')(dP")'""" *"'""'-"'.( (p' —k) —) .( (p"—k) —) .

(22r) "~
b(k' —2kp') b(k' —2kp") b(k')

X —+ +
(2kP' —2kP") (2kP') (2kP"—2kP') (2kP") (2kP') (2kp")

The last factor in (1.73) can be simplified by writing it as

1 1 1
(b(k' —2k p') —b(k') )— (b(k' —2kp") —b(k') )

2k(p' —p") 2kp' 2kp"

and observing that
pl

(b(k' —2kP) —b(k')) = —
~

dub'(k' 2kPu), —
2kp 0

whence (1.74) becomes

dumb'(k- "—2k p'u) —b'(k-' —2kp"u) j.
2k(p' —p")~ p

'I'his, in turn, can be represented more compactly as

1 ~1
— '

dv udub" (k' —k(p'+ p"+ (p' —p")v)u).
~0

Therefore,
«) pl

K,"'(x' *,* x")= —dv —udu -(dk)(dp')(dp")e'"'~" *)e'&"&' "'&

2(22r)" ~ —2 + o

(1.73)

(1.74)

(1.75)

(1.76)

(1.77)

XV (2V(P' k) «)Vo(2V(P" k)—«)—V.b"(k' k(P—'+P—"+(P'—P"—)v)u). (1.78)

If the expression (1.64) is employed for K„"', the bracketed factors in (1.70) and (1.73) are replaced by

1 1 1 1 1 1 1 1
—Im- =—Im

k"+« ie k"'+«'—22 k' io p—r k' —2kP' ip k'——2kP"——ip k' ip— (1.79)
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However,

1 1 1 1 1 t' 1 1

2kp' ~ km —2kp" i—& k' i—e 2k(p' p"—) 2kp' I«k' 2—kp' ie—k ie)

1 1
(1.so)

2kp" Ek' 2—kp" i—e k' —ie)

and, on extracting the imaginary part divided by 7r, we again encounter (1.74).
The second part of IC„, (1.62), can also be readily expressed in Fourier integral form

(~((k p')'+—«')
K &'&(x'—x x—x")=

l
(dk)(dp')(dp")e* ""''*'e'""' *"' —P«' v.(&v(p' k) «—)v.!—

(2x)"~ 2K Bpg k'

b(k') i 1 5 (5((k—p")'+«') 6(k'-)+, l~.+~.—p." „~,('~(p"-k)- », ! +
(k—p') +2~«) 2«pp&, " ( k2 (k—p") 2+~«)

To evaluate the derivatives with respect to P«' and P«", we observe that

8
P. (iy(P —k)+.)('p(P —k) —.)f((P—k)'+")=O,

8

where f(x) is b(x) or 1/x. On differentiating and multiplying to the left by i&(p —k) —«, we obtain

8 f(k' 2kp)—
p«(iy(p k) —«)f(—(p k)'+—«') = (iy(p k) —«)imp—(iy(p k) «)— —

8 k' —2kp

Consequently,

(1.82)

(1.83)

8 t b((p —k)'+ «') b(k')
p« v.(iv(p k-) — «)v.!—— +

k' ( —k '+«')

in virtue of the delta-function property

p )
f 6'(k' 2kp) (bk—') )

y, (iy(p —k) «)imp—(iy(—p k) «)y. !— — (1.84)
k' (2kp)')

Furthermore,
5'(k' —2kp) 8(k')

k' (2kp)'

S(x)
o'(x) =—

8 (5(k' —2kp) b(k') )
! udub" (k' —2kpu),

8(2kp) & k' 2kp )

(1.85)

(1.86)

according to (1.75). Therefore, (1.81) becomes

~1
E„&»(x' x,x x")= —— ' ud—u (dk) (dp') (dp")e'&'*'—*&e'&"~*-*")

(2«)""

1
X b"(k' 2kp'u)~, (iy—(p' k) «)imp'(iy—(p' —k) «)y.y„——

2K
1

+y„~,(iy(p' k) «)iy—p"(i—y(p" k) «)&„—b"(k—' 2kp"u) —. (1.87)
2K

The transformation

k.+(p'+ p"+(p' p"))—
2

now brings the delta-function of (1.78) into the form

b"(k'+X'u'),

(1.88)

(1.89)
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in virtue of the relations

(p' p-")'
X'=«»] 1+ (1—s') ~,

E. 4]P

I+I I+"=0, (p'+p")(p' p")-=0.
fP+P lt' &P P—)t'

2 j E 2

(1.90)

(1.91)

As a consequence of this transformation, the factor involving the Dirac matrices in (1.78) becomes

(. f, P+P P P —
l & (. („P+P P P—

p, ]»p( p' — u — u.
f
—.fp„]»p] p"— u — ue

)
—,)~„—~„k.

2 2 ) J ( 4 2 2
(1.92)

In writing this result we have exploited the symmetry of the delta-function (1.89), in connection with the k in-
tegration, and discarded terms linear in kz, while replacing krak, by 48&,k'. The following property of the Dirac
matrices has also been used,

&&'O'Y& = 2'Yv (1.93)

The factor (1.92) can be further simplified by omitting the terms linear in v, which will vanish on integration, and
rearranging the remaining terms to obtain

( 1—v»

4«»y„(1 u —,'u') ——y„k'—+2«(u u')e—„,(P,
' P."—)+2(P' P")—'y„~ 1 u+— u'

~

4.

+»(1—u'")(P' —P")((~»P'+ «)
—(»~p"+«)) —2(1—u) (»P'+«)I «(I+u)~.+»P" +» (P'+P") I

2

1—I
(6 P'+ )v—.(»vp"+ )+I «(1+uh.+»P'+» (P'+P") l(»vp"+ ) (1 94)

2 )

Now, a right-hand factor imp"+ « is equivalent to pz(B/—Bxz")+«operating on E„(x' x,x x"),w—hich —annihilates
lk(x") on integration by parts. Similarly, a left-hand factor»pp'+ «annihilates f(x'). As a consequence of the Dirac
equation, therefore,

K "(x'—x,x—x")= dv udu (dk)(dp')(dp")e'»" &*' *&e'~"&* —*"&b"(k'+—g»)u»
(2»r)"~ g ~0

X 2«y„(1 u ,'u—') —'y-k'+—«-(u u')o„„(—p„' p„")+—(p' p")»7„—
~

1—u+ u»
~

. (1.95))
Transformations analogous to (1.88) can be introduced in the two terms of (1.87), namely k„~k„+p„'u, and

k„—+k„+p„"u. Both delta functions then become b"(k'+«'u'), while the factors involving the Dirac matrices
simplify according to

1 1-r, (»y(P k) «)6—P(A—(P k) )~—«,~ —2"(1 —u ', u')—+-',—k'-—(2«'(1 —u+-', u')+-', k') —(iyP+«), (1.96)
2K K

where p is p' or p" for the two terms of (1.87). In consequence of the Dirac equation, therefore,

2

judu ' (dk)(dp')(dp")e'~'&" *'e&"&~*"&b"(k'+-«'u')

X L2«'y„(1—u —-'u') —-'y k'] (1.97)

E„&'&(x' —x,x—x")= ——
(2m)" & e

To combine E„&"and E„&'&, it is suf6cient to perform an integration by parts with respect to s for the Grst two
terms of (1.95), as indicated by

r' pl
deb" (k'+)Pu') =2b"(k'+ «'u, ') —

i
dm —b"(k'+X'u').

—1 Bv
(1.98)
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The integrated terms precisely cancel E„&2). If the v differentiation is explicitly performed for the second term of
(1.95), the k integral thus encountered is

' (dk) k2b"'(k'+X' u'-') =—
I (dk) k —b" ( k2+ l) 2u2)

"bk,

Hence,

2—)f(dk) b"(k +2K'u'-) (1.99)

~„(2,"—2;,x—~")= I d2) ' udu ~' (dk)(dp')(dp")e' ')&*' *'e'—&"~* )-(p' —p") y2„~ 1—u+ u'
(

B
+x(u u')—r„p(p„' p„"—) 2K'—y„(1-u —,'u—')2—) b—"(k'+ X'u2) (1..100)

BS

The integration with respect to k may now be e6ected. According to the integral representation,

1
b (k2+ l) 2u2) —

I
d22)e iw (2 w t .u ~)

2~~ „
we have

1 t f

(dk) b"(k'+X 2)u= —— 22)2dwe'"'""'") (dk) e'"'""2J„

(1.101)

'N

g
2tU)l tl

(1.102)

However, it should be noticed that we are then required to evaluate integrals with respect to w of the form

~1
u"+'du il (dk)b"(k'+X'u') =—' u" 'du (1.103)

in which I may be 0, 1 or 2. For m=0, the integral is logarithmically divergent.
In order to ascertain the significance of this divergence, we shall interchange the operations used in obtaining

(1.103), thus producing a more easily interpreted divergent k integral. For n= 0, (1.103) reads

1
I

(' 8 1
'

(dk) du—'b( 'k+X' u)=—~~(dk)[b'(k2+X2) —b'(k')].
2)P~ ~ Be 2y2 J

(1.104)

One may express this invariant integral, in three-dimensional notation, as

1 ~ 1 B 1
(dk)dko ——[b(ko' —k') —b(ko' —k' —&')]=—

i (dk)dko —[b(ko' —k') —b(ko' —k' —X')j, (1.105)
2X'~ 2ko Bko 4X'~ &o'

in which the delta-functions describe the energy-momentum relations of a light quantum, and of a particle with
mass Q/c. On performing the ko integration, (1.105) becomes

1 r 1 1 2r r'" l'1 1
(dk) — =— dk +1,

4X2" ~k~2 (k'+X')& V " &k (k'+X')t)
(1.106)

in which form it is evident that the divergence is associated with zero frequency light quanta —an "infra-red
catastrophe. "As we shall later demonstrate, this divergence is entirely spurious, and is removed on properly in-

cluding the effects of bj„o)(x), the 6rst-order correction to the current operator. The divergent integral (1.106) can
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be expressed in terms of an invariant minimum light quantum wave number, k;„,as

+1 l.
2k; ) (1.10i)

With the k and zz integrations thus performed, E„(x' x,x—x")—becomes

K„(x'—x,x—x")= dv (dp')(dp") exp z (x' —x") exp z(P"—P')
~

x-
(2zr) "& 2 2 )

-(P' f") -I+"~
I log +I+z»gl 1+

2 E 2k; ( 4»z j j 4gz

1
+ ~"(P'—f") ——,(1 10g)

2a 1+((P' —P")z/4izz) (1—v')

in which we have evaluated the third term of (1.100) by writing

1 ((P' —P")'/4") (1—v')—1——
1+((O'—P")'/«')(1 —v') I+((O' —P")'/4~')(1 —v')

(1.109)

and performing the v differentiation for the term obtained from the first part of (1.109), while reversing the in-

tegration by parts for the term produced by the second part of (1.109). It will now be observed that the integrand
of (1.108) involves only pi' —pi". It is then useful to introduce the new variables

Px +P)I
P),= ) PX PX PX p

2
(1.110)

since the F integration can be immediately performed, yielding 6(x' —x"). In this way, we obtain

E„(x' x,x x")= —y„iz(x—' x—"—
) ' log— —(Fo(x—x')+F, (x—x'))

Sx' 2k;„

where

+-,'Fp(x x')+F, (x —x')+-', G(x —x') +—b(—x' —x")a„„—Fo(x—x'), (1.111)
Sx' BXp

(i 1 z px

F (x) = dvv'" (dP)
(2zr)4J 1+(p'-/4k')(1 —v')

v2n ( 2
=16Kz

~
dv 6( x [

(1—v')' E(1—v')& 2
(1.112)

Finally, then,

1
t log(1+ (P'/«')(1 —v'))

G(x) = dv(1+v')
~

(dP)c"*
J, (2x)44 1+(pz/4. z)(1—r')

1+v' z'Ndzz 1 ( 2 ) (—&i, ' I-&I *
i

1 v~, 1z—zzz zzz &—(1—v')lzz j E (1—v')& ) (1.113)

ZC N K 1
dhd'dzd" (f(x')E„(x' x,x x")P(x"—)) i —log ————'1 LFp(x —x')+ Fi(x—x')]j„(x')d(a'

2k~ 4x 2k;„~'

CL I cx 8
+—— ' (', F( zxx') +-Fi(x —x') +-', G(x —x') jj„(x')des'+ —c—

~
Fo(x x') zzz„,(x')d~', (1.11—4)

4r x2 2X' 8Ãrz
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in which

m„.(x)=—(g (x)a„g(x))&

2K

o Lf(x)~u.4 (x) 0'(—x)~».4'(x)].
2K

Expressed in the same notation, the 6rst term of (1.58) is (see II (2.44)),

0, 1 f~

dh&'o(x —x') Lj„(x),j„(x')]oh',(x') = ——— ') LF&(x—x') —~oFo(x—x')]j„(x')do&',
2hc 4X K'-

(1.115)

(1.116)

from which we have omitted the charge renormaliza-
tion term, with the understanding that the value of e

is to be correspondingly altered. A rederivation of thrs

result, employing methods akin to those presented in

this paper, is given in the Appendix. Evidently the
new contributions to the one particle current operator,
as given in (1.114), are of the same general nature as
the previously considered effect, (1.116), with the ex-

ception of the last term in (1.114). This is an addition

to the current vector of the form

of m„„over the vicinity of that point. If all quantities
are slowly varying, relative to h/mc and &&&/mco as units
of length and time, an expansion in ascending powers
of ' can be constructed, as in II (2.47). For this pur-
pose, it is sufhcient to expand the denominator in the
first form of (1.112), thus obtaining

F„(x)= 6(x)
2n+1

c(c&/c&x).bm„, (x), (1.117) + '5(x)+ . (1.120)
(2n+1)(2n+3) 2&r'where

fO Hence,
m( )x= a/2&r~ Fo(x—x') m„„(x')do&'. (1.118) tl' j.

bm„.(x) = m„„(x—)+ m„„(x)+.. .
,

2~ 6K'

and, under conditions that permit the neglect of all
but the first term in this series, an electron will act
as though it possessed an additional spin magnetic
moment'

by= (a/2&r)»o. (1.122)

A current vector of this type can be interpreted as a
dipole current, derived from an antisymmetrical dipole
tensor bns„„which combines electric and magnetic di-

pole moment densities. The tensor m„„ is that char-

acteristic of the Dirac theory, in which intrinsic dipole
moments are related to the antisymmetrical spin tensor

0„„the factor of proportionality being

»o = e/2x = e&r&/2mc, (1.119)

the Iiohr magneton. According to (1.118), the correc-

tion to the dipole tensor at a point involves an average

The comparison of this prediction with experiment will
be discussed in the sequel to this paper.

The final result for the second-order correction to
the one particle current operator is

CX K 1
(hj &"(x)) o———log — ' "[Fo(x x')+F&(x x—')]7„(x')do&'—

4m 2k ;

+—— I' [aFo(x x)+oFo(x x')—+oCi(x x')]—j„(x')des'+c——i&m„„(x). (1.123)
4 K2 BXs

Under conditions of slow variation ((1/x') j„,m„.«j„,m„„), this reduces to

17&t 1 c&

(8$„'&(x))& o———
I log +—

(
— 'g„(x)+—c m„„(x),

3m ( 2k; 40) K' 2x Bx„
(1.124)

in virtue of (1.120), and the analogous expansion of

G(x),
1

G(x) = — 'b(x)+ . . (1.125)
SK'

It will be noted that the total charge computed from

(bj„&o&(x))Lo is zero, in agreement with evident charge

conservation requirements, and the forrnal property
that the operator of total charge commutes with all

'This result was announced at the January, 1948 meeting of
the American Physical Society. The formula is misprinted in a
published note, J. Schwinger, Phys. Rev. 73, 416 (1948).The mis-
print has unfortunately been copied by L. Rosenfeld in his book,
NNcfeer Forces (Interscience Publishers, Inc. , New York, 1949),
p. 438.
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one-particle operators. The apparent contradiction be-
tween these statements and the existence of the charge
renormalization term is discussed in the Appendix,
where it is shown that a compensating charge is created
at in6nity.

Our result, (1.123), is marred only by the appearance
of the logarithmic divergence associated with zero
frequency quanta. It should be remarked, however,
that (hj„&"(x)) f, Q is not a complete description of the
radiative corrections under discussion. In order to
measure the correction to the current, it is necessary
to impose an external 6eld. This will induce the emis-
sion of quanta, as described by bj„&"(x), among the
eGects of which is a compensating low frequency di-
vergence. It wiH be apparent that, as a consequence of
the "infra-red catastrophe, " the second-order correc-
tions to particle electromagnetic properties cannot be

completely stated without regard for the manner of
exhibiting them by an external 6eld. %e therefore turn
to a discussion of the behavior of a single particle in
an external field, as modified by the vacuum Auctua-
tions of the electromagnetic field.

2. RADIATIVE CORRECTIONS TO
ELECTRON SCATTERING

%'e shall now be concerned with the interaction of
three systems —the matter held, the electromagnetic
6eld, and a given current distribution. The latter may
be associated with a nucleus or a macroscopic apparatus,
two situations in which the reaction on the current dis-
tribution may have a negligible effect. A description of
this state of affairs, in the interaction representation,
is given by

b%'[o] 1
inc = --(j„(x)+J„(x))A„(x)~[ ],

ba (x) c

BA„(x') 1 p
D(*' *)(j.(*-)+J.(*))do. +[a]=o

BXbs C rr

(2.1a)

(2.1b)

where j„(x)and J„(x)are the current vectors associated with the matter Geld and the external system, respectively
Both current distributions are coupled to the electromagnetic Geld, as characterized by A„(x). An equally valid
way of stating matters is in terms of an external electromagnetic 6eld acting on the matter 6eld current
distribution:

where

b%'[o] 1
ihc = —-j„(x)(A„(x)+A &'(x)) 4'[o],

bo(x) c

-BA„(x') 1 t

D(x' x)j„(x)da„@-[o]=0,Bx„c4~

(2.2a)

(2.2b)

1
'A„&'& (x)= —-J„(x),

C

cjA„&'(x)
=0. (2 3)

The equivalence of the two descriptions is estabhshed by showing that (2.2) is obtained from (2.1) by a canonical
transformation, namely,

with J[a] determined by

e[o]-+e '~~'j@[a]-, (2.4)

bJ[o]
hc

ho (x)

The functional J[o] is exphcitly exhibited as

1
= —-J„(x)A„(x). (2 5)

1
J [o ]= —— J„(x')A„(x')du)',

hc'"
(2.6)

in which the choice of lower limit corresponds to selecting the retarded potentials for the electromagnetic Geld
generated by the given current distribution. The equation of motion satis6ed by the new state vector is

N [o]
~kc +i7ice'~'&

bo (x)

ge-sJ to]

%[a]= —-(j„(x)+J„(x))e' &'~A„(x)e-' ~' @[a].
ho(x) c

(2.7)
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Now
e'J'&A„(x)e '~&'=A„(x)+i[J[o],A„(x)]—-', [J[o],[J[ ],A„(x)]]+

=A„(x)——
II D(x—x')J„(x')dko'

c~

=A„(x)+A„&'&(x), (2.8)

in which the series ends after two terms since the components of J„(x) are mutually commutative, in view of the
prescribed nature of this current distribution. It is easily seen that

obeys (2.3). Indeed,

p0'

A„& &(*)=——
II D(x—x')J„(x')d '

c~ „
1 8 p'BD(x —x')

'A &'&(x) =-—
I J (x')do&'

coax„~ „Bx„'
1

& BD(x—x')
= ——,I do„' J„(x')

(2 9)

and

Furthermore,

1
= --J„(x),

C

bJ[ ] ice- bJ[o]-
=&&&c +—J[o], +.

bo (x) bo(x) 2 bo (x)

gg
—iJ taj

~v-'J ~.j

1 1
= ——J„(x)A„(x)——J„(x)A„'&(x),

c 2c

BA &'&(x) 1 ' 8
(D(x—x')J„(*'))8x„c~ Bx„'

(2.10)

(2.11)

(2.12)

and the transformed equation of motion therefore reads

b@[o] 1 1
ice = ——j„(x)(A„(x)+A„&'&(x))——J„(x)A ~'&(x) +[a]

bo(x) c 2c
(2.13)

which is equivalent to (2.2a), since the term —(1/2e) J„(x)A„"(x),describing the self-action of the given current
distribution, has no dynamical consequences and can be omitted.

In a similar way, the supplementary condition (2.1b) is transformed into

BA„(x') 1 t
e' '& e '~&' ——

II D(x' x)(j„(x)+J„(x))do„—&lr[o]=0, (2.14)
Bxp C a

wherein

However,

8.1„(x.')
~i J [o.j ~

—&J Iaj

Oxp

BA„(x') BA„(x') BA„(x') 1 ' BD(x' x")—
+i J[o.], = ———

I
J„(x")d(v". (2.15)

J„(x")do&"=
I

~ (D(x' x")—J„(x"))d—"=
o&II D(x' x)J—„(x)do—

C oo 8X~ c~ Bx„"
(2.16)

which veri6es (2.2b).
One can bring (2.2) into a form which enables the results of the previous section to be utilized. The mass re-

normalization transformation
[bWo]

0'[o]—+W[o]@[a], ihe
bo (x)

C b( &)»x[W],o, (2.17)
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replaces (2.2a) with

where (see (1.3))

N'[&r]
&he =[X(x)+K"(x)]4'[&r],

f&o (x)

X(x) =K(x)-3C&,o(x),|
BC& &(x}=--j„(x)A„&&(x),

(2.18)

(2.19)

(2.20)

and the Dirac equation for p(x) now involves the experimental mass. The further transformation

where
4 [~]=U[~]4 [~],

. ~U[-]
ik&: =x(x)U[0], U[—~]=1,

b&r('x)

(2.21)

(2.22)

is the analog of (1.8), save that 4[&r] varies in the presence of an external field,

54 [&r]
inc = U '[0]K&'&(x)U[0]4 [0]

l&&r(x)

1.= —-j„(x)A„&'&(x)4[0], (2.23)

in response to the coupling with the current operator j„(x).The latter contains the modifications produced by the
vacuum electromagnetic field. The supplementary condition (2.2b) appears as

BA„(x') 1 &-

U '[0] U[&r] ~ D(x' —x)j„(x)d&r„4[0]=0,
Bxp o

(2.24)

in consequence of these transformations. However,

BA„(x') BA„(x') &. l& ( BA„(x')
U-&[~]

"
U[~]-

" = d~"
~

U-&[~"] "
U[~"]

~

Bxp, Bx„' & b&r" (x") &&. ax„' )

dM" U '[0"],A, (x") j,(x")U[a"]= did'l (D—(x' —x")j,(x"))
jsc2~ „ Bxp, c~ Bx„"

1
D(x' x) j„(x)d&r—„, (2.25)

so that the supplementary condition associated with (2.23) is simply

BA„(x')
4 [0]=0.

l9x
(2.26)

As the first application of (2.23), we shall consider
the scattering of an electron produced by its interaction
with an external field, in which the latter is regarded
as a small perturbation. 4 %e shall restrict the external
potential to be that of a time independent 6eld, which

where

4 [o]=R[a]4», (2.27)

will eventually be specialized to the Coulomb field of a
stationary nucleus.

A solution of (2.23) can be constructed in the form

'Radiative corrections to scattering have been discussed by
many authors. That a 6nite correction is obtained after a re-
normalization of charge and mass was independently observed
by Z. Koba and S. Tomonaga, Prog. Theor. Phys. 3, 290 (1948);
H. %.Lewis, Phys. Rev. 73, 173 (1948); and J. Schwinger, Phys.
Rev. 73, 416 |,"1948).See also R. P. Feyg, man, Phys. Rev. 74, 1430
(1948),

&&R[o]
~bc =H(x)R[&r],

bo (x)

R[0]—+1, &r~—~ .

(2.28)

(2.29)
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The state vector Cq characterizes the initial state of the system, composed of one electron with definite energy
and momentum, and no light quanta. The total probability, per unit time, that a scattering process occurs, can
be obtained by evaluating the time rate of decrease of the probability that the system remain in the initial state,

w= —
cJ"dv 1(C'~rC'[v])

I

'= —c ~ dv 1(C'~ R[v]C'~) I'.
b(r(x) ~ h(r(x)

(2.30)

The integration is extended over the surface t= const. , with dv the three-dimensional volume element. Now

ggc
I (C )R[~]Cg) I'= (C „R-'[o]Cg)(C )H(x)R[(r]C g)

—(C gR[o]C g)(C gR-'[o]H(x)C g).
bv (x)

In view of the treatment of H(x) as a small perturbation, it is sufficient to write

(2.31)

z ~a

R[v]= 1——
~

H(x') ko', R-'[o]= 1+—
I H(x')d(u'.

bc~ hc
(2.32)

It will also be useful to introduce

H'(x) =H(x) —(C g,H(x) C g), (2.33)

which possesses a vanishing diagonal matrix element for the initial state, and obtain

R[crj=exp ——]' (1IH(x')I1)des'
I

1——
~

H'(x')c4' I.
kc~ „ bc~ )

(2.34)

The phase factor evidently has no effect in (2.31), and can be omitted. The latter is also unaffected if H(x) is
replaced by H'(x). Hence to the accuracy of ffrst-order perturbation theory, we have

and

I
(C'~,R[o]C'~) I'=

I
1 H'(x)

~

H'(x')Cka'+ H'(x')dec'H'(x) 1

w= —dvdv'I 1 H'(x) i H'(x')dxo'+ H'(x')dxo'H'(x) 1 I.

(2.35)

(2.36)

%e may now remark that a diagonal matrix element for a state of dehnite energy must be invariant with re-
spect to time displacements, whence

and

H'(x')dx, 'H'(x) 1 I=, i dvdv'I 1 H'(x) i H'(x')dx, ' 1 I,

w= —dvdv'I 1 H'(x) H'(x')dxo' 1 I.

(2.37)

(2.38)

This result is perfectly equivalent to the more conventional perturbation formula in which the rate of transition
from the initial state is expressed as a sum of transition rates to all possible anal states of equal energy. The energy
conservation law is here expressed by the time integration, and the summation over all states other than the
original is provided for by the removal from H(x) of the diagonal matrix element. Our basic formula for calculating
the transition rate for scattering of a particle by a time independent potential is thus

w=
i dvdv'A„&'(r)A, '&(r')I 1 j„(x) i

j„(x')dxo' 1 I. (2.39)

We have not indicated that the diagonal matrix element is to be subtracted from j„(x), since it is sufficient to re-
move, in the 6nal result, those transitions in which no change of state occurs.

%e have shown in the first section that, to the second order in e,

j„(x)=j„(x)+bj„o~(x)+8j„~'&(x), (2.40)
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i
bj„&"(x)= ,

«(x—x')[j„(x),j,(x')]&A, (x')doo'
2k@'~

ie' r"
[k(x)vP(x —*')v.4 (x')+4 (x')v.~(x' —x)VA (x)jiA.(x')d~', (2.41)

Here

(b."'(*)).='
J LV( ')I'.(*—*')0( ')jd ' (2.42)

CX K A 1 A 1
I'„(x)=7„log — '(Fo(x)+Fi(x))+—y„— '(pFo(x)+'oFo(x)+-', G(x))—i—o„,— Fo(x). (2.43)

4r 2k; K' 4m 4n- K BX„

It is only the indicated portion of bj„"'(x),referring to one particle and no light quanta, that need be retained to
compute the second-order correction to the scattering cross section for an external field, since only this part of
bj„&'&(x) is coherent with j„(x).

The total rate of transition from the initial state can now be written as

~=0+~&, (2.44)

wo ——
~

d&&do'A„&'i(r)A, &'(r')~ 1 (j„(x)+(bj„&'&(x))i,o) ~ (j (x)+(bj„"&(x'))i,o)&ixo 1 (2.45)

describes the rate of radiationless scattering, while

~ do&is'A &'&(r)A„&'&(r')I 1 bj &'&(x) bj.&'&(x')dxo' 1
1

& (
&&&'c'&

(2.46)

accounts for scattering that is accompanied by single quantum emission.
To indicate the manner in which the perturbation formulas are to be used, we consider the evaluation of

This can be written as

t (1
~ j„(x)j„(x')

~
1)dxo'.

—e'c'Jt (1~i/(x)yolP(x)l&t(x')y, lP(x')
~

1)dxo',

(2.4'/)

(2.48)

in which it is understood that one omits the processes in which g(x)II (x), or g(x')f(x') induces no change in state.
Now f(x') can either annul the original electron, in which case If (x')g(x') causes an electron transition to some
final state, or P(x') generates a positron, in which event rP(x')P(x') induces the creation of a pair. However, the latter
process is incompatible with the energy conservation that is enforced by the time integration, and can therefore
be omitted. Hence, it only occurs that f(x') annihilates the original electron, whence f(x')I i is a multiple of the
vacuum state vector. The same comment applies to ft(x)C i= pe(x)C i. Therefore, only the vacuum expectation
value of the operator P(x)P(x ) is required in (2.48). Furthermore, since only one state of the matter 6eld is ini-
tially excited, as described by the wave function ue'&, we arrive at the result

00 8C
(1Ijo(x)j (*')11)dxo'= "(dq)b(qo —Po)b(q'+&&')uv, (iraq

—~)v.«"o o& &" ', (2 49)
(2 )'"

on employing the relation

1
Q (xgp(x'))o —— iS p&+&(x—x') = —— t (dq)b(q'+&&')(iraq —«) pe'«

(2&r)oooo) o

Before further simplifying this expression, we shall consider the analogous evaluations of

Jt (I
1 j.(x)(bj'"(x'))i, oI 1)dxo'

(2.50)

(2.51a)
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)f (Il (&j,"&(x))&,oj.(x')
I
1)dxo' (2.51b)

which describe the radiationless corrections to the scattering process. Now (2.51a) can be written

—e'c' f dxp') des"(1}&P(x)y„&P(x)&P(x")I'„(x' x")—P&(x)}1), (2.52)

which, according to the arguments presented in connection with (2.47), becomes

—e'c' dx, ' d&e"uy„Q (x)&P(x"))01'„(x' x")u—e'"'*" '
g2g2

dxo
~

fd&e'
}
f (dq) 5(q'+ «')uy„(iraq «)—I'„(x'—x")ue "& && &'" &. (2.53)

(2x)'~ ~ ~.o)o

On introducing the Fourier transform of I'„(x):

I'.(P—
q) = l e '&" '&'I'„(x)d&e,

we obtain

(2.54)

p00 2C2

(11 .(*)(& ."'( ')), 11)d .'=, "(d )~( o
—Po)~( "+') .( —)I'.(p —) '"-""-'. (2.55)

(2x)'~

The result of combining (2.49) and (2.55) with the analogous evaluation of (2.51b) is expressed by

1
u&0= — —

' dqo(dq)f'&(q&& p&&)&&—(q'+«')
~

e ' «"4'(r)d. &&
e'&' ~' "A„'"(r')d&&

(2m.)' It'c~

Xu(&„+I'„(q—p)) (iraq
—«) (q„+ I'„(p—q))u. (2.56)

On performing the integration with respect to qo and
} q ~, we obtain u&0 in the form of an integral extended over s,ll

directions of the vector q, other than the incident direction:

uo ————'

dQ}1&~
~

e " s&'A„&'&(r)d&&~ e'&r &""A,&'&(r')d&&'u(y„+I'„(q —p))(iraq —«)(y„+I'„(p—q))u. (2.57)
Sm A' t,""

This must be interpreted as the rate of transition from the initial state, expressed as the probability per unit time
for a deQection into an arbitrary element of solid angle. A further simplification can be introduced by averaging
(2.57) with respect to the two spin states in which the incident electron may occur. For this purpose, we require
the average of u Np for the two polarization states associated with a given energy and momentum. It can be in-
ferred from the anticommutator

}&p.(x),&pp(x') I =-S.p(x —x') =— 1 f (dp)~(p'+«)e(p)(imp «)-pe*"'—
(2&r)'~

(2.58)

which exhibits, with equal weight, the contributions of all states of a particle, that

(u.up) =A (imp «).p,
— (2.59)

for a state with wave number four-vector p„. The constant A is conveniently evaluated for our purpose in terms of
the expectation value of the particle Aux vector in the initial state,

S""'= (1}ic(&P(x)~(x)) & } 1)

Thus,

=2CS+Q.

S&'"'&=icyp u u~cATry(imp —«)

= —4cAp,

(2.60)

(2.61)
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i

S&&nc&
I

(u u&&) = ———
'

(imp —«).&&

4c
i pi

This leads to the following expression for the total rate of transition from the initial state,

(2.62)

e"& &" d&& ,'Tr[(i—&p «)(&—+I' (q p—))(iraq K—)(p,+r, (p q—))j,
8&r' k2c' ~ " 4«

(2.63)

in which we have also specialized to the Coulomb potential of a stationary nucleus. %'e may now infer that the
differential cross section for radiationless scattering through the angle 6 into a unit solid angle is

d&ro(6) Z&«

4Tr[(iv p «) h' +—r4(q p)) (iv—q «) (74+—r4(p q))].— (2.64)
dQ (p—q)'

The I'ourier transform of I'4 is conveniently written in the form

where

Here

A z

I'4(p —q) = —~4 4X'A(X)+-y (p —q)Fp(&&)
4n

A (),) = log (Fo(X)+F&(X))+-,(F,(X)+3F,(X)+G(X)).
2&min

II —
ql lli . &

sin —
)

(2.65)

(2.66)

(2.67)

dv

& 0 1+X'(I—&&')

log((1+ &&')'*+X)

(1+V):l&
(2.68a)

t 8 dV
It

1 1

~
&&

1+X'(I —&&') 4 X'j X'

&&4d&& ( 1 ) 1
F,(l)= I =i 1,'iF, (I)—.

& 0 1+X'(1—&&') ( X') 3V

(2.68h)

(2.68c)

2o. p 20;
—,'T [('pP —)(y,+r, (q—P))('pq —)(y,+r, (p—q))j=2(p, -"—O&')i 1——X'A(l&)

i
——O&'Fo(X), (2.69)

whence
d&ra(8) ( Z&&& 0'& ( &l&) 2&«a

— csc'—
i i

1—P' sin' —
i

1——X'A(X) —— X'Fo(X)
~ 2lplP 2) &r &r p

' —«O&2

in which P=
i p i/po is the speed of the particle relative to c.

To evaluate the rate at which transitions occur accompanied by radiation, we consider

i
1 bj &'&(x)

)
bj„&'&(x')dxp' 1

i
=—)I da)"d&d"'i 1 g(x)yQ(x x")y«&p(x")+&p(x"—)y«S(x" x)y„&p(x))&—

(2.70)

The more complicated transform, G(X) is not required in the following development. The trace of the Dirac mat-
rices contained in (2.64) is easily computed:

dxo'[&P(x')yP(x' x"')yg(x"')+&P(x"—')y.S(x'"—x')y,&P(x') j&A«(x")A.(x'") 1 i. (2.71)

Since the state vector 4& is characterized by an absence of quanta, only the following vacuum expectation value is
required for the electromagnetic field,

Ac
(A«(x")A, (x"'))0=i&&tcb«,D&+&(x"—x'")=

b&& It (dk)b(k')e'«&"' *'"&.

(2%') I& ka &&&

(2.72)
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The matter field operators are treated as before, with the result

( t" ) e' kc ~00

I
1 Sj "'(x) Sj "'(x')dxo' 1 1=— (dq)b(q'+s')(dk)8(k') dxo'e'&z z-~&&*'

k' (2zr)'~ g, .kz)o

Xzz(yrS(q+k)y&+yzS(p k)y—„)(zyq ~)(—y,S(p k)y—&+y&S(q+k)y„)N (.2.73)
Here

iy(q+k)
S(q+k)=

J
e "z"'&*8(x)km=

2qk

iy(p k) —a—
2 k

(2.74)

(2.75)

I ql
- zu

dQ(dk) 5(k') ,'Tr (iyp e)——
I pl -(p-q-1)'-I

s( inc)
I

~
Jgt) &0

( iy(q+k) « i—y(p k) «—) — ( zy(p k) a —iy—(q+k) K—
X I

'Y4 yz —yz y4 1(z'Yq K) I
'Y4 yz y&—y4 I (2 77)

2qk 2pk ) 0 2pk 2qk )
It may then be inferred that the di8erential cross section for radiative scattering through the angle 8, in which
the energy loss does not exceed AE, is

«~(~ ~g ~ "~o=& Iql z~
(dk)h(k') ,'Tr (iyp ~)——

dQ Ã ~ k0=0
I ul -(p—q —1)'-

are Fourier transforms of S(x). The integration with respect to xo imposes the energy conservation law

po= qo+ko, (2.76)

which is evidently that of a light quantum emission process. The integration with respect to qo and the magnitude
of q can now be performed, leaving one with an expression for m1 in the form of an integral extended over all
directions of the scattered electron, and all light quanta, as restricted by energy conservation. On averaging with
respect to the polarization of the incident electron, and specializing to the Coulomb field of a nucleus, one obtains

where

( (q Al 'Yk yk l ( (q gq yk yk
Xl y41

——I+y4 ~~+» y41(zyq —~)I y41 ——I+y& 4+y4 yy& I, (278)
Lqk pk) 2qk 2pk ) E kqk pkP 2qk 2pk )

E=AE/hc. (2.79)

dog(O, AE) ( Za iz)'( zip n
tao=ac ( p q )'

csc' —
l l

1—P' sin' —
I

— (dk)B(k') I
——I.

dQ &21yly 2J ( 2& 2zr "ko=o Epk qk)
(2.80)

Ke shall first consider the simple situation in which the emitted radiation exerts a negligible reaction on the
electron. That is to say, we shall treat the essentially elastic scattering of an electron, in which only a smaQ frac-
tion of the electron kinetic energy is radiated. Under these circumstances, which are expressed by 5E&&g =g—ygP,
(2.79) simpliies to

Now
(p q&' (p q)'—

+"I
E pk qk) (pk) (qk) ((pk) (qk) (pk)' (qk)'&

1 1 ( 1 1 ) 1 p' do

(Pk)(qk) (q—P)k ~pk q» 2"- (P+q P q&—
+ v lk

(2.81)

(2.82)

from which one deduces, on integration by parts, that

2 1

(pk)(qk) (pk)' (qk)' ~ z Bo (p+q p q)—
o lk

2 2

(2.83)
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h(k')(P ql l' ((p
~(dk)B(k')i ——

)
=x'

l dvi —v—
i

t (dk)
Epk qk) &, ( 2a Bvk" (p+q p —

q ~+ v/k
2 2

(2.84)

B(k') fP+q P q)—
I (dk) +

(p+q p —
q )'( 2 2 J~Bk~ (P+q P
')~

1 1 8
~' (dk) B(k')

"1+L(P—q)'/4"j(1 —v') " B4

The k integration in the latter equation can be written as

+(P+q P q& —'

+ vlk
(P+q P ql—

2 2

2)~(d—k) 5'(k') . (2.85)

However,

so that

t (dk) B t B lt'b(k')) ((dk)—2 t(dk)b'(k')= ll
—B(k')= ~l (dk)

~
~+ B(ko)

ko Bko ~ Bko( ko & " ko'
(2.86)

, f P q)' t' ((P q)'— 1 l.(dk)
(dk)B(k)] ——

(
=

l~ dv] —v—
)

~"
B(ko)

(Pk qk) J, L 2/P Bv) 1+[(P—q)'/4goj(1 —vo)

+(P+q P ql—
+—,(2.87)

v (k
(P+q P q i-

. (2 2 )
in which we have discarded terms that obviously vanish on integration over the domain 0(ko&E.

The erst bracketed integral in (2.87), when expressed in three-dimensional notation, becomes

t (dL)dkp t" dk,
B(k& k &) = 2or = 2or log

ko' ~ &min &o k; (2.88)

in which we have again introduced an invariant minimum light quantum wave number to characterize a loga-
rithmic divergence associated with the "infra-red catastrophe. "A similar expression of the second bracketed in-
tegral in (2.87) yields.

1

J"(dk) B(k'-E') ——
E (v+q I —a ypit ) + v~ I

2 )
1 po P +(1'—[(1—«)'/4j(1 —"))'

=2Ã 1—— log (2.89)
2 (u' —[(1—«)'/4j(1 —~))' P p

—(lr' —[(1—«)'/4](1 —v'))'-
Therefore,

(oa K

~l op=0
(dk) B(k') (P/Pk —q/qk)'

r
'

((n —«)' 1 E 1 1+P$
=4or ~l dv( —v—

~
log +1— log, (2.90)

Bv/ 1+[(p—«)o/4"j(1 —e) k;, 2Pg 1—P~
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where

%e may now employ the identity
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y
g=~ 1—sin' —(1—v')

~
.

2
(2.91)

1—1/2P$ log(1+P)/1 —P)) 1 log(1+ [(p—q)'/4a'j(1 —s'))

1+[(y—q) /4ao](1 —so) 2 1+[(p—q)'/4a'j(1 —so)

to cast (2.90) into the form

log(2pp/a) —1

1+[(y—q) /4~'j(1 —s')

1 PE— 1+Pl
log — — log

K 1 2 2
+——

po' 2Ph 1+Pl
(2.92)

where

pp q&' p' 8
t

E 2pp
(dk)b(k')( ———

I
=4pr —sin' —

~
log —log +1 ((Fp+Fg)+Fy+ ,'G+H, -

0 pk qkl x' 2 ( k;„
(2.93)

log
1& ~' r'ds 2

H=( 1+
2X') Ppo&p Pg 1+Pp

1+@'
log

2

1 P—1+P
log log

1 K21 2 2

2X' pp' P 1+P 1—P
(2.94)

The function IJ approaches a constant in the limit of small velocities,

1
P((1: H =—(log2 —1)——.

3 9
At high energies, H is approximated by

pp/~)&1: H = — f(P), —
02

with

(2.95)

(2.96)

1+$
log

2
f(~)= .

sing/2~ cosp/2 [ 1

This integral can be performed analytically for 6= m,

log
2

1+8 . (8—cos'(~/2))'
(2.97)

f(s.) =s'/12, (2.98)

but must be evaluated numerically for other angles. An approximation in excess, which has the correct asymptotic
form at small angles, is provided by

t' 2 1 1 —cos(8/2)
f(~)-I log + +1 .

I cos(6/2)(1+cos(6/2))'] 2(1—cos(8/2)) 2
(2.99)

This formula is reasonably accurate even for 6= s./2, where the value yielded by (2.99) exceeds by only 8.6 percent
the following result of a numerical calculation:

f(s./2) = 1.167. (2.100)

The total diGerential cross section for scattering through the angle 6, in which the energy loss does not exceed
DE, is

d~(a, bZ) dao(&) d~, (&,aE) t Zu
+ =

I
csc'—

( I
1—P' sin' —((1—B(t9,4E)),

dn dn dn &2~p~P
(2.101)

where b(8,6E) is the desired fractional decrease in the cross section produced by radiative effects. For essentially
elastic scattering, we obtain

po' & / E q 1 1 1 ~'/pp'
8(e,aE((W) = PP sin' —

~
log —1

~
(F'o+—Fi)+—Fo Fi+ Fp H+ — -— -— Fo—, (2-.102)

2 E hE ) 2 2 1—P' sin'(8/2)
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1
)«1: I„=

2s+1
(2.104)

The radiative correction thus increases linearly with
the kinetic energy of the particle. In the extreme rela-
tivistic region, on the other hand,

po—sin —)&1:
K 2

4u ( E 13) ( 2pp 8 1i
b(y, gE((W}=—

)
log ——

[ (
log

~E 12&& X 2 2i
17 1

+—+- sin' —f(8), (2.105)
72 2 2

which has a logarithmic dependence on the particle
energy. The asymptotic form (2.105) is quite accurate
for even moderate energies. Thus, with pI =pr/2, AE = 10
kev and W=3.1 Mev, which corresponds to (pp/~)
XsinpI/2=5, the value of b computed from (2.105)
differs from the correct value,

b=8.610 ', (2.106)

on combining (2.70) with (2.80). It will be noted that
the infra-red catastrophe, as characterized by k;„has
disappeared. However, it is possible, in principle, to
consider the limit ~—4, which would make b diverge
logarithmically. It is well known that this difBculty
stems from the neglect of processes involving more than
one low frequency quantum. ' Actually, the essentially
elastic scattering cross section must approach zero as
DE~0; that is, it never happens that a scattering event
is unaccompanied by the emission of quanta. This is
described by replacing the radiative correction factor
1—b with e ', which has the proper limiting behavior
as AE—4. The further terms in the series expansion
of e ' express the effects of higher order processes in-

volving the multiple emission of soft quanta. However,
for practical purposes, such a reanement is unnecessary.
The accuracy with which the energy of a particle can
be measured is such that the limit hE—4 cannot be
realized, and b will be small in comparison with unity
under presently accessible circumstances.

For a slowly moving particle,

80. 8 mc' 19
P((1:b(6,5E((W) =—P' sin' —log- +—, (2.103)

3m 2. 2AE 30

according to (2.95), the limiting form of H and the
corresponding limiting form of F„:

by only a fraction of a percent. It is evident from this
numerical result that radiative corrections to scattering
cross sections can be quite appreciable. For the par-
ticular conditions chosen, AE can be materially in-
creased (but still subject to AE((W), without seriously
impairing b. Thus, with DE=40 kev, b=6.3 10 ',
while b,E=80 kev yields b=5, 1 10 '. As to the energy
dependence of b, we remark that with a given accuracy
in the determination of the energy, hE/E, b varies
linearly with the logarithm of the energy. Thus, with
AE/E=0. 04/3. 6=1.1 10 ', an increase in the total
energy by a factor of four produces an addition of
4.4 10—' to b, whence b=11 10 ' for H'=14 Mev, and
b = 15 10 ' for H/'= 57 Mev.

The angular dependence of b at relativistic energies
is not fully described by the asymptotic formula
(2.105), since the underlying condition, (pp/K)sin@/2

«1, cannot be maintained with diminishing 8. In-
deed, b is proportional to sino'/2 at angles such that
(po/~)sin8/2((1. However (2.105) can be used over a
wide angular range, even at moderate energies. Thus,
with W=3.1 Mev, DE=40 kev, and 8= or/4, which
corresponds to (pp/a)sin8/2=2. 7, the value of b de-
duced from (2.105) exceeds by only 2 percent the cor-
rect value, b=4.2 10 '. %e may note that under the
same energy conditions, but with 8 =3s/4, b = 7.2 10-'.
The angular dependence of b may be particularly suit-
able for an experimental test of these predictions,
which involve the relativistic aspects of the radiative
corrections to the electromagnetic properties of the
electron.

Ke have thus far considered only the essentially
elastic scattering of an electron, in which radiative cor-
rections arise primarily from virtual processes. If we

wish to compute the differential cross section for scat-
tering with an arbitrary maximum energy loss hE, it
is only necessary to augment the essentially elastic
cross section, in which the maximum energy loss is
hE'«W, by the cross section for scattering with the
emission of a light quantum in the energy range from
bE' to dE. The latter process involves the mell-known

bremsstrahlung cross section which, of course, is the
content of (2.79). This will be illustrated by the calcula-
tion of the differential cross section for the scattering
of a slowly moving electron, irrespective of the 6nal
energy. The differential cross section per unit solid
angle for scattering of an electron through the angle 8,
in which a light quantum is emitted in the energy
range from hE' to TV, is

a I' w/oc dkp p ( pl( Za
L(I -q)'-(n (I -e))'j,

pr'"os go ko ~ ~io~ (p—q)'
(2.107)

according to the non-relativistic limit of (2.78). Here des is an element of solid angle associated with the direction
of the unit vector n= Ir/kp, and

(pl~ =(p' —2~ko)&.

~ F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (193/).

(2.108)
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On performing the integration over all emission directions of the light quantum, and introducing the new variable
of integration, x= )g(/(p(, (2.107) becomes

gn j' Zn ) o(1 oE'-/w}& x 2xdx

1+x'—2x cos8 j.—x'
( Zn 8q'Sn 8 LV t' 1—x

csc'—
~

—p' sin' —log
L2~p~P 2J 3er 2 AE' &o 1+x'—2xcos81+x

2xdx

So. 8 48' cos8——p' sin' —log —(n.—8)tan —— logcsc —.
3m 2 DE' 2 cos'8/2 2

Thus the contribution to 8 produced by emission of quanta with energies in the range from AE' to lV is

(2.109)

(2.110)

On adding this to b(el, dE ), as given by (2.103), we obtain the desired result:

Sn 8 j. 19 cos8
P((1: b(8,8')= P'sin' ——log +—+(er—8)tan —+ logcsc —.

3x 2 4P' 30 2 cos'8/2 2
(2.111)

It may be remarked, 6nally, that the analogous
meso-nuclear phenomenon, the radiative correction to
nucleon-nucleon scattering associated with virtual
meson emission, will be a relatively more signi6cant
eGect in view of the stronger couplings involved. This
may well be the explanation of the discrepancy between
the observed neutron-proton scattering cross section for
high energy neutrons and the larger theoretical values
computed from various assumed interaction potentials. '

APPENDIX

{A.1)

In this section, we shall Grst give an alternative treatment of
the polarization of the vacuum by an external 6eld, employing
the methods developed in the preceding pages. It is desired to
compute the expectation value of j„(x},

&j (*)&
= (+Co],i»(x) +Co]),

@L~]-4(—eo]=(S—1)ac=0.
A solution of (A.2), in the form

eLo]= ULo]ee,

may be constructed, where

8ULo] 1 .
No = j„(x)A„(x)—U—ga],

5 (x) c "

(A.4)

(A.5)

(A.6)

and A„(x} is the potential of a prescribed current distribution.
The physical situation can be described as follows. In the remote
past, the matter 6eld is uncoupled from the external electromag-
netic 6eld, and the state vector is that of the vacuum,

@f—oo g= @o, (A.3)

It is supposed that the coupling is adiabatically switched on, and
that the external Geld does not induce real pair creation. The
latter restriction implies that the final state of the matter Geld,
after the coupling is adiabatically switched off, is simply +0,
whence

where 4 fej obeys

iso = ——j„(x)A»{x)%'lo],
S+Po] 1 .
Sr(x} c "

Uf j=s, Uf-
The current induced in the vacuum is then written as

(A.2) (j ( ))=(U 'f jj ( )Uf j)o

(A.7)

(A.8)

Now

whence

eJ d 'eLo,o'], , U 'L~'3i»(x) Ufo']= U 'L~]j»(x) UL~] k(j»(x)+S 'j»—(*)S),

U 'Lo]j»(x) ULo]= $(j»(x)+S 'j~(x)S)+,J da'e$oo']U '[o'][j»(x-) j„(x')]U[o']A„(x').

(A.9)

(A.10)

On placing Ufa'j= 1 on the right side of {A.10), one obtains the first approximation in a treatment that regards the disturbance of the
vacuum as small. Hence,

(j»&x)&= t W' e(x x') Lj„{x)j—„(x')]oA„(x'),

in view of (A.4) and the absence of a current in the unperturbed vacuum. We shall, for convenience, write this formula as

4p
ij„(x)&= fG„.(* —x)A„(x)d, -

k
where, according to II (2.10),

(A.11)

(A.12)

G„„(x x') = g'Tr)S&'&(x' x)y»8—(x x')y, +8(x'-x)y—»S&'&(x x—')y„]. — (A.1S)

The introduction of the Fourier integral representations for the functions 5(') and 8, combined with the trace evaluation (see II (2.10))

)Tr f(—iyk'+ «)y„{iyk"+«)y,+(—iyk"+«)y„(iyk'+ «)y„'j= k„'k,"+k,'k„"—B„„(k'k"—«), (A.14}

g A summary is given by L. Rosenfeld, Nuclear Forces (Interscience Publishers, Inc., ¹wYork, 1949), pp. 450, 454.



QUANTUM FLECTROD YNAM ICS. I II. 815

yields the following expression for G»(x),
a(k'"+2}

G„.{x)=,f{dk'){dk")e'(e'+~")* „ t k)'kk,"+k„'k„"-|„)„{k'k"—e') ]. (A.1s)

a—G»(x) =0. (A.16)

It is instructive to examine the conditions imposed on G„„(x)by
the related requirements of charge conservation and gauge in-
variance. The former evidently demands that

—G„„(x)= {dk'}(dk"}e'{~'+~"&*k,"b(k'"+~»)ax„"" (2m) ~

{dk)e') f{dkdd)k, ddk{kdd'+ e)
(2~)7

(A.20)

The requirement of gauge invariance is that the induced current
be unaffected by the gauge transformation

A„(x) A„{x}—
Bh.{x)

(A.17)

in which the absence of an integrated term is a consequence of the
adiabatic removal of the coupling in the remote past and future.
Evidently (A.18) is satis6ed in virtue of (A.16},since

or that

fGdd, {x—x'), de)'= f G)k„{—x x') A{—e')ddd'= 0, {A.18), aa(x'), a

V

which is indeed zero if

f{dk")k."k{k"'+d(')=0.

(A.21)

(A.22)

Although the latter integral is strictly divergent, the value of
zero is unambiguously obtained from any limiting process in
which the delta-function is replaced by a suitable non-singular
function. In this sense, the requirements of charge conservation
and gauge invariance are satis6ed. It may be noted that the same
integral is encountered in evaluating the current in the unper-
turbed vacuum, II (1.73),

ZCC

(iy(x}&0=—~~i ~"'(o)
2

G»(x) =G„„(x).

On computing BG„„(x}/Bx„from (A.15), we obtain

(A.19) +~}
(2x)

which must also be zero.

(A.23)

We return to the evaluation of G»(x), and utilize the identity

(kk') (kk"} kk", kk'

k»
—(k~+Z)——(k'~+~)—

k' k' (A.24)

to simplify (A.1S).The third term in the latter expression makes no contribution in view of the null value of {k'"+8)5{k"»+8),while

the second term produces a contribution of G»(x) of the form.

kk"f{dk){dk")e')kd k{k
"2—+dde), {A.2s)

which must also be zero, in consequence of (A.22). Hence,

1 p, „. 8(k' +]P) b(k" +8} k„'k„"+k„'k„" (kk')(kk")

The delta-function factor can be simpliied in the manner introduced in the text:

1 k'» k"» k'» k"»

The introduction of the new variables k„and p„, as dered by

(A.26)

(A.27)

then brings G„„(x) into the form

k„'=gk„+ p„—-k„

k„"=$k„—p„—-k„, (A.28)

G,.(*) —fd(( d)f- (dk),(d)) (—k kdk)d d''+8„+.——„(,)'—d)),
1 k'

(A.29)

where, in virtue of the dependence of the delta-function on p' alone, terms linear in p„have been discarded, and p„p„has been replaced

by p»p'. It is thereby shown that

with

8 8
G»{x}= ———b»Q' G{x},

Bxy Bxy
(A.30)

1 k»
d(*)= f d () d)f(dk)(dk): k -d+d'+ —()-d"))'.

8(2~)' -~ 4

The divergent and convergent parts of G(x} can be separated by a partial integration with respect to o,

&( ) j(dd)'(k'+&)k(*)=(7 f" k—d f(dk): f(dd)—k d'+d+ —"((-d))"1 k»

6(2~) 8(2~}' o 3 4

(A.31)

(A.32)
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The invariant, logarithmically divergent integral that occurs in the first term of (A.32) can be expressed in three-dimensional notation as

where

a (de} . Po+P
{dp)&'(p+")= — (dn)dpo ——~(po' —V' —")= —k = —2%' Ieim log —1

2po ~po {p +IF)~ p~(g& K
(A.33}

Po—- (P'+ ~') &. (A.34}

The convergent second integral of {A.32) is then obtained by di6'erentiating (A.33} with respect to k~' and replacing the latter by
k('+ (k' j4) (1—v'}

With these evaluations, G(x) becomes

PI 7r

4 a +(k'/4) {1—') (A.35)

where

Po+P 1 1
G(x}= — Lim log -1 b(x) — — '(Fi(x) —~ F2(x}},24' i-- &br ~~

(A.3a}

(A.39)

~iA:s

o (2g)4J 1+(I(',2j4lp)(1 —p}
Finally, we may insert {A.30) into (A.12) and integrate by parts to obtain

(j„(x))= 16x(xfG(x x')J—„(x')dk)', (A.38)

where J„(x) is the current vector that generates the external electromagnetic Geld. The expression of G(x} contained in (A.36) then yields

2A . Po+P A'

(j„(x))=——Lim log -1 J„( }———g' (F ( —')--,'F ( —'}}J„(x')dM',
3+ p 4~a

in which the first term represents the logarithmically divergent renormalization of charge.
It shouM be remarked that the existence of a charge renormalization term would appear to contradict the conservation of charge,

since it implies that a non-vanishing total charge is induced in the vacuum. Indeed, a formal evaluation of the total induced charge
would yield zero, i, 1

(j„(x})da.„= — «(x—x') — jq(x)der~, jv(x') A„{x')Au'" 2a.~

=0
since the operator of the total charge commutes with the current vector at an arbitrary point. The expression of (j„(x})as

8 4e'
(j„(x))=——G(x —x')F„,{x')d ',

V

where

(A.40}

(A.41)

is formally consistent with the result since

8 8F =—A ——A,PV V P1
Bxyg Bxv

(A.42)

in view of the theorem

1, 2g 8 8
c " " h "ax, "ax(j (x))do =— do- ——dov— G(x—x'}F,(x')des'PV

=0,

8 8a„—F(x)—m„—F(x) =O.
Bxp Bxp

(A.43)

(A.44)

However, it is evident that these formal manipulations are only justified if the integrand in (A.44) decreases suaiciently rapidly in
space-like directions, which is not fu16lled for the field strengths generated by a charge distribution of non-vanishing total charge.

This difhculty can be avoided by treating the actual electromagnetic 6eld as the limit of a spatially con6ned 6eld, for which the total
induced charge is zero. A convenient way to accomplish this is to introduce a 6nite light quantum mass, which is eventually allowed to
vanish. We thus write the potentials generated by the given charge distribution as

A„(x)=- D(x—x')J„(x')dcd', " =0,aA„(x}
(A.45)

c OX'
where

(A.4V)

(A.47)

{A.48)

~i'
D(x~ =Lim, ,{dk).

The induced current can then be exhibited in the form

(j (x))= fG(x x—')—"D(x'—x")Je(x")d(e'da)"—

Je'e&G(k)k'D(k) J„(x k) (dk) (dk), —4e 1

kc (2n.}
in which the second version involves the Fourier transforms of the functions, G(x) and D(x),

I k'
G())= J 1( e)J(d))Y )P'+ '+ ()-'))—

(4m} 4
1

D{k)=Lim,, y k'+«'
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The total induced charge can then be calculated in terms of the total external charge,

1
Q= — J„(x—~)d

c
which expression is independent of &. Therefore,

f(-g„(x))d „= Q—fG(k)k'D(k)b(k)(dk)
1 . 4e'

(A.49)

=—Q Lim, G(k) (A.50)

If ~ is placed equal to zero before evaluating the Fourier transforms at k„=0, we obtain the previously computed non-vanishing induced
charge

bQ= ~LG(k) 5;o= Qf(—dp) b'(p'+")
4e'

(A.51)

On the other hand, if the limiting process ~~ is reserved to the end of the calculation, we evidently find BQ=O.
The implications of this limiting process may be further indicated by noting that, in the first term of (A.39), J„(x)will be replaced by

J„(x)—~2'�„{x), {A.52)
in virtue of the differential equation

1
( '—e2) A„(x)= ——J„(x)

c
{A.S3)

obeyed by the potential (A.45). Now (A.52) reduces to J„(x) at any point as ~.Yet the total charge computed from (A.52) is zero,
This is illustrated by the charge density associated, according to {A.52), with a point charge at the origin:

—fT

Lime b{r)—e'
q~0 err

(A.54)

We may conclude that in the process of vacuum polarization, a non-vanishing, and indeed divergent charge is attached to the original
charge distribution, and a compensating charge is created at infinity.

We shall finally apply the computational methods of this paper to evaluate the invariant expression for the electromagnetic mass,

bmc'P(x) = —— y„PD(x—x')S&') (x—x')+ D&'')(x —x') 8(x—x') jy„g(x')Cko'.
2

(A.SS)

The insertion of the Fourier integral representations yields

Smc2$(x}= —— (dk) {dk')e'(~+~')( ~'&y (iyk' —K)y + p(x')des'.
e 1 S(k'+8) a(k2)

2 (221.)~
(A.56}

This becomes
e' 1 S(k2—2pk) b{k2)

(dk)'(d p) e' " '1y„{iy(P—k) —)y„2 (221-}' 2pk 2pk
P(x') da)' (A.57}

on introducing

which is effectively subject to the restriction
p„=k„+k„',

P2+ K2 0b

{A.SS)

{A.59)
in view of the wave equation satisfied by p(x'). Now

1 I—LB(k2—2pk) —b(k2) j= — 5'(k2 —2pku) du,
2pk 0

and
yp(iy(P —k) —K)yp = —2(iy(P —k)+2K},

whence

(A.60)

(A.61)

bute'P(x) = f(dk)(dP) f due'"» "&(xyk x)b'(k' 2Pk—u)tP(x')d—x»',
(221-)' 0

(A.62)

in which we have employed the fact that i&p+ K is equivalent to p„(8/Bx„')+K applied to p(x') and is thus effectively equal to zero. The
transformation

(A.63)
then yields

bmc'p(x) = (dk) (dp) die'2' * '
(iypN —K) 5'(k2+ K u2)y(x')dM'

{2x)~ 0

xf duf (dk)(1+u)b'(k'+xeue)P(x).
(22r}'

Hence,

but/et= —— (1+u)duf (dk)b'(k'+e'u') = ——(dk)b'(k'+ex)+ J(2u'+u')d—ux (dk)b"(k'+xtu')
0 2x

(A.64}

(A.65)

accoxding to the intettxats (A.33) and (A.33).

3' . E0+K
bm/m= —Lim log

21K +~an K


