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begin to get j.00 percent depletion. While our experi-
mental accuracy is such that this agreement is somewhat
fortuitous we may, however, conclude that the back
diftusion of He' in the liquid during the heat Gush is
small.

It is also of interest to estimate the possible heat
Gush in a closed system produced by a creeping film.
We will consider the simple case of a bulb filled with a
sample of liquid helium, connected to a filling tube, the
bulb being immersed in a bath of liquid helium, the
whole forming an isolated system. The film creeps up
the filling tube and evaporates' and, in the steady state
condition, a mass of helium gas recondenses at the
liquid surface equal to the mass Rowing in the film. If
we assume that all of the heat of condensation is trans-
mitted to the liquid sample, and take Daunt and
Mendelssohn's' value for the creep rate at 1.8'K and a
tube diameter of 2 mm we obtain a power input to the
surface of the liquid of 0.1 milliwatt. From Fig. 2 it may

6 J. G. Daunt and K. Mendelssohn, Proc. Roy. Soc. A170, 423
(1939);170, 439 (1939)~

be seen that at 0.1 milliwatt power there is a Gnite heat
Rush. It is possible that the use of the Daunt and
Mendelssohn creep rate may not be justified here.
Later work~ has given diferent results, indicating in
some cases a much higher creep rate and this would,
of course, lead to a larger heat Rush. We believe in the
particular apparatus used in the present experiment,
the eBect of creeping film heat Rush is small. The sur-
face of the liquid sample is in the Kovar section, and
hence most of the creeping film heat would proceed
directly out into the bath, passing through only that
amount of the sample which is in the Kovar section.

The method appears to be a rapid and e%cient way
of concentrating He' possibly up to 100 percent purity.
The process may, however, break down for concentra-
tions much higher than our present record of 4 percent
He although we have, as yet, no indication that this is
so.

Finally we are indebted to Mr. Ernest Lynton for bis
assistance with the low temperature phases of this work.

~ K. R. Atkins, Nature 161, 925 (1948).
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The methods used by Schwinger in quantum electrodynamics can be generalized in such a way
that they become applicable to meson theory. This is shown by an example. The method used seems
slightly simpler than the method proposed by the Japanese school ~ It turns out that the covariant
field variables in interaction representation are not simply the transformed of the covariant variables
used in Heisenberg representation. Also it turns out to be necessary to confine the space-like surfaces
used in many applications to flat surfaces perpendicular to the time direction. The direct interaction
between two particles through the meson field is obtained by a canonical transformation similar to
the first approximation Schwinger transformation in quantum electrodynamics.

The example of a neutral vector meson field discussed in the present paper has been chosen in such
a way as to show the analogy to quantum electrodynamics. The interaction energy between particles
obtained by Schwinger's relativistic treatment in meson theory {and also obtainable by the other
usual perturbation methods) goes over into the M&11er interaction for vanishing meson mass.

INTRODUCTION

N recent developments of quantum electrody-
- namics much use has been made of the so-called

interaction representation, in which the q-numbers
describing various 6eIds of particles or quanta
satisfy 6eld equations of a form as if no interac-
tions between these fields would exist, while the
interaction is described by a generalized Schroe-
dinger equation for the situation functional (Schroe-
dinger state vector) 4. The theory of this interaction
representation and its use in quantum electrody-
namics have been developed here in America by
Schwinger. ' The basic ideas of this theory of the

i J. Schwinger, Phys. Rev. 74, 1439 (1948).

interaction representation had been developed
independently and published earlier by Tomonaga'
in Japan. As the theory may be considered as a
generalization of the many-times theory of Dirac,
Foci~, and Podolsky, ' the new theory was called by
him the "super-many-time theory. "4

If one tries to apply the super-many-time forma-

'S. Tomonaga, Bull. I.P.C.R. (Riken-iho) 22, 545 (1943)
{in JaPanese); Prog. Theor. Phys. 1, 27 (1946) and 2, 101
(1947).

Dirac, Fock and Podolsky, Physik. Zeits. Sowjetunion 2,
468 (1932).See also Chapter 18 of G. Wentzel, ZinfNhrung in
die Quantentkeorie der $Ãlenfelder (F. Deuticke, Vienna,
1943; reprinted by Edwards Brothers, Inc. , Ann Arbor, 1946).

4 Compare for instance T. Miyazima, Prog. Theor, Phys, 2,
94(A) (1947).
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lism to meson fields, one encounters the following
complications:

1. The interaction operator is no longer a scalar.
2. The commutator of the interaction operators

at two different points x and x' separated by a
space-like four-vector involves derivatives of three-
dimensional delta-functions.

3. As a consequence, the q-numbers transformed
from Heisenberg representation to interaction
representation will sometimes depend on the local
slope of the super-many-time "surface" used for
the transformation.

4. Consequently, the Lorentz transformations of
g-numbers in Heisenberg representation and in inter-
action representation are then different. Therefore,
the tensors describing the field in interaction repre-
sentation need not necessarily be the transformed
of the tensors used in Heisenberg representation.

5. Also the integrability of the generalized
Schroedinger equation presents a problem more
delicate than in quantum electrodynamics.

6. In the derivation of the field equations for the
transformed q-numbers, more care has to be exerted
about the order of sequence of limits than is neces-
sary for the usual g-numbers of quantum electro-
dynamics. '

7. Some of the field equations may have the form
of so ca/led "u-lenities" (not involving 8/Bt), but yet
contain interactions in Heisenberg representation.

In the present paper we shall deal with all these
points' and shall develop a satisfactory theory of the
interaction representation for the particular case of
a theory of neutral vector mesons interacting only
with the current-density four-vector of Dirac
particles. I t should be expected that the same
methods as used here for this particular example
can also be applied to other types of meson fields.
The particular interest we take in this one case is
based on certain applications of this theory, which
can be made in quantum electrodynamics. '

1. THE NEUTRAL PROCA FIELD IN HEISENBERG
REPRESENTATION

We shall discuss here the theory of neutral vector
mesons (case b of Kemmer'with real field variables),

' For less usual q-numbers like the gradients of the electric
field strengths, however, even in quantum electrodynamics the
method used by Schwinger (reference 1, Eq. (2.9)) leads to
wrong results. Compare footnote 23.' Just after completion of this work I received Progress of
Theoretical Physics, Vol. 3, Nos. 1 and 2, in which S. Kanesawa
and S. Tomonaga (pp. 1 and 101) and Y. Miyamoto (p. 124)
deal with the difficulties Nos. 1, 2, and 5 listed above, by a
method which seems different from the one used here and
apparently more complicated. I could not find a discussion of
the other four points listed above.

7 If the limit to vanishing meson mass is taken at the end
of the calculation, the formulas for mesonic interaction
between electrons give the usual electromagnetic interactions,
if the meson field discussed in this paper is used. See also F. J.
Belinfante, Phys. Rev. 75, 1321(A), (1949); Prog. Theor.
Phys. 4, 2 (1949}.' N. Kemmer, Proc. Roy. Soc. A166, 127 (1938),

interacting only with the charge current-density
four-vector of a field of Dirac particles (say,
electrons), and omitting the tensor interaction.
Apart from the vector interaction, this meson field
constitutes a Proca field' with real field com-
ponents. We shall use a notation that brings out
the analogies between this field and an ordinary
electromagnetic field. Indeed, the electromagnetic
interactions between electrons could be described
as interactions through a field of mesons with
negligible mass. '

If p, is the mass of these mesons, we shall write
", for pc/h, while ~ stands for mc/h, m being the
mass of the Dirac particles. The interaction con-
stant is called ( —e) instead of g, in order to em-
phasize the similarity of this theory to a theory of
electromagnetism. For this same purpose, we do
not give the meson field equations in the form used
by Kemmer' and later by Yukawa and others, " in
which the mass factor a, occurs in the equation
expressing the field strengths in terms of the four-
dimensional rotation of the potentials, as well as
in the equations giving these potentials in terms of
the four-dimensional divergences of the field
strengths. This form of the field equations may
have the advantage of making the field strengths
and the potentials to quantities of the same dimen-
sions, so that they can then be collected into one
single j.0-component symmetric undor of the second
rank. " But obviously the field equations in this
form would not have Maxwell's equations as their
limit for a,—+0. Therefore, we prefer here the equa-
tions in the form originally used by Proca himself9
and later by Bhabha, '2 Frohlich, and others. "

As our starting point, we shall therefore take the
following first order" Lagrangian function:"

1I = 'F""F —F'"a A——--'~ '-'A A"
I

4~
+A„j" hcg(~+—y"8„)P (1).

'A. Proca, J. de Phys. et rad. 7, 347 (1936); 8, 23 (1937).
"Yukawa, Sakata and Taketani, Proc. Phys. Math. Soc.

Japan 20, 319 (1938)."F. J. Belinfante, Physica 6, 849, 870 (1939). See also
Krarners, Belinfante and Lubanski, Physica 8, 597 (1941).'' H. J. Bhabha, Proc. Roy. Soc. A166, 501 (1938).

"Frohlich, Heitler and Kemrner, Proc. Roy. Soc. A166, 154
(1938).

'4Some advantages of the use of first-order Lagrangians
(linear in the gradient operators 8„) have been discussed by
me in Physica 7', 449 (1940). As far as I know, the proof of the
covariance of the canonical commutation relations used in
meson theories in Heisenberg representation has as yet been
published only for the theory using first-order Lagrangians
(see Physica 7, 765 (1940)). For applications of a first-order
Lagrangian in quantum electrodynamics see, for instance,
Physica 6, 887 (1939);7, 449 {1940);or 12, 17 (1946). For an
application in classical mechanics (electrodynamics), see Phys.
Rev. 74, 779 (1948).—For the rest, the formalism in this
paper could be developed just as easily from a Lagrangian of
the second order as far as the Proca field is concerned.

"Here and in the following, products of various factors
like, far instance, P'"8„A„orPy"8„P or g,At are tacitly assumed
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Here Bp —— 8—'=8/cBt, 8~ ——8'=7 =8/Bx, etc. The
y" are Dirac matrices satisfying y»y" +y "y» —= {y»; y"}
=2g»", with g = —1 g"=g"=g"=+1.They are
related to the Dirac matrices p and a" (with ap = 1)
by y"= ip—n", while p=ftp, if pt is the one-row
four-column hermitian conjugate of the four-row
one-column matrix of the q-number P. The charge
current-density four-vector j" (with j'= p in e.s.u. )
is given by

is the ordinary delta-function. Integration over k'
in (11) gives

I
dk sin {(44,'+ k') &ct }

6, (x) = — exp(ik ~x), (12)
~ 8~3 («,'+ k') &

with k= ~k{; so that obviously 6, is an improper
function of r and t, odd in t, and satisfying

{ —«, '}a,(x) = 0, A, (x) = —6,( —x), (13a—b)
j"= i ega "@—, (2)

A, (t=0) = 0, (14a)
where ( —e) stands for the "mesonic charge" of the
Dirac particles. (For 44,—»0 this formalism will then
describe the electromagnetic interactions of Dirac
electrons with an electric charge —e.)

IndePendent variation of the six-component
antisymmetric tensor FI'", of the four-vector A„and
of the undors (four-spinors) 4' and P in 8J'Ldp&=0
(with dkp=dxdydzdct), yields in the usual way the
held equation

{8o444,(x) } =o = —B(x) = —B(x)8(y)8(z), (14b)

so that

Bp'{h,(x —x') sgn(t —t') } = BpPh, . sgn(t —t')
—28(xp —x, ') B(x—x') —Bp' {2a, (x —x') 8(xp —xp') }.

From this, with (13a) and (14a), it follows easily
that (9) is a, solution of (8). For 44,—+0 this solution
would correspond to the average of the advanced
and the retarded potential, as seen from(3)F»„=BQ„—B„A„,

«.'A" = 4' "+8 I"»"

{44+y"8„+(ie/kc)A„y"}/=0, and conj.

From (2) with (5) follows
which follows from (11) by integration over angles
after «,—+0. The solution of (8) corresponding to
the retarded potential could easily be obtained by
replacing sgn(t —t') in (9) by {1+sgn(t—t') }.

The general solution of (8) can be written as the
sum of (9) and some arbitrary superposition of
plane wave solutions of the homogeneous wave
equation with a factor exp(ik»x»), with k„k"= k' —kpP

K0
Before we bring our formalism in canonical form,

it is convenient to introduce three-dimensional
notation throughout by F« ——F'"'= E&, F» =H„etc. ,

by A'=c', j'= p= e4ft4t, j—= eptap, etc. —Thus,
the first-order Lagrangian function (1) becomes

(6)B„j"=0.
This with (4) gives

B„A"=0,

so that, by (3) 8 I'»"= A" (with =8„8"), or,
by (4),

( —44, ')A" = —44rj". (8)

A solution of this equation is given by the four-
dimensional integral

A"„..., = —2x I d~'t«. (x x') sgn(t —t') j"(x')—, (9)

llm D, (x) =D(x) = (44rr) '{B(rect)—B(r —ct) }, (15)
(3)

where x stands for x and x' (that is, for x, y, z and
ct), while sgnt =

} t
~

't =sgnx', so that

L = (1/4pr) {-'O' —H ~ curlA ——,
' E' —E ~ VC

—E ~ BpA+-,'44, '(O' —A') }+A ~ j—4 p
Acket(44—P ia ~ w —iBp)f —(16).

8, sgnt = 28(ct) (10)
The field Eqs. (3)—(5) partially yield equations of
motion

Finally, A, (x) stands for

A. (x) = ~' (dk)4 B(k„k»+ «.'-)
8 J

- sgnk' exp(ik„x"), (11)

where (dk)'=dkdk'=dkgk dk, dk', and where b( )

to have been "symmetrized" as (IF""B„A,+{8„A,)F""I or
jp{y"~,P) —{y"8,$)P I or pe', I~—~ J, according to the

rules of the general quantum theory of wave fields discussed
in Physica 7, 765 {I940),even if such "symmetrization" is not
written down here explicitly. —A minus sign in such sym-
metrizations occurs only if two 6eld variables are involved,
both describing a 6eld of Fermi-Dirac particles {obeying the
Pauli exclusion principle),

BA/cBt = —E—VC,

8 E/cBt =curlH+ «, 'A —44r j, (18)

H =curlA,

K,'4 =4m p —divE.

(20)

From (16) it is readily seen that the canonical
conjugates to A and |t are given by (—E/4prc) and

'6 compare F. J. Belinfante, Physica 7, 755 (1940),

iABQ/Bt = (mc'P ikca ~ V—eC+eA ~—n)4t; (19)

partially they yield so-called "identities" defining
H and 4 as derived variables:"
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8rrBC& = t dx I E'+ z '(divE)'

+ K 'A'+ (curlA)-' }, (25a)

x.„=hcjt dxgt(Pa —ta v)|t, (25b)

~ Wdx, with

W= p4 —j ~ A —2ira 'p'. (25c)

Finally, the total linear momentum of the field is
given in the usual way by

(Pi ——jt dx}E ~ V'iA/4xc ihfttgP }. —(26)

2. THE GENERALIZED SCHROEDINGER EQUATION
IN INTERACTION REPRESENTATION, AND

ITS INTEGRABILITY

Following the scheme used in quantum electro-
dynamics' we shall now introduce a new repre-
sentation by a canonical transformation U[o] or
U depending on a space-like three-dimensional
surface o in four-dimensional space-time. If Q(x)
is in Heisenberg representation some g-number
(function of field variables) at the point x in space-
time, and 0. is some space-like surface through x,
then the transformed of Q(x) in interaction repre-
sentation shall be given by

Q(x) = U. Q(x) U. '. (27)

Similarly, the constant state vector y of Heisen-
berg's representation shall be transformed into a
o-dependent Schroedinger functional +[o] by

(ihrfrt), so that the commutation relations read

[A;(x); E,(x')] = —4rrihcb, ;b(x —x'), (22a)

{4-(x) ' A'(x') }=b. b(x —x'), (22b)

{P.; tl e}= {4.";4'}=0, etc.

The commutation relations between H and E or
between 4 and A or C and iP follow in accordance
with the general rules of the theory of quantized
fields" from the canonical commutation relations
(22) by the identities (20)—(21); for instance:

[4 (x); A(x')] = —(4rrihc/e ')Vb(x —x'), (23)

[4 (x) r 4(x')I = (4«/"')b(x —x') 4(x). (24)

Froin (16) the Hamiltoman is formed in the
usual way by R= J'dxI —E ~ A/4xc+ihiftg L};-
it is expressed in terms of the canonical variables
by means of the identities (20)—(21). This gives

X=Xf+3C +%, (25)
with

means of

so that
4'[o] = U. x, (28)

volume between the two space-like surfaces 0 and
0' and if the limit o.'~0 is taken in such a way that
the region where 0.' does not coincide with 0.

shrinks together to the infinitesimal neighborhood
of the point x on 0.. As we assume 0' as well as a
always to be space-like, the volume ~ will always
have a Hat shape and the dimensions of the volume
co in spatial directions cannot be shrunk faster than
the time-like distance between o and o'. From (30)
follows the generalized Schroedinger equation

ihc[b@[a]/bo(x) } = 'W(x) 4[a]. (31)
While here the transformed interaction operator
W is used, we shall first use (30) in its second form

with U, lV rather than with 'W U„as we do know
the properties of W but did not yet discuss the
properties of 'W.

9/e should postulate that U„once given on some
arbitrarily given space-like initial surface, should
follow for any other surface uniquely from the
"equation of motion" (30). A look at (25c), how-
ever, shows at once that (30) taken without
comment would not even determine uniquely the
eGect on U by an infinitesimal change of ~. For W
as given by (25c) is no scalar, so that the in-
finitesimal increment of U from 0. to 0', as given
by (30), will depend on the coordinate system
(Lorentz frame), in which W(x) in (30) is taken.

In order to give (30) a definite and unique
meaning, therefore, we have to specify explicitly
in which frame or reference W(x) in (30) is to be
taken. Obviously there is for that only one Lorentz-
invariant choice, and that is that in Zgs. (30)—(31)
W(x) should be takenin that Lorents frame, for which
the xyz space (the su-rface t=constant) is tangential
to the surface o at the point x. This choice of the
Lorentz frame indeed depends on 0. at x alone and
is independent of the particular coordinate system,
in which surfaces like 0 may be described as
t'=f(x', y', s'). It is also seen that W is invariant
under spatial rotations of the Lorentz frame, that
keep its time-axis four-dimensionally perpendicular
to o at x. Thus, Eq. (30) has obtained a unique
meaning, which could also be given in covariant
notation (without particular choice of a. Lorentz
frame) as ihc[bU /ho(x) } = U, W(x, o), with

W(x, o) = —g"A, —2rre, j'„N&j„N', (32)

(Q)=( *
Q )=(+[.]* Q~[]) (»)

The transformation U, shall satisfy the variational
equation

ihc I b U./bo(x) } = W(x) U. = U.W(x), (30)

where bU, /bo(x) = lim }(U, —U,)/ro}, if co is the



70 FREDERIK J. 8 EL I N F ANTE

where S" is a time-like unit four-vector at x four-
dimensionally perpendicular to 0 and normalized
by N„N&= —1 ~

One may perhaps think that this method is
cumbersome. Why not replace W say by pC j ~ A?
Let us for a moment leave open this question and
take Win (30) equal to

W= pC —j ~ A —X 2vii 'p' (33)

For XWO, we take (33) to be a correct expression
for W in (30)—(31) only if (33) is calculated in the
special Lorentz frame described above. '~ We shall
now determine the value of the not yet specified
constant X in (33) from the postulate that Eg. (30)
be integraMe. We shall see that this leads to X= 1

rather than to X=O.
In order to verify the integrability of our varia-

tional equation (30), it is sufficient to consider a
variation of 0 in two infinitesimal steps, and to
show that the change of U, resulting from this by
(30) is independent of the order of sequence of
these steps, as long as the final surface is the same.
To facilitate our work, we shall assume that the
surfaces are given in some fixed coordinate system,
say I gvgr j, where r may take the place of x' or ct
We denote the initial surface r=f(f, v, 1) by 0, the
Anal surface by 1. The shift of 0 from 0 to 1 takes
place in two steps, first from 0 to 1, later from 1 to 1.
The surface 1 be given by r =f(g, v, 1')+e(P, v, 1),
where the infinitesimal function e is the variation
from 0 to 1 in the v-direction, Similarly, the ~-shift
from 1 to 1 may be given by the inhnitesimal
function p($, v, 1). One may also perform first the
variation of' 0 over a distance q in the 7.-direction,
which may give an intermediate surface 0; then
take the variation ~ as the second step from 0 to 1.
It is now sufficient to check that, for in6nitesimal
values of both e and q, taking into account only
terms linear in e and linear in v (including the
bilinea, r term in both), one obtains the same change
of U, from 0 to 1 independent of the choice between
1 and 0 for the intermediate step. "

'7 In covariant notation this might be written as

w(~, ~) = —&"~„-x2...-~&„x~&„x".
'8 One may, of course, also postulate that this be true for

any intermediate surface 0, where the 7-shifts between 0 and 0
and between 0 and 1 be given by 7 and &, provided that
q+&=~+q. In that case, however, it is necessary to take
into account not only bilinear terms, but all terms quadratic
in one of these infinitesimal v-shifts as well, which complicates
the proof considerably. In this case, Eq. {37)should be replaced
by the more accurate

UL1j = ULOj expf des. wa

= U)01 1+ ~IVa+~~ e'g, g a

+$j eib Tla+)o ee'ww'a'

The further calculations run in principle like those in the
text, only more terms have to be taken into account. This is

T =4' X/cp P] ~ (33)

Let v be the (finite) velocity (with respect to the
fixed I grll'rj-frame) of the local O-frame, tangent to
the surface 0 that was given as r=f(gvt) Then it.
is easily seen that v/c = ilf, if B denotes the gradient
in &vt' space -Thenc. e, the difference in velocity (in
units c) of the 1-frame and the O-frame, with
respect to this Pvt space, is g-iven by Be

From this, the relative velocity cb of 1 with
respect to 0 is found according to the rules of addi-
tion of velocities in special relativity theory. Thus,
if v~ is the velocity of the 1-frame with respect to
the fixed Pvt'-system, then the relative velocity of 1
with respect to 0 is given by

v Iv-'(v ~ v ) —1 j+ ( vi —vv '(v ~ vi) j (1—v'/c')&
b

1 —v ~ vi/c

For vi ——v+cBe, with infinitesimal i4, this amounts
to

(Be), Be —(Be).
b=

1 —v2/c' (1 —v'/c') &

left to the reader. The complications introduced in this way
are, of course, completely needless, as one could always
introduce another intermediate surface (1') at a distance
(e+7') from 0, and then consider the change from 0 to 1 as
occurring in three steps, once 0~1~1'~1 and once 0 0~1'
~l. Here only the underlined parts of the shifts occur in a
different order of sequence and they definitely satisfy now
the simplification made in the text, that 1~1' and 0~0 are
equal r-shifts.

"This follows from the fact that (up to terms linear in b)
the charge density p in Eq. {33) transforms, from the local
Lorentz frame Ixy-et[ on 0 to the local Lorentz frame
Ix'y'z'ct'I on 1, by p'= p —b j {just as ct'=ct —b x).

By W(1) we shall understand the va.lue of W(x, v)
in a point on 1; that is, a value of 8'as found from
Eq. (33) in a "loca.l" Lorentz frame "tangent to"
1 ( =with its time-axis perpendicular to 1). For
W(0) we shall often write simply W. By B,W, we
shall understand the derivative with respect to 7.

of W as given by (33), calculated as if the Lorentz
frame is not changed with 7. This is the derivative
of W(x, o) of Eq. (32), with respect to r, if the
X"-vector is thought to be constant. As the local
Lorentz frames on 0 and on 1 are not identical,
however, we must then write

W(1) = W(0)+e B,W+(b ~ T). (34)

Here, the last term represents the change of W'

from 0 to 1 as far as due to the variation of X&, so
that it may be regarded as the effect, on lV as given
by Eq. (33), of the infinitesimal Lorentz trans-
formation from the local Lorentz system tangent
to 0, to the local Lorentz frame on 1 in the cor-
responding point (with same g, ii, f'). Let b be
defined as the infinitesimal "velocity" (in unit c) of
the local frame on 1 with respect to the local frame
on 0. Then, T in (34) is given, in the local frame on
0, by"
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Here, (Be),=—vo '(v ~ Be) is the component of Be

in the direction of v, and Bs—(ik). the component
of Be perpendicular to v. Introducing the symbolic
notation ur for a multiplication by (1—vs/ c') ' of
the components parallel to v, and by (1—v'/c') &

of the components perpendicular to v, we may then
write for the above result

b =mBe. (36)

Similarly, the velocity (in units c) of 0 with respect
to 0 will be given by b=mBq.

Now, integration of (30) from 0 to 1 gives, up to
linear terms in e ..

U[1j= U[0j 1+~I cWa (37)

U[1j= U[1] 1+ I v W(1)a (38)

into (38) we substitute both (37) and (34). Up to
the bilinear term this gives

U[1j= U[0j 1+ t eWa+ q Wa
J

Here a=(ihc) ', while J' stands for an integration
over $, rt and I. Similarly,

the commutators of p and j with 4 yield delta-
functions (symmetric in x —x ) multiplied by
g-number functions of x and x' that must then
obviously be antisymmetric in x and x', so that
they vanish after integration in the left-hand
member of (41) for x =x' due to the delta-functions.
Therefore, these terms are of no interest to us. The
only interesting terms are products of q-number
functions of x and x' with gradients of delta-func-
tions, which arise from the commutators of C with
A' and of A with C' by (23). This gives

[W; W']=4wihc~, 'I pj' ~ & —p'j ' z'}8(x—x'). (42)

We remark that b(x —x') =(1 v'/—c') &g(g g'—),
and that the gradient (V) with respect to x on the
surface 0 is the gradient (B) with respect to
multiplied by another factor (1—v'/c') & as far as
this gradient is calculated in the direction of v.
Combining these results, we get

VS(x-x') =EBS(g-g'). (43)

We substitute (42) with (43) into the left-hand
member of (41) and integrate each term once by
parts. Into the right-hand member of (41) we
substitute Eqs. (35) and (36). Thus we obtain,
after division by 47pKO =4K'uric&, —2:

+)t qe. B,W a+ q(b ~ T)a

+J' )I ~q'WW'u' . (39)

Here, W' stands for W(&', v', I'). Similarly, if 0
instead of 1 is taken as intermediate surface:

U[1j= U[07 1+ I qWa+ ~ eWa

+ ~ eq B,W a+ e(b ~ T)a

f f
+) )

v'eW'Wa' . (40)

The integrability of (30) then requires the vanishing
of the difference between (39) and (40), that is,

a t eq'[W W'] = t [~b —qb } ~ T. (41)
J

The commutator of W(grtl) with W($'v'1') on
the surface 0 can be calculated easily with the help
of (22)—(24) in terms of the coordinates on this surface
itself, for which W is simply given by (33). Thus,

= &~~ pj {~utBp —pwBe }. (44)

Performing the integral over g' and remarking that
the terms with B(pw) drop out, we find that (44)
is on identity, if X = 1.

This means that the postulate of integrobility of
the Schroedinger equation for U, excludes a scalar
znteroction operator W(x) in this meson theory and
that the variational Eq. (30) for the transformation
U, isintegrablejust with the choice (Z5c) or (3Z) for
the interaction operator

3. THE RELATIVISTIC TRANSFORMATION PROPER-
TIES OF THE q-NUMBERS IN INTERACTION

REPRESENTATION

In the preceding chapter we have dehned by
Eq. (27) the transformed q-numbers in interaction
representation as certain functions of x as well as
of a surface of transformation cr through x. We

"We found the operator W'(x, 0 } which makes (30)
integrable simply by postulating that the interaction
integrand S'(x} from (25c) be taken in a Lorentz frame
"tangent" to cr in x. There was no need of finding an auxiliary
term to be added to W(x}. This seems a simplification as
compared to the methods suggested by the Japanese school
(see footnote 6). Remark that we do not yet confine ourselves
here to flat surfaces: v and then zo above may be functions
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shall first investigate in how far these 'Q(x) depend
on g.

For this purpose, let us consider a variation
e(g, s, l) of 0 in the r-direction, like in the pre-
ceding chapter. Then, U again is varied according
to (37), or

bU= U e'lV'c,

where W is to be taken at the point of the surface
n with coordinates g'(P', s', I') in the fixed coor-
dinate system, and to be calculated there either in
a tangent Lorentz frame, or by Eq. (32). From (45),
by U 'SU+SU ' U=O we find

bU—'= —U—'bU U '= —)" e'W'a U-' (46)

Assuming that the point x on 0 is not varied, we
find by (45) and (46) that an infinitesimal variation
of the surface r without change of the fixed point I'
with coordinates x (or () on it, changes 'Q(x) by
an amount

8'Q(x) =SU. QU '+ UQ 5U '

= U t ue'[W'Q —QW] U ' (47)

where the integral is to be taken over all points (P')
of the surface o and where the coordinates g'ri'I'
are taken as the integration variables.

In general, the commutator [W(P'); Q(P)] ap-
pearing in (47) will be zero for finite space-like
distances PP', so that we conclude that the ex-
pression (47) is independent of variations e((')
of the surface at points I" at a finite distance from
the fixed point P However, (. 47) may easily depend
on the value of the spatial derivatives of e((') at
the point P (at g'=g), and surely will do so as
soon as [W', Q] contains gradients of delta-
functions.

This means that the transformed g-numbers in
interaction representation in general will depend on
the local slope of the surface of transformation 0,
or even on the gradients or higher spatial deriva-
tives of this slope, if [W; Q] involves higher deriva-
tives of delta-functions. (The value of e itself at P
must of course be zero, as we kept the varied
surface through P.)

We have to see the question of the Lorentz
transformation of these transformed q-numbers
'Q(x) now in the light of this 0-dependency of Q(x).
We may, in particular, distinguish the following
two questions:

(A) Let Q(P} be given in a Lorentz frame X and Q(P) be
obtained from it by a transformation U~ belonging to a certain
"transformation surface" o {not related to X in any particular

way). Let ~Q'(P) be the Lorentz-transformed of Q(P), ob-
tained by the same transformation surface o. from Q'(P) in a
new Lorentz frame E'. What is the relation between Q'(P)
and Q(P)?

The answer is obviously, by Eq. (2/), that under these
circumstances ~Q(P) will transform in exactly the same way
as the q-number Q(P) in Heisenberg representation, for U
in (27) is determined here independent of the Lorentz frame
and depends only on the surface o, which was thought to be
constant.

(B) Let 'Q(P) be the value which Q{P) takes for cr in P
sufficiently Aat and "tangent" to the Lorentz frame X, in
which the components of Q are taken. Let 'Q'(P) be the value
which "Q'(P) takes for a new 0' in P suSciently Aat and
tangent to the new Lorentz frame X', in which the com-
ponents of Q' are measured. What is the transformation in
this case from 'Q(P) to 'Q'(P)F

This is the question we are going to discuss now. Its im-
portance lies in the fact that in most practical examples, one
will turn the 0-dependent quantity Q(x) into a simple point
function 'Q(x) by taking for cr the surface t =constant, which
indeed is completely Aat and is tangent to the Lorentz fralne,
in which t is measured. Then, a Lorentz transformation is
automatically a transformation of the type (8) rather than
one of the type (A).

In the following, we shall often call 'Q the ~alue
of Q in intera, ction representation, and the trans-
formations (B) the Lorentz transformations of the
g-numbers in interaction representation.

Again we consider infinitesimal transformations
only. (The transformation formulas for finite trans-
formations would then follow from them by
integration. ) We follow the notations of the pre-
ceding chapter. For the initial surface we may take
now a completely fIat surface and take this flat
surface at once as our ill -space without any loss of
generality, so that the complications with powers
of (1 —v'jc') of the preceding chapter this time are
avoided, while for W we can now take simply (25c)
without making a distinction between a pril and an-
xys-space. "

The transformed surface 0 in a frame of reference
E moving with a velocity cb with respect to X is
then given near P by r =b ~ r' (with r' =x' —x), so
that the "~-shift" of 0. with respect to 0. is given by

e'=b r'=b (x' —x) for r' not too large. (48)

At a larger distance, the shape of 0 does not matter
and need not be Hat, so that we may consider ~'

as approaching in some way to zero for x' moving to
infinity.

~' We are allowed to flatten out the initial n, because this
process does not change 'Q(P) as long as we do not change the
first few spatial derivatives of the function r(g, g, g} first
determining e. The exact number of these erst fnv derivatives
depends on the orders of derivatives of delta-functions that
might appear in LR'(P'); Q(P) j, as explained above. If the
surface 0 originally was "su%ciently Aat" (first few partial
derivatives of Br equal to zero), a change of these derivatives
of Br at P itself need not be fnade indeed while ffattening the
surface. As in 'Q(P) the transformation surface should at P
be tangent to the Lorentz frame used, we conclude that the
surface o used in X, when Aattened out, simply becomes the
surface 5=constant, and ordinary x, y, s-coordinates take the
place of g, q, g.
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b 'p = —b ~ 'j. (57)

Let us now think [W(P'); Q(P)] to be expanded
in derivatives of delta-functions of (x' —x), by

[W(P') ' Q(P)l = fo(P' P)h(r')+fi(P', P) &'h(r')

+Q P fii(P', P) Vi.'Vi'h(r')+, (49)

and substitute this expansion into (47). Adding to
this the variation of 'Q(x) due to the Lorentz
transformation of Q itself in Heisenberg representa-
tion (which we shall denote by hQ), we find for the
total change of 'Q(x) under such an infinitesimal
transformation, after integrations by parts and
with use of (48) for e' near x,

h 'Q(x) = U {hQ(x) —ab ~ f, (P, P)

+a 2 ZL(be~i'+bi~i')fbi(P', P)](p'=p) ' ' ' } U '.
(50)

Ke shall apply this formula now for the cal-
culation of the transformation properties of 'A, '4,
'E, 'H, 'iP, 'iPt, 'p and 'j for our neutral Proca
meson field interacting with Dirac electrons. In
Heisenberg representation, the infinitesimal Lorentz
transformation (ct=ct 1 ~ r', r'—=r' —bct) from X
to E gives

hA= —bC, 8C = —b ~ A, hE={b)&H],
hH = —Lb && E], biP= —-',1 ~ nP, (51)

hPt= —2|tte 1, hj= —bp, hp= —b ~ j.
Of these quantities, A and C by (23) yield first
derivatives of delta-functions, when commuted with
TV.

[W(x'); A(x)] = —4irihcii, -'p(x') V'h(r'), (52)

[IV(x'); C(x)]=+4irihce, -'j(x')V'h(r'). (53)

Taking the values of fi for A and for C' from (52)—
(53) by comparison with (49), and substituting
this with (51) into (50), we find (with ai7ic=1):

h 'A = U { 14+4'—re. '1p }U '
= —1{'C—4+K.-' 'p}, (54)

h 'C = U{ —1 ~ A —4m ii, '1 ~ j }U '
= —b ~ {'A+4s~, ''j}. (55)

For H we find, by (20) and (52),

[W(x'); H(x)] = curl[ W(x'); A(x)] = 0, (56)

by curl V =0. The other quantities listed give
merely ordinary delta-functions (if anything). As
fi(P', P) does not appear in (50), these delta-
functions do not contribute to 8 'Q either. There-
fore, these quantities transform in interaction
representation exactly in the same way as in
Heisenberg representation. For instance, 'E forms
a tensor with 'H, and 'ip and 'i' are undors.
Further, 'p forms a four-vector with 'j. In par-
ticular,

a,' 'V= —div 'E. (61)

From this follows (for t =t')

[V(x); ip(x')] =0, thence, [' V(x); 'ip(x')] = 0. (62)

This difference in behavior between V and C (which
by (24) did not commute with iP) is important for
the establishing of the free commutativity of
meson field and matter field in interaction repre-
sentation, as we shall see in Chapter 5.

4. THE FIELD EQUATIONS IN INTERACTION
REPRESENTATION

We shall now calculate the derivatives of quan-
tities 'Q(x) in interaction representation. They are
in principle given by

8 'Q(x) =lim
'Q(*) —'Q(x)

t

x-x (63)

where o and o are both taken "suSciently flat" and
parallel at x or x to the t =0 surface of the Lorentz
frame used. We shall here first treat separately the
spatial gradient and the derivative with respect to
time of 'Q in this frame of reference.

For the spatial derivative, o can be taken as
passing through x as well as through x, so that
there is no need here to take cr diR'erent from o at
all. Thence, by (63) and (27),

v 'Q(x) = U VQ(x) U ', (64)

that is, the spatial derivative of the transformed is
the transformed of the spatial derivative. (We did
already use this in the second part of Eq. (61).)

For the derivative of 'Q with respect to x'= ct, it
is necessary to take ~ through the point S, which
may be shifted from x over a distance ~ in the

Subtracting 4iii~, ' times (57) from Eq. (55), we
obtain

h{'4 —4ire, ' 'p} = —b ~ A.

Comparing this with (54), we see that

'V='C —4iri~ ' 'p with 'V='A (59)

forms a four vector, -which we shall denote by 'V".
It is the transformed, by (27), of

V'= V=4 —4m~, 'p with Uk=2k,
(h =1, 2, 3), (60)

but, while in interaction representation 'Vt" is a
four vector -in sense (8), 'A" is NO four vecto-r in this
sense, and while A& is a four vector -in Heisenberg
representation, V" is NO four vector -This. means
that the transformation properties of these quantities
in Heisenberg representation and in interaction repre
sentation are diferent.

Remark that, by (21) and (60), V satisfies the
"identity" ~,'U= —divE, thence,



FREDERIK J. BELI NFAN TE

x'-direction. Thence, the shift from o to 0 can be
given by a function s(x', y', s') like in the preceding
chapters, with ~ = r at the point x' =x. The change
of 'Q as far as due to this shift of o is given again
by (47); in addition to that, there is a change
rr)oQ(x) already in Heisenberg representation, so
that the total increment of 'Q(x) from x' to x'+r
is given bY

Here, [W', Q] may contain delta-functions and
derivatives of delta funct-ions, as shown in Eq. (49).
The derivatives of delta-functions we integrate by
parts. A diA'erence with the derivation of Eq. (50)
is that this time ~' near x can be considered as a
constant (=r) instead of the linear function of r'
given by (48). This is due to the fact that the same
Lorentz frame is used for 'Q(xo+r) as for 'Q(x'), so
that the two surfaces o and o must be parallel" (and
sufficiently flat) near x. Thus we find, by t)o'Q
=lim(tl 'Q/r) and by s'= r for x' near x:

I

t)o 'Q(x) = U BoQ(x)+ (ihc) ', [W(x'); Q(x)] U-'

t)„'Q(x) = U,B„Q(x)U

+(ihc) ' t['W(x'); 'Q(x)]d „', (67)

where the spatial components of the surface element
de„' vanish at least near x, where 0 is the surface
xo =constant.

Substituting (49) into (66), we find

&o 'Q = UI t)oQ+afo(P, P) a[:&' ' fi(P' P)](p'=p)

+a P PLV.'V, 'f„,(P', P)j„.„—.j U-'. (68)

Ke apply this formula to the various held com-
ponents. From (52) and (53) we take fi(P', P) for
A and for C, (for which fo(P, P) =0), and thus find
by (68):

o)o 'A = U[doA+4xxo '& p j U ',

or, by (17), (60), and (27),

(69)
similarly,

8o C'= UI8g4 —41I'K dlvJ j U i

= Uj —divA+4mx, sBopj U '.

As p(x) commutes with W(x'), we find
= U,BoQ(x) U,—'

+ (ihc) ' ['W(x'); 'Q(x)]dos', (66)

Bo 'p = UI Bop j U '.
From (59), (70), (71), and (64) then follows

(71)

where r runs through x and is the surface t =con-
stant near x, and where d(TO'=dx'dy'ds'. The Eqs.
(66) and (64) together can be written in a form
that seems to show their covariance (though it does
not show that a change of Lorentz frame for 'Q
necessitates a change of the surface tr) as""

'~ Indeed: if Q depends on the slope of o as shown in the
preceding chapter, the value of 'Q(x) —'Q(x) would be dif-
ferent, if 0. would be taken with a different slope. Therefore,
the equations of motion derived in the following are owly then
correct, if one hakes al/ surfaces parallel, thus giving Q{x)—'Q(x) an unambiguous meaning for given x, C, and 0
through x. In the text we use (25c) for S", which is correct,
if we take the t-axis perpendicular to these parallel surfaces o.
Therefore, we write 'Q rather than Q throughout the fo1-
lowing discussions in the text.—If one drops this particular
choice of the t axis and ca,lculates B„Q under the mere re-
striction that a.ll surfaces tr be at least parallel to each other
(even if not to the x, y, z-plane}, one would have to replace
W(x') in the text by 8 {x', o.) of Eq. (32), with ¹ per-
pendicular to cr. Thus, Eq. {67) would become covariant as
far as a is kept invariant, &f we write in (67) Q instead of 'Q
and 8'{x', tr) instead of lV(x')."It should be remarked here that our formulas (66)-(67}
are essentially different froni the {apparently incorrect)
formula

8„~Q(x)= U,B„Q{x)U

+(the) 'f l'W(x, cr); 'Q(x')ldo„' (67F)

(with the x and x' interchanged in the integrand), at which
Schwinger arrives in his paper on the interaction repre-
sentation (reference 1, Eq. (2.9}).Ke would have been led

Bo
' V= o)o 'C —4trs, 'Bo 'p = —div 'A. (72)

to this wrong equation, if in (65) we would have replaced 5 Q
by its average over a small surface element of 0 near x, and
then would have replaced S"' by W'(x, o) assuming that the
region of deviation between o and o could be shrunk spatially
to the one point x. Obviously this cannot be done, if yet one
wants to calculate 5 ~Q by its average over a small finite
region about x.—In Schwinger's own derivation. of Eq.
(67F), he forgets that for the calculation of a variation bU
by means of (30), one should average (integrate) the inter-
action operator 8'(x') over the whole volume ca between the
surfaces, (where the spatial dimensions of co should be larger
than the time-like distance w between the surfaces). More-
over, the term in ~Q(x) —~Q(x), leading to the commutator
between W' and Q, is the term in which Q(x) is considered
constant and the variation of U, is taken into account. In
such a term the integration of 8' over or is more essential
than the averaging of Q over any region. —The difference
between (6/) and (67F) is of the utmost importance, as {67F),
even in its simplified form with o parallel to the x, y, z-plane,
by (49) leads wrong1y to

so Q= &l&oQ+a&o(I, &)+aLV ~ &i(J J ')1(r -r)
+o Zo &i&vs'vi'toi(J', I")](r P)+ l & ', (68F)

which, in general, is diferent from (68), as fi, fhl, etc., are
neither antisymmetric nor symmetric in I' and P'. Thus,
(68F} would in particular not lead to the results {69), (70),
{72), (75), and (77).—True enough, there is no difference
between {68)and {68F), if its use is confined to cases, where
derivatives of delta-functions do not appear, as in Eq. (74),
or as in quantum electrodynamics with one of the field
variables taken for Q. But even in quantum electrodynamics,
as soon as we take for Q, for instance, the spatial derivatives
of the electric field strength (compare footnote 5), Schwinger's
formula leads to wrong results, giving for instance (w'rongly)
8&{Vk'E&)=V'&{curl& 'H —4~ 'j&), instead of t'correctly) 8o(V'& 'E

&)

=V'J, curli H.
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[W(x'); E(x)]=4orihcj(x')b(r'), (73)

one hnds after comparison with (49) that for this
case only fo(P', P) is different from zero. By (68)
and by (18) and (64) we thus obtain

&o'E= U{&oE+4mj}U '=curl H+a, o A. (74)
'P(x) =

~
S(x—x')q~ 'P(x')d~„', (82)

It has been shown by Schwinger" that the Dirac
equation (80) for 'P can be solved rigorously, if 'P
is given on some space-like surface e (not neces-
sarily flat), by

Further by (64) "identities" are unchanged in the
interaction representation. Thus (20) together
with (69) can by (59) be written as

(75)

and similarly,

'P(x) =
) do„' 'P(x')y&S(x' —x), (83)

while (61) with (74) gives

Further, (72) gives

(76)

where S(x) is a Dirac matrix depending on x and
given by

S.e(x) = {y"8), —~}.eh(x). (84)

8„'U"=0. (77)

From (75)—(77) then follows the wave equation

{ —~ '} 'V"=0 (78)

Finally, by (22b) and (24),

{IV(x');0(x)I
= e {C(x') —A(x') ~ e }P(x')b(r') (79. )

Comparing this with (49) we find again that only
fo(P', I') is different from zero here, and (68)
together with (19) and (64) yields

Bo 'P = U {8pP+ (e/i kc) [4 A ~ e]f } U—'
= { o~P n—~ V}—'P,

or
{~+&"~.} '4 =0.

If this is multiplied from the left by (y"8.—«), we
obtain the Klein-Gordon equation for a field of free
electrons:

{ —«'} '/=0. (81)

From (75)—(78) and (80)—(81) we see that the
g-numbers 'V', 'F„„,and 'P (similarly 'Pt), which,
according to the preceding chapter, form a set of
tensors and undors, in interaction representation
satisfy field equations "as if no interactions were
present. " This actually is the main advantage of
the interaction representation and enables us to
solve the field equations (see below) and write
down their four-dimensional commutation relations
(next chapter). Also it enables us to distinguish the
positive and negative frequency part of the field
in a relativistically invariant way. '4 An essential
difference with quantum electrodynamics, however,
lies in the fact that 'U& is not simply the trans-
formed of the four-vector A& used in Heisenberg
representation.

~ See, for instance, J. Schwinger, "Recent developments in
quantum electrodynamics, " notes published at the occasion
of the Summer Symposium at the University of Michigan
(Ann Arbor, 1948), or J.Schminger, Phys. Rev. 75, 651 (1949).

Here, D(x) is a function similar to A, (x) (see Eq.
(11)), but with o;, simply replaced by a. In the
integrations (82)-(83), do„' is a component of a
surface element of 0 at a point x' on it. On the
other hand, x need not lie on r, nor is 0. related in
any way to the transformation surfaces used by
(27) in the transformation from Heisenberg repre-
sentation to interaction representation.

Schwinger also solves the wave equation for the
potential four-vector in quantum electrodynamics. "
We shall solve here the wave equations (77)-(78)
by a similar method.

We first define a quantity 'B„La, x] by

'B„{o, x]= I Lh, (x —x') 8„' ' V„(x')

—' V„(x')8,'A, (x —x') ]do"'. (85)

We remark at once that this quantity actually
depends only on x and is independent of the choice
of 0. Indeed by Schwinger's~~

f f(x')d(r. ' = 8."f(x"),
bo(x") ~. (86)

'B„fu, x]='V„(x). (87)

Thus 'B„{a, x] expresses 'V„(x) in terms of the
values 'V„(x') and 8„' 'V„(x') of the potential and
its derivatives on an arbitrary surface o (that need
not pass through x and that need not be flat).

'5 Reference 1, Eqs. (2.23)-(2.27)."Reference 1, Eq. (2.22).
~7 Reference 1, Eq. {1.46) or {2.8)

and by use of (13a) and (78) for 'V„(x') in the
integrand of (85), it is readily seen that a variation
of cr near the point x" on 0. does not change the
value of 'B„.Thence, 'B„may be calculated with
r replaced by a diR'erent surface. If one takes
simply the surface 5=constant through the point x
itself, it follows then by (14) that
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Similarly, it is shown that '8

La.(x -x') r).'f)i' ' V„(x')

—r)),
' ' V„(x') f)„'.a, (x x—') jdo"' = f)i ' V„(x). (88)

5. THE COMMUTATION RELATIONS IN INTER-
ACTION REPRESENTATION

In Heisenberg representation, we have given in
Chapter 1 the canonical commutation relations
between q-numbers in points at equal time. Trans-
forming the g-numbers by means of (27), taking
the corresponding surface t =constant for cr, we find
that these canonical commutation relations remain
valid in interaction representation. From them
follow the commutation relations in interaction
representation for unequal times by means of the
equations of motion (75)—(81) solved by (82)-(88).

The following commutation relations are easily
verified to satisfy the equations of motion (77)—(78)
and (80)—(81):
[' V„(x); ' V.(x')]

=4s.ihc{g„„s, '—r)„f),}L,( x x'),—(90a)

['y.(x); 'g, (x') ]= —iS.&(x—x')
=i {s y"r)i,},ph—(x x'), (90—b)

[')f.(x); 'A(x')] = ['&-(x) ' '& (x')] =0
[' V„(x); 'P (x')] = [' Vj,(x); 'll' (x')] =0. (90d)

Also, for & = I' they are seen to give (22b), (23), (24),
and (62) by virtue of (14) and (59). Further, the
commutation relations for 'F„„calculated from
(90a) and (90d) by differentiation check for t=i'
with the commutation relations following from
(20) and (22a). Thus, the coinmutation relations
(90) must be generally valid. They could, of
course, have been derived directly from the
canonical commutation relations by means of Eqs.
(82)—(83) and (85)—(88) in the way discussed by
Schwinger. "

Remark that the possibility of commutation
relations that make the Proca field completely
commutative with the electron field (see (90d)) is
based on the fact that we replaced the scalar poten-
tial 'C by the dBerent quantity 'V given by (59),

"Equation (88) also follows directly from (85) with {87),
if we first calculate B), '8„, replacing Bp by —B),

' where it
acts on ~,. The (—Bg') are then transferred to the other
factor by —nBy'@=GAB), 'u —B),'(ee). The last term here gives
rise to an integral, which by use of Schwinger's general relation
(reference 1, Eq. (1.58))

f si'f(&')~ ' f&'f(&')=&~i ', (89)

and by subsequent use of {13a}and (78) is seen to vanish.
Then, for B), 'B„only (88) is left. According to (87) this must
be Bg

' V . Summing over X = y, it is then seen from (88) that
the validity of (77) at x follows from its validity on and near
the surface o.

~' Reference 1, Eqs. {2.28)—{2.29).

thus avoiding the complication (24) existing in
Heisenberg representation. "

ihf)i, 'q = ['IIi i 'q]. (91)

For 'g=—'P this has been proved by Schwinger;" for
'q=—'V„we shall prove it here by a method analo-
gous to the one used by Schwinger for the potential
in quantum electrodynamics.

We put (compare footnote 15)

1
,
"(~"V') (» '

V„)d~„
4mc ~

1——
)

{ {ir, ' '
V,

' V&+ (f)„'V,) (f)& '
V&) }do. i,

+h { 'fy&r)i, 'P ds„, (92)

where the last term according to Sch winger"
ensures (91) for

We remark at once that this expression (92) is
independent of o. Indeed, by (86) with (80) and
f)„'p y&=a 'll and by (78), we find

5 'lI), 1
=—{

' V' f)g
'

Vp —ir
' ' V'f)i, ' V }

bo (x) 47rc

+h VPf)iy'f)„'P+h(f)„'Py")8i 'P = 0. (93)

Next, we calculate ['IIi, ' V, (x)] by means of
(90a). We shall indicate by a prime the coordinates

"Actually, we might have made this the starting point of a
large part of our theory. Simply postu4t7ng that equations of
motions (75)-(81) and commutation relations (90) be valid
after transformation to interaction representation, it would
have followed at once from {24) and the commutativity of A
with P, that 4 should be replaced by V according to {60),
thus replacing the identity (21} by (61), but that no corre-
sponding change in A should be made. As we should expect
that yet 'A should form some kind of a four-vector together
with 'V,—while we know that in sense (A) the vector 'A
formed a four-vector together with '4,—we could have con-
cluded then that A and (or) C necessarily should depend on
o. This would have shown us that from the insensitivity of

Q(x) as to variations of 0- at a finite distance from x, one cannot
draw Schwinger's conclusion (reference 1, between Eqs. (2.4)
and {2.5)) that Q{x) should be a point function independent
of o throughout. Thus, one is automatically led to the more
careful investigation of the transformation properties in
interaction representation discussed in Chapter 3.

"Reference 1, Eq. (1.65). Here only the P-dependent part
of Schwinger's expression (1.64), identical with the p-de-
pendent part of our expression {92) (compare footnote 15).
has been used.

6. THE HEISENBERG FORM OF THE FIELD EQUA-
TIONS IN INTERACTION REPRESENTATION

VJe shall now show that on account of the
relativistic commutation relations (90), the field
equations in interaction representation can be
written in the form



I NTERACTION REP RESENTATION 77

in the integrand of (92), and first write down terms
arising from the last term in (90a) only. Omitting
a, factor (—i7iK, '), and denoting h, (x' —x) simply
by 6,', we obtain for these terms:

{(8'"8"8,'6, ') 8),
' '

V,'+ (8'& ' V")8),'8, '8, '6, '
I do„'

parts, we find

+hc)3 dop 'P(aP i—e ~ ~) 'f (95)

{a,
'-' ' V"8,'8.'6, '+ (8„' ' Vp') 8't'8'&8„'6, ' Ideg'.

'IIA: = d&o
J

(k= 1, 2, 3). (96)

c 'II' = 'BC'+'3C (97)

(98)
,

I {( '8, '6, ')Bi,' 'V'&+( ' 'V'&)Bg'8„'6, '

By (77) we can bring forward all "factors" 8,'

(letting them operate on 'V" as well as on 6,'). Comparing these results with (25a—b) and with
Then, by Eq. (89) (see footnote 28), and using (26), we notice that, by (25),
8„'8~' = D~'8„', we can write the result as

—a.'(Bi,' ' V")8,'A, ' —~,' ' V"Bg'8,'6, '
I do, ',

or, in a pro forma more "covariant" notation, but
still for o =ffat surface I=constant only:

which vanishes by (13a) and (78). Therefore, only
terms arising from the term with g„„in (90a) remain.
They give

c 'IP =c 6'"+j 'W(x, a)da", (99)

(ih) '['II), ', 'V„]

{(8'"6,')Bi' '
V,'+ (Bi'A, ')8'& ' V„'

I do„'

{«.'A, ' 'U. '+(8„'6,')O' 'V„'Idol' (94).
The second term we integrate by parts with
respect to x'". If again we apply Eq. (89) of footnote
28, this term thus yields

8„'(A,'8'& ' V,')dog' —
) h. 'Bi,'O'" '

U, 'do.„'.

The first of these terms by (78) cancels the last two
terms of (94), while the second term, combined
with the first term of (94), by (13b) and (88) gives

(ih) '['II; 'V„]=8 'V„,

which proves (91) for 'g—= 'V„.
As all other q-numbers are expressed a1gebraically

in terms of 'tk, 'P, 'V„, and their derivatives, the
validity of (91) for any other g-number follows then
automatically.

If we write out 'II&, (as given by Eq. (92)) in
three-dimensional notation, taking a surface t = con-
stant for 0, and we eliminate derivatives with
respect to time from (92) by means of the equations
of motion (69), (72), (80), and make use of the
identities (20) and (61) after some integrations by

where 6'~ is in interaction representation the
q-number four-vector of the total energy (BC = c(PO)

and total momentum ((Pi with k=1, 2, 3) trans-
formed by (27) at the surface 0.

'
Vj, '+' 0'(o) ——O. (100)

The two fields 'V„&+' and ' V„' ' both satisfy the
wave equations (77)—(78). By their definitions and
by (90a) with (12) they also obviously satisfy the

"This in contrast to the unperturbed field energy of an
electromagnetic field, which, with S=B„A,isgiveninquantum
electrodynamics by the g-number

(8w) 'J IE'+H' —24 divE+2S divA —S'}
'8 In quantum electrodynamics the corresponding con-

dition is impossible. There only for the transverse part of the
vector potential one might postulate Ap(+)+(0) =0 for empty
space,

/. THE UACUUM

It is seen from (25a) or (95) that the unperturbed
meson field energy Xy is positive definite. "There-
fore, if the meson field 'V„ is expanded in plane
waves and the terms with the wave factors
exp( —2sivt) are separated from those with wave
factors exp(+2sivt), the former (denoted by ' U„&+&

in Schwinger's notation)" will contain only anni-
hilation operators, and the latter ('V„& &) will con-
tain only creation operators, if the meson field is
expressed in terms of Jordan-Klein matrices. "

If empty space is considered as a state, in which
in zero-order approximation no mesons are present,
we may describe such a state by a situation func-
tional O(0) satisfying in zero-order approximation
the condition"
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commutation relations

['V '+'(x) ' ' V '+'(x')I

= [' V ' ' (x) ' ' V ' '(x')] =0

[' V &+) (x) ' ' V & '(x')]

with e(x', ir) =+1 (or = —1), if x' lies on the
future (or past) side of 0.

The transformed situation functional 0'[o] of
(106) is then found to satisfy a Schroedinger equa-
tion'4

i7ic(8e'(0]/80 (x)) = W'(x) 0"'[0], (109)

with
=4szhclg„, —i~, '8 8 ]A &+)(x —x')

[' ' '( ) V"'( ')]
w' ='w 'w—+i[('w -,'—'w); s]

=4miIic I g„„—a, '8„8,}A,i '(x —x'),

where h, &~)(x) is given, with ei,. =+(~,'+k')&, by

1——f[('W —
3 '~) ' Sl ' S]— (»0)

For 'm now we choose the operator, of which we
(+)(x) = t dk&& i exp(ik x~z$pQ&), (103) want to determine the second-order effect; in our

4s' case, the terms linear in e in '5', that is,

A, &+)(x)+6,& '(x) =A, (x). (104)

with
e'[(r] = exp( —iS[a]) @[ir], (106)

(107)

Here, 'n)(x) is a point function describing the per-
turbation (see below). In case of a perturbation,
which in first-order causes merely virtual processes,
the limits of integration in (107) are given by"

0' +oo
1 I

Q,Q ~ ~ ~ gg 0 I ~

J.

8. THE FIRST APPROXIMATION SCHWINGER
TRANSFORMATION

By (25c), (21), and (59)—(61), the interaction
operator in (31) for a surface at x tangent to
t =constant is given by

'W(x) = —'j ~ 'A —A:, ''p div'E+2ira, ''p'

= —'j„'V~+ 2x~.-' 'j„¹'j,X". (105)

This interaction causes perturbation of any initial
state in which in zero-order approximation a
number of given free Dirac particles and mesons was
present. In particular, the 6rst term —'j„'Vi' may
cause virtual emission of mesons, which in second
order may cause a direct interaction between the
Dirac particles, competing with the direct inter-
action through 2xa, ' p'. This direct interaction
we shall now determine by Schwinger's method of
canonical transformations. ~'

This method applies in general a canonical
transformation of the type

One reason why for 'm we cannot well take the
complete interaction operator 'W (as done in
quantum electrodynamics)" is the fact that S in
(107) should be a function of the one surface ir at
the limit of integration only. Therefore 'u)(x') in
(107) should be simply a point function and should
not, like the last term in (105), depend on some
time-like direction X& at x'."Therefore, use of the
whole interaction operator for 'm would make it
dificult to consider 4'[0] as a functional of the
one surface cr only. '

For the sake of simplicity we shall now, in our
following calculations, take for o in (106)—(109)
simply a surface at x tangent to x' =constant ( = r).
Also we perform the calculation of 8" here up to
terms quadratic in e only. Thus, one finds from (110)
with (111),(105), and with 'j„¹= 'p for the surface
chosen:

W =2+ii, 2 p2 ——i[ j V»' S] (112)

The last term in (112) gives by (107), (108), (111),

34 This follows from

ikc84"/bo = Iihc{be is/Bo)eis+e 's '8 eisI @'
with

ae-'s . "i [IsS/a~ I Sl(n)eis
ba -0 (n+1}!

and

e 's '8'e's= 2 —tI'5'I ' 5](»,
-Oat

where [fAI; Bl&+=A, and where

[[A};BJ(&+&)= [[Al 8](&) 8 —8 [[A[ '8[&n).

Further, ihcBS/bo = —i 'm by Eq. (IO/).
'[' As long as we confine ourselves completely to Bat surfaces

o, this is of course more an argument of plausibility, as we
might still define ¹ at x' then as perpendicular to the
distant surface o;

~~ For this reason it would be impossible to add the term
2~~, ' 'p' to 'ur even if one would replace (1.08) by an integra-
tion from the infinite past to the surface o (see reference 24)
in an attempt to take into account the non-virtual processes
involved in such a perturbation.
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and (90a), and with the abbreviation e'=c(x', n),

(i/4bc) I ['j„'V&; 'j,.' 'V'"]e'de'

Z=—,(['j„;'j,') [' V"; ' V'"]
8kc ~

+ ['j.' 'j.'] ['V"; 'V'"])~'d~'

j oj» . (gy. q~ 2g I'—g»)

XA, (x—x') c'd(0' + W2, (113)

where AB =-,'(AH+ BA), and where

W2 ——(i /4kc) ['j„;'j„'].'V& 'U'" e'd&a'. (114)

quantity would be obtained by U,A„'""7J,—' with
0 through x, while in our present 'b„, the j,(x') in
the integrand of (119) have been transformed by
U. with o' through x'.

For ii,-+0, the first term in (117) goes over into
the M flier interaction between electrons. The
second term describes tw'o-quanta radiation effects.
Both are after all simply scalar point functions
independent of the slope of the surface o through x.
Indeed, the only dependency on o could enter these
expressions through the factor e' in (114). But in
(114) the commutator ['j» 'j.'] will make the
integrand zero wherever x —x' is space-like. That
is, just the region where o lies and where e' jumps
from —1 to +1. If, therefore, the slope of o through
x is changed, this has no influence on the value of
(114). Thence, (117) does not depend on the slope
of cr through x.

a"~'= 2g"b(x" r). —

Combining these results we get

(115)

(8'"e') O'"A, (x—x') = 2g"'g~b&'i(x' x) (116—).
Using this equation we find for the discussed terms
with a, ' in (113) exactly —2+ii, ~ 'p', which
cancels the first term in (112). Thus one finds, up
to e'.

The terms with ii, ' in (113) we integrate by
parts with respect to x„'. Then O'I'e' will be different
from zero on the surface o. itself only. There, how-
ever, x —x' is space-like and 8'"ti, (x x') —will

vanish except at x=x' itself, where 8'"h, (x —x')
=g"'&( 'I—x) by (13b) and (14b). Near x=x',
however, o is the surface x"= r, so that there we
have

9. THE ENERGY-MOMENTUM FOUR-VECTOR AFTER
CANONICAL TRANSFORMATION

The transformation (106) changes observables by

00 $
Q'=c '"Qc"=2 —[{'Q}' S]"'

n-O nt

='Q+i['O' S]—k[['Qi S] i S] (121)

(Compare footnote 34 for the notation. ) For the
unperturbed energy and momentum four-vector 'II~
of interaction representation given by (92) (com-
pare (99)) this gives

1
IIg'='IIi, +i['IIi, '

, S]——[['IIg', S]; S] . (122)
2I

~'= ~O+ ~2, (117) Here, by (107)—(108) and (91),

where W2 is given by (114), while the terms with
g"" in (113) give

1
ic['II~, S]= ——,~ d~' ~' a&' 'w(x'). (123)

2~

Wo(x) = --,' 'j"(x) 'b, (x)

with (by e'= —sgn(t —t'))

'b„(x) = —2x)1 'j„(x') 6 (x —x')

(118)
Ke integrate by parts with respect to x],' and use
(115):

ic['IIi, i S]= bg' da)' b(x"—7) 'w(x')

sgn(t —t') da)'. (119)

By comparison with (9) we see at once that
'b, (x) is a solution of

I
—~.' I 'b„(x) = -4w 'j, (x), (120)

and takes for ~,—+0 so-to-say the place of the aver-
age between the retarded and the advanced
potential (compare Eq. (15)). However remark
that 'b„(x) is not simply the transformed of A,~""'(x)
in interaction representation. This transformed

dao' 'w(x') = " day' 'w(x'). (124)
al ~ cr

Here, we have obviously omitted minus a similar
integral over the infinite past, ' which corresponds
to the assumption that at t = —~ the perturbation

'70r the average over infinite past and infinite future,
which is the same, as (8g 'm) as a perturbation would cause
virtual processes on)y.
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did not yet exist and later was switched on infinitely
slowly. 38

Substitution of (124) into (122) yields

——[['W) ' ~1" I, (126)
n! )

or, by (110) or footnote 34,

cn'g' ——c 'IIg —jt dai, W'(x). (127)

This shows that W'(x) is not only the new
"interaction operator" by (109), but is also the
new interaction energy. On the other hand, the
unperturbed energy-momentum four-vector is then
always given by the same old (un-transformed)
'Il&, which still can be used by (92) for the calcula-
tion of derivatives of functions of field variables.
It should be borne in mind, though, that physically
the four-vector 'II~ in the first approximation
Schwinger representation (with +') is not identical
with the quantity denoted by this same 'II), in
interaction representation (with %').39 The latter
quantity would of course be given by II&' (125) in
first approximation Schwinger representation.

10. CONCLUSIONS

We have shown in the preceding chapters how a
meson theory can be described in an interaction
representation and how one can proceed with
canonical transformations in close analogy to
Schwinger's development of quantum electro-
dynamics. There were, however, a number of com-
plications, already listed in the introduction, which
made it necessary to consider several points with
more care than in quantum electrodynamics, and
which made it necessary to criticize certain for-
mulas and conclusions of Schwinger (see footnotes
23 and 30).

In particular, we found that Schwinger's formu-
lation of the generalized Schroedinger equation in

"This assumption seems just as good or as bad as the
basic idea of Schwinger's perturbation method that, at
t= —~, +)aj should be simply the unperturbed state +'Pcrj.

39 That is, (0"*,II)!,+') is obviously not identical with
(O'*, IIg@').

cII),'=c 'II),+ t d(ri, 'w+ —['w; 5] . (125)J.
Thence, by (99) and (121), the total energy-
momentum four-vector is now given by

1"
c(P '=c'lI + d .P ~

[['w]; S]'"'.=o &(n+1)!

interaction representation, with the non-scalar
interaction energies of meson theories, is only
correct, if the interaction operator is taken in a
Lorentz frame with its time-axis perpendicular to
the surface 0.. Then, the Schroedinger equation
turned out to be integrable automatically (Chapter
2). The field variables in interaction representation
'Q(x) were in general no pure point functions, unless
the surfaces 0 used were confined to surfaces per-
pendicular to the time-axis used. The field variables
'Q defined by such surfaces were then shown to
transform diAerent from the original field variables
Q in the Heisenberg representation; but certain
combinations of the 'Q could then be defined, which
formed tensors and undors among each other
(Chapter 3).

These combinations were then shown to satisfy
field equations as if no interactions would be
present (Chapter 4), and these field equations
could be solved in a general form. The com-
mutation relations could then be formulated four-
dimensionally (Chapter 5) and were automatically
such that the new "meson field"-components (com-
binations) were commutative with the matter field.

In interaction representation, the field equations
could also be given in a Heisenberg form (Chapter 6),
using the unperturbed energy as the "Hamiltonian. "
On the other hand, only the perturbation energy
was used as "Hamiltonian" in the Schroedinger
equation, and the total energy was the sum of
these two expressions.

It was shown in Chapter 7 that the absence of
mesons could be formulated by the simple condi-
tion (100). In quantum electrodynamics a similar
assumption would be meaningless, unless it is
restricted to the transverse field. In this regard, the
meson field has some advantage of simplicity over
the regular Maxwell-Lorentz-Fermi field.

It may perhaps be pointed out here that, by a
proper treatment, all the usual electromagnetic
properties of matter can be explained completely
by means of fields of mesons of vanishing mass. "

Finally, it was shown in Chapters 8 and 9 how
Schwinger's perturbation method of subsequent
canonical transformations can be applied also in
meson theory, though also here some complications
arise from the fact that in (107) we could not take
the complete interaction operator for 'zv. In Chapter
9 we verified that the interaction operator also
after canonical transformation still can be regarded
as the interaction energy, while the unperturbed
energy, as a g-number unchanged in form by the
transformation, is changed on the other hand in its
physical meaning. "

4O Compare footnote 7, and reference given there.


