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On Total Absorption in Spectra with Overlapping Lines*

FRANK MATOSSI) ROBERT MAYER) * AND EMMA RAUSCHER
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Total absorption of overlapping lines of equal width but different distances and intensities is calculated.
The possibility of deviations from the "root-law" of Ladenburg and Reiche is discussed.

I. INTRODUCTION
' "N a paper on selective absorption, Ladenburg and
~ ~ Reiche' discussed the total absorption of a limited
frequency range in selectively absorbing matter. Their
computations are based on Drude's dispersion theory
and on the assumption that absorption will take place
only within an isolated absorption line the width of
which shall be small in comparison with the frequency
range considered. The restricting supposition of an iso-
lated absorption line has been eliminated by Elsasser
he substitutes the concept of an infinite number of
lines of equal intensity, equal width, and equal mutual
distance. He gives an explicit result for the limiting
cases in which the ratio of line width and line distance
is very smalj. or very large; in general, the computation
leads to an integral the evaluation of which is possible
only approximately. The present paper deals with a
still more general case. The absorption lines may all
be equally broad, their width shall be small relative to
the considered frequency range as in the previous
theories; number, intensities, and mutual distances,
however, may be chosen arbitrarily with some slight
restrictions developed in Section IIC.

II. TOTAL ABSORPTION BYTWO OVERLAPPING LINES

A. Fundamentals

To 6nd the total absorption A, as defined by Laden-
burg and Reiche, within a frequency range from u& —b

to +~+5 along a path of the length s, we have to solve
the integral

tc)1+5

~=(1/») ~"
aJ

this formula being based upon the Bouguer-Lambert
absorption law for homogeneous radiation.

Restricting ourselves at first to the overlapping of
only two absorption lines within the range ml —b~&co

~& ca&+ b, the absorption coefficient It (co) can be written as

2t(~) =ac/[(~ —~c)'+bc')+ «/[(~ —~2)'+ b2'7
with

Here, rYY; means the number of particles per unit
volume responsible for the absorption line; e; and ns,
are charge and mass of these particles; cd, =2vc/X; is
their eigenfrequency and no, th'e refractive index of the
absorbing material as it would be without the existence
of absorption in the frequency range considered. In
general, the half-widths 2b; of the lines, being a measure
of the damping of the vibrations, will be diGerent from
one another; it is, however, assumed that all widths
are equal. b; may also be described as the damping
factor in the equation of an oscillation

c) $/Bt'+re; (+b;ctP/ctt = O.

H we introduce u= (co co&)/b a—s a new integration
variable, and v= (c0 con)/b as a—n abbreviation, we have,
instead of Eq. (1),

2W. =82

( etc a21-,.p(— i
du. (3)

ctb I b'(1+u') b'(1+v') &

The index at 8 indicates the number of overlapping
lines. e is to be considered as a function of N.

Putting further

u= tany, v= tang, rc= a z/cb', rm= «a'/b', b'= arctg(b/b),

and taking into account that

cosQ= cos'y/[1 —2(cd2 —&ac) siny cosy/b
+ (cd~ —cue)' cos'y/b') = k cos'y,

we have

r

Bq =
b~

I [1—exp( —(rc+kr~) cos'y))(dy/cos'y) (4).
gt

With the abbreviations

(cu2 cdc)/b=t, 1%—21 siny cosy+P cos'y=1/k+,

Eq. (4) becomes

ct;= 2v N,b;eP/nore, c (2)
~ The original paper was prepared in the winter of 1944-1945

at the IInd Institute of Physics of the University of Graz, Austria;
the circumstances having prevented the publication, the manu-
script has been revised and completed. Short review in Naturwiss.
33, 219 (1946).

~~ University of Gras, Austria.' R. Ladenburg and F. Reiche, Ann. d. Physik 42, 181 (1913}.
~%. M. Klsasser, Phys. Rev. 54, 126 (1938).

gl

B2= b 1 —exp —r~+k+r. cos'p d plcos'p

+b, [1 exp( (rc—+k r2—) cos~y))(dy/cos~y)

=&2++&~ . (4a)
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B. Approximate Solution

To obtain an approximate value for 82, we look for
a differential equation. DiGerentiating 82 twice with

respect to the variables rj, r2, and l in any order, the
denominator with cos'q, which would cause a strong
increase of the integrand for y=or /2, disappears, and a
factor cos'q is added to the exponential function. We
have

gt

(B'8&/Br~Bro) =b
~

k cos y exp[ —(r~+kro) cos y]dy
0

= b) k+y;
0

bl

(B'Bo/Br&Bl) =br()t (Bk/Bl)ydy

lt is to be seen without difhculty that 82 satisfies
the diGerential equation

O'F O'F Oy
with = ' kd, (5)

Orj&l Or jOr2 Ol J,
if @ is slowly variable in comparison with k and Bk/Bl.
Calculating (By/By)/(Bk/By) and (By/By)/(B'k/ByBl),
it can be shown that this condition will be satisfied
only if / is not too small, For this trivial case 1=0,
however, we shall 6t 82 to the exact value by boundary
conditions. Therefore, the approximation will be su%-
cient also in this case. The accuracy of the approxima-
tion of 82 by F becomes worse also for small values of r,
but the superposition of lines of practically disappearing
intensity is not at all of interest.

The general integral of (5) is

F=f(r~+Cxro)+g(r&)+h(ro)+j(ro, l)+m(l), (5a)

in which f, g, h, j, m are arbitrary functions of their
arguments and C is a constant.

As boundary conditions we assume the case of a
single isolated absorption line, treated by Ladenburg
and Reiche, by putting r~ ——0. With these authors
supposing the frequency range to be much larger than
the line width, ' we directly assume their result. There-
fore, for r~ ——0, we obtain

8.,~(r„0, l) = (1/2)bor exp( —rg/2)
X [Io(ir~/2) —iI~(ir~/2)], (6)

in which Io and I~ are the Bessel functions of the
orders 0 and 1. From (6) and (Sa), it follows at once that

m(l) =0, j(0, l) =0, h(0) =0.
If the two lines are coinciding (l=0), the variables

r& and r& must necessarily appear as a sum, and we have

Br+(r&, ro, 0)= (1/2) bs (r&+ ro) exp[ —(r~+ ro)/2]
X [Io(i(rl+r2)/2) —$Il(o(r1+ro)/2)]. (6a)

'Then the integration limits may be inanite, because the
contribution to absorption from the range ~&~1+8 may be
neglected.

This condition is compatible with the general solution
only if

g(ri) =0, j(ro, 0) =0, h(ro) =0, C= 1/x(0).

Abbreviating

x exp( —x/2) =R~(x), Io—iI~ ——Ro,

we can now write

8& Bo++——Bo (1/2)——bs R&(r~+ C+x+ro)
XRo(i(r&+ C+ x+r&)/2) +j+(r&, l)
+(1/2)b7rR)(rg+C x r2)

XRo(i(r&+C x ro)/2)+ j (ro, l) (7)

with the condition j(r&, l) =0 for r& 0o——r l=0.
In transforming the origina, l integral (1), r& has been

distinguished, p being chosen as an integration variable
in (2). If we would have determined P as a function
of y and integrated over P as an independent variable,
we would have come to the form

gl

82 b) [1—exp( —(kr&+r&) cos'y)](df/cosQ) (S)
gl

in which
1/k = 1+2l sing cosP+1' cosQ.

This manner of writing 82 can be derived from the
former one by interchanging k+ and k in the terms
8&+ and 82 and putting them as factors of r~ instead
of r2. Thus we have, on the one hand,

Bo+= (1/2)borRg(rg+C+x+ro)Ro(i(rg+C+x+ro)/2)
+I+'(ro, l) (Sa)

and, on the other hand,

Bo+= (1/2)bxRq(C x r~+ro)Ro(i(C x r~+ro)/2)
+j~"(r~, l); (Sb)

j is subject to the conditions

j'(0, l) =0, j'(rz, 0) =0, j"(0, l) =0, j"(r&, 0) =0. (9)
Equaling (Sa) and (Sb) for r& 0, we ob——tain

j+'(ro, l) = (1/2) bor[R, (r,)R,(iro/2)
—R~(C+x+ro)Ro(iC+x+ro/2)]

and a corresponding expression for j '(rz, l).
Finally, we obtain for 82 the formula

28./b--R ("+C::.)R.( ("+C.x,")/2)
+Rg(rg+C x ro)Ro(i(rg+C x ro)/2)
+2R~(ro)Ro(iro/2)
—Ri(C+x+ro)Ro(iC+x+ro/2)—R, (C x r,)R,(K' x r,/2), (10)

in which x+, p are given by

x+——arctan[(B/b)/(1&lb/b+P)]. (11)
If b/b can be considered as being infinite, we can

write

x~ ——%arctan1/l.

If l=1 and b/b= oo, then x+=Wor/4.
The assumption B/b= oo or b/B=O is not permitted

if 1((1 is comparable with b/b. Then, i.e., in the case
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of very closely neighboring lines, we can write

x~ = arctan1/(b/baal).

Expanding in series yields

xg= W~/2+ (b/6+l) + (b/0+f)'j 3~
hence,

y~p=Wz/2&(b/b)W(b/b)'/3& Az/2 (12)

and, therefore, C = —C+~2/z. .
If b/b is finite and 1)1, expanding in series is possible

too, if the absolute value of the denominator exceeds 1:
&~= 1/[b(1+P)/Hl] —1/3[b(1+P)/baal]'+ . .

This series converges well enough only if the arguments
are not too close to 1.

In the case 1 «l(&b/b, x is nearly zero. Values of
1, which come near to b/b or which even exceed it, are
to be excluded, for then the lines would not be entirely
in the integration interval. Then, the assumption that
the integration limits may be extended to infinity is
not justified any longer.

The expression (10) for B~ can be simplified for small
or for large values of r. Expanding the function R~, we
have for r«1: R~(ix)=1 (and Z~(x)=x) and for
r) 10:Eg(fx) = (2/z x)&e'.

Kith these approximate expressions for E~, we obtain
B,/bz = rg+r, for r(&1,

B~/bz=(r~+C+x. +rq) + (r&+C x rz) +2r&'
—(C+y+rq)& —(C x r, )& for r) 10.

C. Restrictions and Discussion

In (6) and (6a), we assumed as boundary values of
B&(r&, 0, f) and B~(r&, r~, 0) the results of Ladenhurg
and Reiche. The restrictions given by these authors,
therefore, are valid also for our problem; they may be
summed up brieQy:

1. The integration interval must be small with
respect to the doubled absorption frequencies, 8(&2&,.

2. The limit of b against lower values is given by
8&&br& and already 5&&b. These relations are equivalent
to saying that the integration interval must be large
with respect to the width of an absorption line.

3. The absorption should be moderately strong,
r((4~z/X;. Hence, for X=6p and z=1 cm, we must
confine r to r&&2&(10'.

The inQuence of the overlapping of the lines is
comprised within the terms with y. For large values
of l, i.e., for lines being practically isolated from one
another, x can be neglected according to (10a). In this
case, we need only add the Ladenburg and Reiche
expressions for total absorption.

For large r values, Ladenburg and Reiche's "root-
law" is certainly valid also for overlapping lines as far
as the dependence on the path-length s is concerned.

Concerning, however, the dependence on pressure,
which is given by the dependence of line-width on
pressure (b p), the root-law is valid only as far as x
is independent of b. In any other case, we have, through

~&((o—(o ) +b I

With a.z/b'=r, and (co co,)/b= tang—, we obtain

B„=b! dye

((
X 1—exp' I

r& &r.k.
I

c»'y\
) )

cos (py.

At first, we deal with 3 lines. In analogy to (4a), we

write

83 b' dpq[1 exp( (—rq+k——~&—r~
aJ p

+k~r3) cos'y~)]/cos'q ~

gl

+b iI dp&[1 —exp( —(r&+k~rz
Jp

+k3 r3) cos'q~)]/cos'rp~=Bii++Bii, (14)
'M. Summer6eld and J. Strong, Phys. Rev. 60, 162 (1941).

Experimental curves, see J.Strong, J.Frank. Inst. 231, 121 (1941).
~ F. Matossi and E. Rauscher, Zeits. f. Physik 125, 418 (1949).
6 G. Becker, Zeits. f. Physik 34, 255 (1925); H. Becker, Zeits.

f. Physik 59, 583 {1930};J. Holtsmark, Zeits. f. Physik 34, 722
{1925).

the inQuence of y, a deviation from the p&-law, at least
in principle. Summerfield and Strong4 found for ozone
that overlapping may lead to proportionality with the
fourth root of p, and we ourselves obtained a similar
dependence with water vapor. ' But, according to the
theoretical results, the dependence on pressure may
obey this special law only within a limited pressure
range. Kith regard to the statements in Section IIB,
deviations from the p&-law might be possible mainly if
b/b is not too large and if f does not assume extremely
high or low values.

Of course, there might be deviations from the root-
law, if the proportionality of b with the pressure is not
maintained. Indeed, there have been indications that
the assumption of damping by impacts only (b p)
does not always hold and that a "coupling eGect"
might be superimposed, ' which would give b p&, and
this would lead to A pt even if there is no overlapping.
The discussion of the observations with water vapor
and of a numerical evaluation of our formulas' has
shown that this possibility cannot be excluded. Nothing,
however, is known about the superposition of the two
damping sects, either theoretically or experimentally.

III. OVERLAPPING OF n LINES

The results obtained in the preceding sections have
to be generalized for the overlapping of several lines.
As the starting integral for the overlapping of e lines,
we now have

es1+b- CyS
B„= I 1—exp~

wg—il ( ((0 CJy) +b
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in which

I/k4y= 1~2/41 sin'Pl cossll+/41 cos Fl&

/, »= (~; ~—»)/k, tang; =I (~—, ~,)/b.

In Eq. (14), 222 and 423 are considered as functions of

y~. %'ere, however, q2 or y3 independent variables,
we would obtain (14a) and (14b) with the same right
as (14):

B8——k d422[1 —exp( —(kl+'rl+rr
Q

+k8+ r8) cos p2)]/cos 8»

gl

+ b~ d422[1 —exp( —(kl 'rl+r2
0

+k3 'r8) cos2482)]/cos2422. , (14a)

B3=/1 d 428[1—exp( —
(kl+ "rl+ks,"r.

0

+rl) cos2483)]/cos2q»

+k) d»28[1 —exp( —(kl "r,+k2 "r.
0

+r8) cos2428)]/cos2228 (14b)

In k, ' and k;", the quantities l;2, y2 and l,3, y3 are
substituted for l;I, q g in 0;.

Under similar conditions as in Section II, we obtain
for 83 the differential equations

rI=rg —-0:
f(CX32r3)+K8'(0, r3, l12, l32) =f(r3)+K3 (ll3 l23) =f(r3).

Hence

K 8( r2 Y8 l21 l31) =f(&2+CX82r3)+f(r3)
—f(CX21r2+CX31r3) f(CX32Ã3)

and, therefore,

B3 =f(«+C+X21+r2+C+X31 r3)+f(r2+C+X32 r8)
+f(r3) f(C+X—21+r2+C+X81+r3) f(C+X—32 13) (16)

with a corresponding formula for 83 .
In a similar way, we find for 84+ or 84 ..

B4=f(«+CX21r2+CX31r3+CX41r4)
+f(r2+ CX32r3+ CX42r4)+f(r3+CX43r4)
+f(r4) —f(CX21r2+ Cx3lr3+ CX4,r 4)

f(CX32r—3+CX42r4) f(CX48—r4),

in which the indices + and —are to be inserted,
respectively.

The overlapping of n lines thus leads to the general
formula

n ( n ) n —1 ( n

B„=nfl '+ P c,x.,"I- &fl «+x-" I

1 l, a=r+1 ) r 1(r r+=1=
n, ( n

+nfl '+ 2 c-x- ' I

r= 1 ( r Ml )
n—l t( n

—2 fl 2 C-x- ~ I, (I'/)
r=1 E r=r+1

B F BF B+4ry
ftr

Br&Bl,& Br&Br Bl,&

Br2Ol 2 Br„Br Bl 2

x.l (~=2 5)'

x.2 (~=1, 5);

the total absorption being given by A „=B„/2b.
The meaning of the quantities in Eq. (17) may be

stated here again, for the sake of convenience:

2f(X)= blrXe *'2[I3(iX/2) —iI1(iX/2) ]
= b2rR1(x) [R2(ix/2)];

O'F" O'F" BX,3
re

Br3B1,3 BrsBr, Bl 3

x.3 (~=1, 2)

In a similar manner as above, we obtain from (14),
(14a), and (14b) the expressions

B3 f(«+CX21 r2+CX31 r8)+K8+(r2 r8 /21 /81) (15)

B8+ f(r2+ CX12+r1+CX——82+r3)+ K3'+(rl, r8, l 12, l32), (15a)

B3+ f(r8+CX13 rl+CX23 12)——+K8"+(r,, r, , l„, /23). (15b)

K3+ must be determined under the condition
K3 (0 0 ll3 l23) =0. Because the result must be in-

diGerent to a change of the reference line, the three
expressions (15) are equivalent. Equaling (15) and
(15a) yields, for r1=0:

f(CX21r2)+ (CX81r8)+E8(r2, r8, l21, /31)

=f(r2+CX8zr )+E '(0, r8, /12 42).

In the same manner, by equaling (15a) and (15b) for

Io and I~ are the Bessel functions of the orders 0 and 1;
if x is very large, f(x) becomes b(2rx) &; if x is very small,

f(x)= b2rx/2;

X„+=arctan[(11//)/(1a/. ,h/b+ l.,')];
C = —C+=2/4r, l„=(ld, ld, )/b, —
r, = 48,2/b2, 48 = 22rIt/. e,2b/28, 288,c;

~V„e„m,=number per unit volume, charge and mass
of the particles to which the absorption line a&, = 2 /2Xrc,

is due, n, ="normal" refractive index at co=or. ', b=half
half-width of every line, s=path-length of absorbing
matter, 5= frequency range equivalent to half the
spectrometer slit-width; /1' = arctan(5/b).

The general discussion and the restrictions in Section
IIC are valid also for the case of n lines. In spectra
with many lines, it may occur that some lines come
near the edge of the slit. Then restriction II interferes
and there must be "edge-disturbances" of, however,
so much less importance as there are more lines within
the interval.
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Finally, we mention that formula (17) may be
simpli6ed by always calculating with integrals from
—8' to 8' instead of dividing 8 into 8+ and 8 . Then
only the hrst two terms of (17) with a factor 2 remain,
in which now

x=m+ arctanL2(b/b)/(1 —(b/b)'+1„')] and C= 1/~;

the indices + or —are of course superfluous now.
%hether there is a considerable numerical difference

between these two approximations, has not been
investigated. We ourselves (reference 5) utilized Kq.
(17), which, in principle, appears to be the better
approximation: still further division of the integrals
would give still better solutions which, however, could
not be handled mell.

IV. SUMMARY

The computation of "total absorption„" as de6ned
by Ladenburg and Reiche, is extended to the case of
overlapping lines which all are equally broad, but which
have different distances and different, not too large,
intensities. The method is elaborated in detail for the
overlapping of two lines in Section II; the general case
is dealt with briefly in Section III. Final results:
Kqs. (10) and (13) for two lines, Kq. (17) for e lines;
restricting assumptions, see Section IIC. The total
absorption is proportional to the square root of the
path-length also with overlapping lines, as long as this
"root-law" is valid for a single line. But there might
be deviations from the p&-law under certain circum-
stances explained at the end of Section II.
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The Equations of Codazzi and the Relations between
Electromagnetism and Gravitation

ANTONIO GIAO

Lisbon, Port lg«l
(Received October 4, 1949)

The aim of this paper is to show that, quite independently of
any physical theory, the general equations of Codazzi on dif-
ferential geometry lead to fundamental relations between the
electromagnetic and the gravitational fields as soon as the external
metric tensor of space-time is interpreted as an electromagnetic
tensor. When the important special case of quasi static fields is
considered, we get for a rotating body with no permanent mag-
netization: (1) The relation, previously studied by the author,
between magnetic moment and angular momentum which
explains the general features of stellar and terrestrial magnetism
as well as the magnetic moment of the neutron; (2) a relation
between gravitation and the electrostatic field, such that any
massive body creates an electrostatic field by its own gravitation.

The mean electrostatic fields of celestial bodies, including the earth,
can be ascribed to this egect. When the gravitation produced by a
given body is negligible (as in the laboratory) the equations of
Codazzi show that the familiar Coulomb field is merely a con-
sequence of the very rapid vibrations of the components g4,.

(i=1, 2, 3) of the internal metric tensor. Finally, for an uncharged
body with permanent magnetization it can be shown that the
curl of the g4; and the magnetic field are related as cause and eGect.

We think that these results are a confirmation of a fundamental
result of our unified field theory: That the geometrization of electro-
magnetism must necessarily be achieved by the external metric of
sPace-ti me.

1. EQUATIONS OF GAUSS AND CODAZZI

A NY space (4.) with an arbitrary number (X) of
dimensions can be considered as a hypersurface

of an enveloping space l~+I of ~V+1 dimensions. The
space l~ has then an external as mell as an internal
metric (to which the second and the first fundamental
quadratic forms correspond respectively). These two
metrics are well de6ned by the equation of l& in l&+i
and by the internal metric which can be imposed on
4+&. YVhen l& is a differentiable variety, the internal
(g;i) and the external (id;i) metric tensors (both sym-
metric) must necessarily satisfy the fundamental com-
patibility equations of Gauss and Codazzi. ~ Denot-

' A. Giao, Comptes Rendus 224, 1813 (1947); 225, 924 (1947);
226, 645, 1298, 2126 (1948). Gazeta de 3fat. (Lisbon), 34 (1947)
and'3S (1948).

'

A. Giao, Portugaliae Physica 2, 1-98 (1946). Portugaliae
Matheznatica 8, 145-192 (1946};6, 67-114 (1947);7, 1-43 (1948).
BulL Soc. Port. Math, (A}, 29-40 (1947).

ing by

xi
X»

the Riemann-Christoffel tensor of l~.,
the Riemann-Christoffel tensor of /~+I taken

on l~,
the contravariant components of the unit

normal to l~,
general coordinates in /~ (i=1, 2, , lV);
general coordinates in l~+i (p = 1, 2, , X+1),

and putting
X, ;"—= i7X"/Bx'

the equations of Gauss and Codazzi, for an lN embedded
in a l~+i take the form

&"ii—(a gd i—(a, i(a;i,.)=8 p ix„X,,&X i~X ii, (1)

(a, i, , a);;, i= R s~iii X—, sx, i,&X,,'. (2)

(The comma denotes a covariant differentiation. ) When


