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Internal Pair Foriaation*

M. E. Rosz
Oak Ridge National Laboratory, Oak Ridge, Tennessee

(Received April 20, 1949)

The electron-positron angular correlation and total conversion coeScient are calculated for internal pair
formation and for arbitrary multipole order of the electric and magnetic radiation fields. The Born approxi-
mation is used and in the region of greatest experimental interest, Z 40 and gamma-ray energy)2. 5 Mev,
the consequent error should be negligible. Numerical results are given for multipole fields of order 2' with
l =1 through 5 inclusive.

NTERNAL pair formation, as an alternative mode of
decay of an excited nucleus competing with gamma-

ray emission and (atomic) internal conversion, supple-
ments the latter process in that the pair formation decay
rate is largest where the internal conversion rate is
smallest. Thus, while the internal conversion coefficients
decrease rather rapidly with increasing gamma-ray
energy (k mc'), the pair formation coefficients increase.
Again, the internal conversion coefficients generally in-
crease with Z' while the pair formation coefficients are
practically independent of Z and in fact decrease slightly
with increasing Z. Consequently, in the region of low Z
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FIG. 1. Ratio (R) of electron-positron coincidence rates for
angular separations 0 and x/2 and for pairs of all energies in the
case of electric multipoles. The multipole order 2' is indicated by
the numbers (values of l) afIIxed to the curves. See Eq. (9).

*This document is based on work performed under Contract
No. W-7405, eng. 26 for the AEC at the Oak Ridge National
Laboratory.

'See, Rose, Goertzel, Spinrad, Harr, and Strong, E-Shell In-
ternal Conversion Coegcients, to be submitted to the Physical Re-
view. For sma11 k and the larger multipole'orders there is a maxi-
mum in the Z-dependence of the internal conversion coe%cients.

B J. C. Jager and H. R. Hulme, Proc. Roy. Soc. 148, 708 (1935).
This paper'gives the electric dipole and quadrupole coeKcients
calculated with Dirac hydrogen-like wave functions for Z=84.
The Born approximation (Z=O) results for the same multipoles

and large k where the internal conversion coefficients
will be too small to measure conveniently, the measure-
rnent of the pair formation coefIicient may prove to be
more feasible. Thus, for Z=40 the two modes of decay
are of roughly equal probability for k =5.0 (~2.5 Mev).
The electric internal conversion coe%cient (internal
conversion electrons per qus, ntum) in this case varies
from 5.62)(10—' to 3.33)&10—' for 2' pole to 2' pole
respectively. ' The corresponding values' of the pair
formation coeffiicients (pairs per quantum), computed
for Z=O, are 9.93)&10 ' to 1.77&(1.0 '. Similar results
follow for the magnetic multipoles. The contrasting de-
pendence on multipole order is also to be noted and is
characteristic. For Z(40 and/or k) 5.0 the internal
conversion coefFicients will decrease roughly like Z' or
k " where n depends on multipole order and parity
change and is generally of order 2—3. At the same time
the pair formation coefIicients increase with k so that
at k =20, for example, the number of pairs per quantum
is of order 10 ' for all multipole orders of practical
interest, and for both electric and magnetic radiation
(see Figs. 3 and 4).

For the question of utilizing pair formation measure-
ments in order to determine multipole order of nuclear
transitions and angular momenta of nuclear energy
levels, the sensitivity of the pair formation coefIicient
with / (2 is the multipole order) is of importance. Re-
sults for the total pair formation coeScients (Figs. 3
and 4) show that a satisfactory degree of sensitivity is
obtained for low k but that for large k the ratio of suc-
cessive multipoles is uncomfortably close to unity. '
Thus for the largest k for which numerical results are
given (k=20), the ratio of coefFicients for successive
multipoles is as low as 1.08 for the ratio of electric 24

to 2' multipoles and 1.10 for the ratio of magnetic 2'
to 2' multipoles. While a satisfactory dependence is
obtained for intermediate gamma-ray energies k 5 to
10, the situation is considerably improved for all k if

were given by J. R. Oppenheimer and L. Nedelsky, Phys. Rev.
44, 948 (1933}.Non-relativistic calculations for these multipoles
were carried out by M. E. Rose and G. E. Uhlenbeck, Phys. Rev.
48, 211 (1935).An examination of the accuracy of the approxima-
tion methods is given in the last mentioned paper.

3 This is, of course, due to the fact that for small wave-lengths
the pair formation (like the internal conversion) takes place in the
far zone of the radiation field so that all dependence on multi-
polarity {or parity) disappears.



one measures the angular correlation of electron and
positron. 4 Accordingly, in Figs. 1 and 2, results are pre-
sented for the ratio of coincidence counting rates in the
two cases 0=0 and 0= s/2, where 0 is the angle be-
tween the electron and positron. The angular correlation
as given here refers to the total counting rates, inte-
grated over the energies of the particles, since this
would appear to be the easiest quantity to measure.
This integral angular correlation is also more accurately
predicted by the calculations (see below).

The internal pair formation coeITicients, energy and
angular distributions and total conversion coefficients,
have been calculated for arbitrary multipole fields. The
Horn approximation is used. An estimate of the error
thereby induced may be made by comparing with the
results of Jager and Hulme' for Z= 84. For k as low as
6 the total pair formation coeKcient is too large by 20
percent for the electric quadrupole and by 15 percent
for the electric dipole. Since we are interested in much
smaller Z and k at least as large as the above quoted
value the Born approximation should be sufficiently
accurate. It should be emphasized, however, that the
Born approximation is most accurate for the "integral"
features of the pair formation process in which an inte-
gration over the energy distribution of the pairs has been
carried Out. The eRect of the Coulomb field is to sup-
press the number of slow positrons and increase the
number of fast ones and upon integration over the
energy spectrum these two eRects largely cancel out. '

In the following we use the system of units with
k= c=m= 1. The energy (including rest energy) and
momentum of the particles is 5'~ and p~ respectively
where throughout the indices + and —refer to positron
and electron respectively. The radiation field is repre-
sented by scalar V and vector potentials A with the
following gauge: for the electric 2' multipole field

A! =(2 /~ (tl +1))'y~ &(kr)(r grad+/r/r)V~, (1a)

V= i(2l/x(i+1)) lx!(kr) V!,
where yf is the spherical Hankel function of the first
kind

xl(x) = (s-/2x) &H)+;"'(x), (1c)

and Vf'" is a normalized spherical harmonic. For the
magnetic 2' multipole field

A!„=—(2/xl(i+ 1))&x!(kr) ir Xgrad V~, (1d)
V= 0. (ie)

With this normalization the number of quanta per
second is

!7,= 1/~'k. (2)

Then the ratio of the number of pairs per second with
electron and positron traveling in the solid angles dQ

' G. K. Horton, Proc. Phys. Soc. London 60, 457 {1948).The
angular correlation is given for the electric dipole, quadrupole and
magnetic dipole for particular division of the total energy between
electron and positron. See also, M. K. Rose and G, F. Uhlenbeck,
reference 2,

and dQ+ and the positron energy between tf'+ and
W++dW+ to the number of quanta per second is

dpi(W+, 0+, s+, il-, ~-)= P+P W+-W
32M

X P ~ (P ~
V+~ A~&+) ~'dfi d+Q dW+, (3)

where o. is the fine structure constant, e the Dirac
matrix vector and, as indicated, a summation over the

FIG. 2. Same as Fig. 1 for magnetic multipoles.

spins of both particles is to be performed. In (3) 8+, p+
are the polar and azimuth angles of the particles. The
wave functions of the particles are

P+ ——I+(pa) exp(Hip+ r), (4)

where the N~(p~) are the Dirac spinor amplitudes for a
plane wave.

The spin summations are most easily carried out by
introducing operators G~ defined by

G+u+ =u+ for 8'+& 0
=0 for W'g(0,

and summing over the four states, i.e., two spin states
and 8'~~0.

G~=( —e p~&P+W~)/2',
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components of the unit vector in the direction p in
which ~+ is replaced by ~ = 0—co+ and b by m —b.

After the b-integration, one integrates over the direc-
tions of q (dQ+dQ =sin8d8dgdb sinodO) and, as is to
be expected, the result is independent of m. Hence, one
obtains the angular distribution giving the number of
pairs per unit energy interval, per

~

d cosO~, per quan-
tum, the energies W+ being fixed:

y, (O) = ]I (dy, /dQ+dQ dW+) sin8d8dgd8 (6)

lo r

lO
k

20

For electric multipoles

(7/k)2l —1

~ (O)=(2 / g+1))(p+p-/'7)
(k2 '72)2

X{(8+1)(W+W+1—~p+p cosO)

+lL(7'/k') —2](W+W —1+P+P cosO)

+ 3 (~—1)p+p-L(3/q') (p-+p+ c»e)
X (p++ p cosO) —cosO]I. (7)

For magnetic multipoles

(7/k)21+1
'r (O)=(2 / )(p p /q) 1+W W

(k2 ~2)2

p+p-
(p +p+ cosO)(p++p cosO~), (8)

2

Frc. 3. Total number of pairs per quantum for electric multipoles.
The numbers aSxed to the curves give the value of l.

where P is the fourth Dirac matrix. Then

P [(P [V+e A~/+)I'=Spur (AG+A+G ),
8+8

A=a e's'Adr+ I e'~'Vdr,
J

with q= p++p and d~ is the volume element.
In order to obtain the angular distribution integra-

tions over the two solid angle elements are performed
with the subsidiary condition that 0", the angle between
electron and positron, is fixed. This is readily carried
out by integrating 6rst over the dihedral angle 5 formed
by the planes (z, q) and (p+, q) where z is a vector in
the direction of the axis of quantization. Here it is
useful to use

sin8+e+''+ = e+*4'(cosa&+ sin8
—since+ cos8 cos8&i since+ sinb),

cos8+= cosco+ cos8+sin~+ sintt cosh,

where co+ is the angle between p+ and q, 8, @ the polar
and azimuth angles of g; and similar relations for the

l04 r

FIG, 4, Same as Fig. 3 for magnetic multipoles.



INTERNAL PAIR FORMATION

the angular distribution is, of course, peaked in the
forward direction (0=0) and the more strongly so the
greater the multipole order.

As a convenient index of the angular correlation one
may measure the ratio of the electron-positron coinci-
dence rates at 0=0 and w/2; since yi(O) depends only
on cosO it would be permissible to make observations
at some small angle instead of at 0=0. The coincidence
rate ratio' is then given by

k—1 I —i.

R= )t dW+yi(0) dW+y((x/2).
1 1

From (8) y&(0) and y&(m/2) are easily evaluated and
the results for the angular correlation are shown in
Fig. 1 for the electric multipoles and in Fig. 2 for the
magnetic multipoles.

To obtain the total pair formation coefFicients we
first integrate (7) and (8) over 0 to obtain the energy
distribution

I'i(W+) = (a/n. (l+ 1)k') {(I/2) k'1 i+i

+ [2lW+W ', (7—l+-1)k']Ji

+[1(W+'+W '+1)+1—W+lV ]Ji i

—4(/ —1)(W~—W )'Ji 2}, (10a)

and for magnetic multipoles

I'i(IV+) = n/xk'{ (1+IV+W )Ji
—(k'/4)(Ji+i —x,x2Ji, ) I, (10b)

where the J& are the elementary integrals'

Ji——ir x'(1—x) -'dx,
&I

xi= (P+ P )'/k—', -x2= (P++p )'/k'-
The total pair formation coefFicient is then given by

d l V+ I'i(W+).

The results for l=1 5 are shown in Figs. 3 and 4 for
the electric and magnetic multipoles, respectively.

The author is indebted to Mrs. M. K. Hullings of the
Computing Panel of Oak Ridge National Laboratory
for able assistance in carrying out the numerical work.
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I'&(W+) = y&(O) sinodO. (10)
"o

For electric multipoles ' These are most readily evaluated by using the recurrence
formula

JE+&—2Jf+I+Jt = (x2'+' —xl'+') j(l+1))

J0——p+p, J1——p+p —2 log(1+ W+W-+ p+p —)/k

'Although the ratio of coincidence rates at 0 and 7I. is even
more sensitive to l, the number of pairs at 0=~ is very small and and
would be more dificult to measure.


