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TAsLE V. Doppler shifts. TABLE UI. Gamma-ray and excitation energies.
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476.7% .9
713.8&1.3

1172.4+1.8
1330.9&2.1

The calculated shift for 8"~ has been reduced by the
same proportion in the computation of the 6nal values,
even though at this higher energy the scattering is
certainly less important. Table VI presents the 6nal
values, using the means of Tables III and IV, and in-
cluding the estimated Doppler shifts.

The present value for the excited state of Li' is
slightly lower than the value 478.5~1.5 kev given by
Elliott and Bell" for 8"(na)Li'* but as the probable
errors overlap, the difference is hardly signi6cant. The
Co" values are about 15 kev higher than those ob-
tained by Jensen, Laslett, and Pratt'~*; the reason for

"L.G. Elliott and R. E. Bell, Phys. Rev. 74, 1869 (1948).
~ Note added in proof: More recent work by the authors, kindly

communicated to us by Professor Laslett has led to values
which, when adjusted by use of the average energy loss, agree well

f Taken as = 1.6/2. 2 X3.6.

this discrepancy is not clear. A preliminary crystal

spectrometer determination of these lines, kindly com-
municated to us by Professor DuMond and Dr. Lind
is in good agreement with the values quoted here.

It is a pleasure to acknowledge the many helpful
suggestions and active assistance of Professor R. F.
Christy in connection with this problem. We are also
indebted to Professors C. C. Iauritsen and %. A.
Fowler for valuable advice and consultations. This
work was assisted by the joint program of the ONR
and the AKC.

with those cited here. The agreement is less good if the shift is
calculated from the most probable energy loss, but is still within
the combined probable errors.
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The methods of a previous paper are modi6ed to cover the high energy x-rays which are strongly absorbed
by pair production. The variation of intensity with depth of penetration is then expected to follow a law of
the type x~«exp( —p x+bx&).

HE factors governing the approach to spectral
equilibrium in the penetration of hard x-rays

have been discussed in a previous paper, ' which will be
referred to as I. It was found that the trend of the total
x-ray intensity at great depth of penetration depends
essentially upon the progressive formation and decay
of those secondary components that are least absorbed. f

The earlier treatment assumed that the primary

*Work supported by the Applied Mathematics Branch of the
ONR.

' Bethe, Pano, and Karr, Phys. Rev. ?6, 538 (1949).
f Note added ig proof: The results derived in I are closely related

to those derived by Wick (Phys. Rev. 75, 738 (1949)) in his
treatment of the analogous neutron problem. Wick also took into
account the effect of small angular deQections and his methods
are now being applied to the x-ray problem. This effect tends to
modify the values of the constants in {13a and e}without changing
the structure of these formulas. FinaQy, it is understood that
some of the results reported in I were also obtained by Greuling
(unpublished).

x-rays are less absorbed than any of their secondaries.
This obtains in lead only up to energies of about 3 Mev,
in lighter elements up to higher energies. At very high
energies absorption by pair production becomes in-
creasingly important and secondary scattered x-rays
may be more penetrating than the primaries. Under
these conditions the softer x-ray components still ap-
proach an equilibrium, but this equilibrium state is now
controlled by the formation and decay of the hardest
secondary components. The energy of these components
corresponds to the minimum of the plot of absorption
coeKcient vs. photon energy, ' and may be much lower
than the energy of the primaries (The present . analysis
disregards the bremsstrahlleg of the electrons generated
by pair production. )

'See, e.g., W. Heitler, Quantum Theory of Radiation {Oxford
University Press, London, 1944), p. 216.
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This paper deals with the approach to equilibrium by
a method which holds under broader conditions than
the method used in the earlier work. However, we rely
on the same principles as in I, namely:

(a) Use of special approximations in the limited energy range
of the hardest components which control the equilibrium.

(b) Disregard of the deQections associated with scattering,
since these de8ections are small for the hardest components.

The latter assumption, amounting to the adoption of
a "one-dimensional" model, is not as realistic in the
present context as it was in I, since the hardest com-
ponents themselves may have undergone an appreciable
deflection in the course of previous scattering. There-
fore, the results to be obtained here need reviewing in
the framework of a more comprehensive treatment
which is now being developed. However, the asymptotic
behavior of the "one-dimensional model" is inherently
an essential ingredient of the behavior of more realistic
systems.

The mathematical treatment of this paper is more
flexible than that of I. It makes use of a simplifying
assumption somewhat less restrictive than the previous
one (E(Io', p) =const). The solution that will be given
here preserves a qualitative signihcance, even though
little accuracy, in the low energy range. The purpose of
this note is just to point out qualitative features. The
derivation of a more accurate solution requires a more
detailed calculation which is now in progress.

CALCULATION

distributions —each of which decays as an exponential
function of x:

~
a+a~

F(x, X)= (1/2orz) dp y(p, X)exp( —px)
a—s00

+amph(X —Xp) exp( —ppx). (2)

The last term of (2) represents the primary radiation.
The "Laplace Transform" y(p, X) is governed by the
equation:

(p —p)y(p, X) = t k(X', X)y(p, X')dX'
~)0

+) pk(Xp, X)/(pp —p). (3)

At this point we introduce the main simplifying as-
sumption (referred to as (a) above), of attributing to
k(X', X) a constant value C. This value may be taken
equal to k(X, X)= (o)ioro or a little lower. (The earlier
choice of the independent variable X and of the de-
pendent variable I' was designed so that the assumption
k(X', X)=C is not too unrealistic. In fact k(X', X) re-
mains of the order of magnitude of p, 7I, for all values of
X' and X.)

Equation (3) reduces now to:

(ii —p)y(p, X) = C t y(p, &')d&'+C&o/(iio p) (3—')
~xp

Ke start from a "one-dimensional" equation govern-
ing the diGusion and degradation of photons, which is
equivalent to (1) I. It is convenient to adopt here a
djtBerent choice of variables —namely, to indicate:

Simple diBerentiation reduces (3') to a first order linear
dift'erential equation whose solution is:

y(p, ) ) = CXp exp C dX'/(p(X') —p)
~)0(1) the energy of photons by their wave-length X, expressed in

Compton units, and
(2) their spectral distribution by a "spectral energy density"

F'(x, X). {With reference to the "integral photon spectrum" re-
ferred to in I, F= —vBI/Bv= X&I/8X.)

(~-p)(i o-p). (4)

The function I' is governed by the equation

~X

BF/Boo= —p(X)F+) k(X', ))F(x, X')dX',

Equation (2), with the expression (4) of y, describes
the spectral distribution at all depths x. It constitutes
an approximate formal solution of the "one-dimen-
sional" penetration and degradation problem governed

(1) by (1).

where:

k(X', X) = (-,')ioro{V'+X'
+y'P, [(y—y')' —2(X—X') jI/O. (1')

p~p, ——absorption coe%cient for Thomson
scattering.

p, = total narrow beam absorption coeS-
cient at wave-length X.

The initial condition is:

F(0, X) = Rob(X —Xp).

The solution of (1) is represented by the method of
Laplace transformation as a superposition of spectral

ASYMPTOTIC BEHAVIOR OF THE SOLUTION

There is a standard method for studying the values
of the "inverse transform" (2) at great depths, that is,
for large x. This is to deform the path of complex inte-
gration over p way to the right in the complex plane,
where the factor, exp( —px) becomes very small; how-

ever, the deformation should not bring the path through
any region where y becomes very large. Such a region
lies on the positive real axis of p, where the denomina. —

tors ii—p in (4) vanish.
Accordingly, the path of integration can be so de-

formed (Fig. 1) that the main contribution to the inte-
gral comes from a section of the path in the proximity of



PE NETRAT ION OF X —RAYS THROUGH BARRIERS 742

(Sa)

(Sb)p.= p(&o)= po for &o&) .

(The case where X(lb, is not interesting in the present
connection. )

At great depths of penetration, the values of p which
contribute substantially to the integral in (2) still de-
pend on the value of x, but they are con6ned to the
proximity of p, within a distance ~p, ,—p, . Therefore,
this dependence on x will not affect substantially the
factor (p —p) in (4) or those portions of the integral in
(4) where p(X') —p»p, —p (assuming that X»X,).Now,
these portions of (4) are the very ones that depend on X.
It follows that the whole integral in (2) depends on X

and x through separate factors of the expression (4).
In other words, under the conditions stated, Y(X, x)
becomes the product of a function of ) and a function
of x, that is, the spectral distribution becomes inde-
pendent of the depth of penetration. This constitutes
a sort of "equilibrium" (within the meaning of (b) in I).

The concept just outlined may be formulated mathe-
matically by various devices. For example, one may
represent the factor 1/(y(X') —p) in the integral of (4)
as the sum of two functions: one function which matches
1/(y, —p) accurately for V~X„hasa simple form and
vanishes when V~ ~~X„and another function which
vanishes for V X, and is therefore practically inde-
pendent of p. The function p(X') may be matched, for

a "saddle point" at p= p, .' This point is located on the
real axis a little to the left of p,„where p, , is the smcllesI,

satge of y(V) in the range of integration of X' in (4),
from Xo to X. (The distance of p, from p, decreases as
x increases and it turns out that the product (p, —p, )x
is either a nurgber of the order of 2 or a slowly increasing
function of x.)

In the case, studied in I, where the primary radiation
of wave-length Xo is harder than any of its secondaries,
the smallest value of p(X') is found at the very start of
the integration: p, = p(XO) = po. The function y(X') for
any material has a minimum value p, at some wave-
length X, Therefore, in general,

p, =p(lI,„)=p for Zo&X.
„

I'ro. 1. Schematic
representation of the
"saddle point" of the
integrand and of the
"steepest descent"
path of integration
over the complex
variable p in Eq. (4}.

X' X, by a three-term power expansion:

p(lI') p,+i1,(P
' —X,)+ (d'g/d X'),(V —X,)'/2,

where i1,= (dp/dV)z'=x, . We write then:

I/[~(~') —pl = I/[~.—p+i.(~'- &.)
+(d'old&'). (&'—lI.)'/2J+ {1/[P(&') —pj—1/[p, —p+i1.(V—) .)

+ (d'p/dX'). (X'—X,)'/2j }. (6)

Little error is incurred by replacing the variable p by
p, within the curly brackets. The quantity { } may
then be integrated over X' from Xo to ), numerically if
necessary. The result of the integration is some function

Q(X„X)= dV{1/[~( ') —~,j
"Zo

—1/[j4, (X'—X,)y (d'y/d X'),(X'—X.)'/2j }, (7)

which needs no further investigation at this point.
The remaining integral yields:

I dX'/[I, p+ii. () '—X,)+(d'I—/d)P). (h' ~,)'/2j=2'+T

i.+(d'~/d~'). (&—&*)—[i*'—2(d'~/d&') (~ —PH'= Li *' 2(d'~/d~'). (~—. p)3 '»g-
js,+ (d'p/dX'), (X—X,)+[p.m —2(d'y/dX'), (p.—p) j»

i.+(d'~/d~'). (4—~.)—[i'—2(d'~/d&'). (~.—p) j'—[i.'—2(d'~/d~'). (~.—p)3 ' »g (g)i.+ (d'~/d&'). (~0—&*)+ Li '—2(d'~/d&'). (~.—p) 3'

The tenn Ti may be simplified, when A.&&A,„byexpand. -
ing the logarithm. It reduces to:

2'g~ —2/[il, +(d'p/dX'). (X—X.)j (for X&&X,). (9a)
~ See, e.g., H. and B. S. Je8reys, Mathematical Physics (Cam-

bridge Universitv Press, London, 194tj}, Chapter 17,

This term may be added to Q(XO, X) and treated ac-
cordingly.

The term T2 is independent of A, and it determines the
asymptotic dependence of Y on x. This term takes
diferent, simple, forms when the primary rad. iation is
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not nearly of the most penetrating variety, that is when
Xo))X or Xo&&X, also when XO=X . The former of
these cases is the same as was treated in I.

When Xo»X„,X,=As according to (5a). When Xo is
suSciently larger than X, »'»p= »»0'))2(d'p/dX') o(po —p).
Expansion into powers of 2(d'p/D')o(»»0 —p)/»»o' «-
duces then T~ to:
T'2- —(1/i 0)»g[(» 0—p) (d'» /d~') o/» o']

(for Xo))}» ). (10a)

T2=s[2(d'p/dX') (y„—p)] '*. (10b)

When Xo decreases below X, P,=X according to
(5b), »», = jc =0, and T~ takes the form:

When Xo approaches X, po tends to zero. The expres-
sion (jsq' 2—(d'p/D') 0,(»1,0 p—)]» vanishes before
reaches X, and thereafter it becomes imaginary. At
AD=X, pp= p =p =0, the argument of the log is
—1=e ' and T2 reduces to

(d'p/d)P) (Xo—X )—i[2(d'p/d)P) (y,„—p)]»
Tg ——i[2(d'p/d)P) „(»»„—p)]-» log

(d pc/dX~) (Xo X )+i[2(d p/d3P) (y p)]»

= [2(d q/d)P) „(I„p)—]-»{2~ ra—t an[(d' /»d)P)»(g „—p)»/(d'q/d) ')„(k—X,)]}. (»)

When ho&&A the last term becomes very small and,
inclusive of the factor in front, it reduces to:

1/(d'p/dX') (X —Xo). (9b)

This term, like (Qa), is independent of p; it may be added
to Q(X0, X) and treated accordingly. The significant part
of (8) is then simply:

T2~2x[2(d'p/dX')~(p„—p)]—», for (Xo&&X ). (10c)

The preceding considerations lead us to write the spec-
tral distribution (2) in the form:

F'(x, X) = Lob(X —Xo) exp( —pox)
+[CXO/(y —»»,)]exp[CQ(XO, X)+CT~]F(x, Xo),

(for X»X.); (11)
with

p 6+soe

F(x, Xo) = (1/2sf) I dp

Xexp[ px+CT'2(p, &—0)]/(»»o —p) (11')

The integral in (11') may be evaluated by steepest
descent for each value of x and for the diferent rela-
tionships between p and X which correspond to diBerent
absorbing materials. %hen the energy of the primary
photons is much smaller than that of the most pene-
trating ones (i.e., Xp»X ) T2 takes the form (10a), and
the integration yields exactly:

F(*, &o) = [1/1'(C/i o+ 1)](» 0'x/(d'» /dl ')o)""'
Xexp( —»»Ox). (12a)

This asymptotic behavior coincides with that obtained
in (5) I, as it should. fn the opposite case, when X0«X
and T2 takes the form (10c), evaluation by steepest

descent yields:

F(x Xo)~(2/3s')»[2s'C /(d p/dX )~(pp —p~)]
X [(d'p/d}»') „/4x'C'x]'"exp[ —»» x

+3(s C'x/2(d'p/dX') )»]. (12c)

The structure of these formulas is brought out by ex-
pressing them respectively as:

F(x, Xo) = const. x~4 exp( —pox), (13a)

F(x, Xo) = const. x-"' exp( px+—bx»), ' (13c)

where Eo C/IJO and——b=3(s'C'/2(d'»I/dX') )». Both
formulas contain the factor exp( —

»»,x), where p. stands
for p,o or p,„respectively, which represents the decay of
the most penetrating component under consideration.
The remaining factor x~o or respectively x '" exp(bx»)
represents the e8ect of the accumulation of the second-
ary components barely softer than the most penetrating
ones. Notice that Eo and b depend on the balance be-
tween the generation of softer components, which is
represented by C, and the corresponding loss of pene-
trating power, which depends on the derivatives of p,.

The solution obtained here has much the same sig-
nihcance as the solution derived in I and discussed at
the end of that paper. The solution (11) is completely
dered for all values of 'A))X„but it has no great claim
to accuracy for large values of 'A because of the as-
sumptions made, namely that k(V, X) =C and that the
eGect of deQections can be disregarded.

It is a pleasure for me to acknowledge the cooperation
of my colleague P. R. Karr. I also wish to thank Dr.
F. H. Murray of the Oak Ridge National Laboratory
for many helpful discussions.

'This formula has also been obtained independently by Dr.
Henry Hurwitz, Jr. , ~ho has kindly informed me of his results.


