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Pressure Broadening in the Microwave and Infra-Red Regions*
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In this paper a generalized theory of collision broadening is developed, adequate for predicting line
breadths in the microwave and infra-red regions. This theory divers from previous ones in taking into
account transitions among quantum states caused by collisions, although it is limited to a classical picture
of the relative motion of the colliding molecules as a whole. Formulas are derived for computing approxi-
mate line broadening collision cross-sections from known intermolecular interactions, and the results of the
theory are successfully compared with experiments on self-broadening in the ammonia inversion spectrum
and the vibrational band spectra of HCl and HCN. Some cases of foreign gas broadening in the microwave
region are examined, but it is concluded that in general the Van der Waals interaction, commonly assumed to
be the force important in causing foreign gas broadening, is not adequate to cause the observed broadenings.
The more complicated types of forces which become important at short range would have to be taken into
account to give good agreement with experiment in these cases.

PART I. THEORY

A. Introduction

'HE theories of pressure broadening presented up
to this time can easily be shown to be inapplicable

in the microwave and infra-red regions of the spectrum.
The primary purpose of this paper is, therefore, to
develop a theory which can give accurate results in
these regions, and to compare these results with the
available experimental data.

The older theories, in particular the Fourier integral
treatment developed primarily by Lorentz, Lenz, and
%eisskopf, ' ' have given good results in the optical
region. ' However, this theory is essentially in contra-
diction to the theory of dielectric relaxation developed

by Debye and others, ~' which treats broadening in the
limiting case of a spectral line of zero frequency. ' Both
theories involve computing the spectrum due to a
radiating molecule randomly interrupted by collisions
with other molecules. However, the mechanism by
which the interruption is effected is essentially diferent
in the two theories. Debye's relaxation theory considers
interruptions due only to reorientations of the radiating
molecule; in a quantum theory, this is equivalent to
considering transitions among the various spacially
degenerate quantum states. Contrariwise, the Fourier
integral theory explicitly assumes that no transitions
are caused by collisions. Then the effect of a collision is

*The material in this paper is a part of the author's thesis sub-
mitted in partial fulfillment of the requirements for the degree of
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computed by means of the adiabatic approximation and
is equivalent to a relative phase-shift of the radiation
before and after the collision, with no amplitude change.

B. Generalization of the Fourier Integral

It is clear that it is necessary, in order to compute pres-
sure broadening in any frequency range, to develop an
expression for the spectral shape of a pressure-broadened
line which encompasses the two limiting cases of high
and low frequencies. In other words, a formula must be
obtained which includes the sects both of phase-shifts
and of transitions. Before presenting this formula, we
should emphasize the physical picture upon which it is
based. This picture is equivalent to that employed by
Foley in his re-derivation of the standard Fourier
integral formula by means of quantum radiation
theory. The basic assumption we call the "assumption
of a classical path": we assume that for all collisions of
interest the colliding molecules can be taken to be
point dipoles following deinite paths; thus their inter-
action is a definite function of the time Hi(t). The jus-
tification for this lies in the fact that one can think of the
motion of the molecules in terms of packets of transla-
tional wave functions; by the uncertainty principle the
allowable spreads hp and Dq in position and momentum
space are hphq='h. We seldom or never consider in
detail collisions in which the molecules under con-
sideration pass at distances less than the kinetic theory
diameter, ='5A. Then an uncertainty in position of 1A
will lead to no great ambiguity in magnitude or type
of intermolecular forces. The corresponding uncertainty
in velocity is

6v/v =' 0.3/(molecular weight) '*

which is a small percentage for most molecules. Calcu-
lations carried out by Lindholm" for many optical
problems, not using this assumption, have indicated
that the assumption is normally valid, in consideration

' H. M. Foley, Phys. Rev. 69, 616 (1946).
E. Lindholm, Dissertation, Uppsala, 1942.



648 P . O' . A N' D E R S 0 N

of the large quantum numbers of the partial waves
whose contributions were important.

The problem is reduced, by this assumption, to
hnding the spectrum radiated by a molecule, whose
unperturbed Hamiltonian we designate by Ho. This
molecule undergoes random perturbations due to col-
lisions, representable by a time-dependent interaction
Hamiltonian H~(/). The problem can be solved following
Foley's method, by the use of general radiation theory;
or it is possible to extend the correspondence-principle
radiation theory of Klein and Pauli to our problem by
analogy. Either method leads directly to the following
formula, which we present without proof:**

I(cv)=const. Xco' Tr po~~ dte'"'p, (t)
QO

00

X)~ dt'e *"'p,(—t') . (2)

tions come out of the theory actually does appear when
the classical path method, or equivalent absorption
methods, are used we have been able to clarify this
point to some extent, but our work on this point will
not be reported in this paper.

It is interesting to rewrite (2) for the case in which
the standard Fourier integral of Foley and his prede-
cessors is valid. This is the case in which the perturbing
Hamiltonian H&(t) is either diagonal already, or can be
made so in a simple manner (following Foley) by re-
placing transitions to high-energy levels by their
second-order eBects; that is, we replace the so-called
Van der Waals forces, a second-order phenomenon, by
a 6rst-order Hamiltonian. This, too, can be shown to
be valid from the general equations of motion and the
radiation theory. Then Eq. (3) integrates explicitly; a
typical matrix element is

p„„(t)=p„„(0)exp 1/ik (E„—E„)t

where

i' = [Hp IJH], — (3)

Here ~ is the angular frequency for which we desire
the spectral intensity I(a&); po is an assumed initial
density matrix for molecules in the gas, in fact essen-
tially the density matrix for the time t= —~; p.(t) is
the Heisenberg time-dependent operator (see reference
12) for the z-component of the dipole moment (if we
consider radiation polarized in the z-direction); and
the "Tr" means that one must take the diagonal sum
of the indicated matrix product. p. (/), of course, satis-
fies the Heisenberg time equation

+ [(m(H~~m) —(n(H&~m)]
f
0

=p .(0) exp[ —ka„ t —iq„„(t)].

The unperturbed frequency is ~„,given by

Ace„=E —E„.
E is the mth eigenvalue of the unperturbed Hamil-
tonian Ho. Equation (5) def'mes the relative phase-shift

for the two levels e and m. %e can then use the
Boltzmann density matrix

H= Ho+Hi(t). (4) (m~ ps~ m) = b. exp( —E„/kT)

Finally, we have omitted all numerical factors other
than the frequency-dependent one co4. These factors can
easily be shown to come correctly from the general
theory.

The formula (2) gives the intensity for spontaneous
emission. The approach through spontaneous emission
is chosen in order to avoid the use of a time-dependent
density matrix. tt The intensity for absorption must be
derived from (2) by use of the Einstein relations. "
Some confusion as to whether the correct Einstein rela-

X[+„exp(—E„/kT)] ', (6)

for po, and I in (2) separates into the following con-
tributions I for each of the various spectral lines m
and n:

I (co) =co4 exp( E /kT)—
X g„dt exp{—f[((o—a) „)t+g„„(t)]I

**The intensity in classical theory is given by the average over-
all states of

~ (])~i~~d) 2

The corresponding quantum-mechanical quantity is obtained by
replacing all observables (in this ease p (t)) by quantum-mechanical
operators, in multiplying by the density matrix, and taking the
trace. Thus Kq. (21) is reasonable; a rigorous proof can be given.
For this procedure see %'. Pauli, Handbuch der Physik, 2. AuA. ,
Band 24, 1. Teil, p. 149.

ff See, for instance, R. Karplus and J. Sehwinger, Phys. Rev.
73, 1020 (1948).

"A. Einstein, Verh. d. D. Phys. Ges. 18, 318 (1916); Phys.
Zeits. 18, 121 (1917).

This is the form of the Fourier integral used by Weiss-
kopf, etc.f$

ff It is interesting to note that the derivation of (7) employed
by Foley fails to lead to the correct external frequency factor ~'.
If carefully followed, Foley's theory gives a factor here of oPco

which is by no means correct at low or zero frequencies, where the
line-breadths are comparable to co „.Even if Foley's "adiabatic
assumption" (H& diagonal) were correct at low frequencies, these
factors would be in error. The reason is that the general theory
must be retained, at least until the point where a partial integration
can be performed analogously to that which one would use in the
classical theory t'ai go from the Fourier integral of the vector
potential A( p) to that of p, (t) itself.
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where
t (t) = U '(t)t oU(t), (8)

ih(d/dt) U= (Hp+H, (t)) U. (9)

U po is the value of tI, at a time tp, then U(tp) =1 is the
initial condition on Eq. (9). The time-development
operator U is not as useful to us as another operator T,
which is defined in much the same way. However, in
deriving T one uses a Heisenberg representation in rela-
tion to the unperturbed energy Ho. Therefore the equa-
tion for p(t) is

tI(t) = T '(t) exp( Hpt/—ih)tI p exp(Hpt/ih) T(t), (8')

and that for T is

(9')

H j is the interaction Hamiltonian with the time-
dependence due to Ho inserted:

(~IH~'I&) =(~IH~(t) I ~) expl (E-—&.)t/ihj (»)
The diagonal elements of T give the phase-shifts due to
the interaction H~, while the ofF-diagonal elements —or
their squared absolute values —give the transition
probabilities due to this interaction. In terms of eigen-
states of Hp, (8') is

(ral p(t) Irt) =Q(nzl T 'I h)—
Xexp( —moat)(hl poll)(tl Tle) (8").

We may now insert this explicit form for p(t) into the
Fourier integral formula (2), and obtain the following
complicated expression:

I(ra)=const Xco4 P,p, e.,j (al poly)

X dte' '(bl T '(t) le)(claold)

Xexp(ice, &t) (d I T(t) I e)

X)" «'e '"'(el T '(t')If)(fit olg)

Xexp( —icto'f)(gl T(t') la). (11)

D. Re-exyression in Correlation-Function Form,
and Simyli6cation Using the Assumption of

Short Collisions

Formula (10) can be simplified greatly by the insertion
of a new time-development matrix

T(t~t') = T(t') T '(t). -(12)

~ Born u. Jordan, K'emeeture Quaeteemechaeik (Verlag J.
Springer, Berlin, 1930).

C. Introduction of the Time-Development
Matrix T

It is well known that it is possible to write the time-
dependent operators p(t) in Eq. (2) in the following
manner:"

This operator is the solution of (9 ) with initial con-
dition T(t) = 1; it answers the question "what happens
in the time-interval t~t'?". In addition, we use the fact
that the density matrix, as a function of time, trans-
forms according to T(t) but inversely to other matrices.
Then (11) becomes:

I(~)= const. XoP» dt dt'e'~&'

X& o" (alt (»I&)(~lt pic) exp( —~o»
X(clT '(t—ot') ld)(dI p loe)

Xexp( —me, t') (e I
T(t~t')

I
a). (13)

In order to use the considerable simplification made
available by the Wiener-Khintchine relations in evalu-
ating our formulas, " it is expedient to re-express them
in correlation-function form. By means of the simple
substitution

t'= t+ T,
we obtain

I(cu) =&a'(const. )Pe, I dr exp[i(po ooe,) rjp—e,(r), (14)

where

X(alt (t) l&)(&lt pic)(cl T '(t~t+r) Id)

X (d I yo I e) (e I
T(t~t+ r)

I
a). (15)

We observe that (15) has the form of an average over
the time t. It consists of three essentially diferent terms:
p(t), which depends on the state of the molecule at t;
the T(t~t+r) factors, which depend on the collisions
which occur between t and t+~; and the phase-factor.
At this point we first limit ourselves to the "impact"
type of theory: we assume that the collisions are short
compared to the time between them. Under this
assumption, it is easy to show that unless ~~,+~~, is less
than 1/r, the inverse of the time between collisions,

(15) will essentially vanish. For this reason, and for
other reasons which we shall not consider here, it is
considered legitimate to drop from (15) all terms for
which cop,+ra&, &0. This is equivalent to assuming that
all lines considered are either not resolved at all com-
pared to the line-breadth —in which case we treat them
as degenerate —or are well separated. ***

It is also legitimate, since the phase and T-factors
are independent of the actual state of the molecule, to
take the average of p(t) over the history of the molecule

"See, for instance, M. C. Wang and G. E. Uhlenbeck, Rev.
Mod. Phys. 17, 323 {1945).

In Section Iwe will discuss further the terms which are here
dropped.
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separately. Clearly, we obtain for pA, the Boltzmann
distribution (6). Let us now introduce a degenerate
index m. Each state will be designated by a non-

degenerate index (u, b, c, d . ) and a degenerate index

(m, m' ). Then, letting the "initial" state be desig-
nated by i, the final by f, (14) and (15) are

We divide the types of collisions into classes according
to the paths followed by the molecules; then, corre-
sponding to each "element of cross section" do.p we can
assume that there is a de6nite phase-shift gl, . Then the
probability that a collision in da I, occurs in a given, short
time dt is given by

p(dae) = nvdhdas, (21)
dr exp t ca;t —ra)r (s pa t)vs, t(r)r (16)

where n is the number of molecules per cc, and v is their
velocity (assuming, as is always justifiable for col-
lision-broadening problems, that all molecules have the

l

I=+;,t

where
average velocity l ).

p,f(r) =Q„,„, . t dh(i, rN ~hs~ f, lit. ') Consider the integrand of the expression (18) for
V (r)'-

X (f, vt'
~

T '(t t+-r)
~ f, ~") f(t, r) = exp Ii[na(t+ r) —n;r(t)] I. (22)

If in the time dr after r a collision of type k occurs, we
ave

or

rprf(r) = Tr
J

dths'f (T—'(t st+ T))

Xp'(T(t~h+ &)' (1& )

where the superscripts designate "Teilmatrices" for the
given non-degenerate indices.

E. Solution for the Correlation Function in the
Standard Oyttcal Case

To illustrate our method of finding the correlation
function and to furnish some introduction to the line-

shapes to be expected, we shall re-derive the impact
theory solution of the standard Fourier integral (7).
This formula, re-written in correlation-function form by
means of (13), and exclusive of numerical factors, is

f(t, r+dr) =exp(inc)f(t, r),
f(t, r+dr) f(t, r)—= [exp(ins) —1]f(t, r).

Now let us take the integral, which is equivalent to
averaging over all times t:

v(r+dr) ~(r) =da—(r)
= ([exp(in )—1]f(t, r))„„...„,„,. (24)

This is the point at which the impact theory assumption
is vital. We must be able to say that the time dr is short
compared to the interval between collisions, and so
contains at most one collision; on the other hand, dr
must be quite long compared with the duration of a
collision, so that there is no correlation between what
happens in the interval dr and what happens in the
preceding or following times. Then we can take the
averages in (24) separately, and have

dV (r) =
V (r)(eXP(tne) 1)averag—e over collisions

I(ia) = dr exp[i(ia;f co) r)rp(r—),

(lg) so that

nvdr j das(exp(in, ) —1) rp(r),

+(&)—a
—seer

(25)

whererp(&) =
J

dt exp Ii[n'f(t+ r) n*Ah)] I. '

a = Jt da (1—a' s) =a,+ ia.;.
The assumption of the impact theory is that the col-
lisions are short compared to the time between them. It is easy to see that
Then

na(t+ ~) na(h) =—
collisions from

t to t+r

(19)
V( —~)= V*(v)

as is required for the reality of I(&a); then we get for the
intensity distribution

where q, are the phase-shifts due to the various col-
lisions occuring in the interval t +t+r— 2(lva„)

I(co) = const. X
(ra —ra;t — a.;r)h'V+ (nVa„)'

(27)

nc=
J

collision
ss rs

«[(il&i'(t) li) —(fl&l'(t) If)] ( This is a dispersion hne-form with half-w&dth

2sl'(Da)t = Nva„, shift 2srdv;f = siva, . (2S)
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d Te'"'gA(T),

g (T) =
J dt's, (i+T)I,(t),

(29)

where p, (t) is the z-component of the rotator's dipole
moment at a time t. Again we consider the function

j(~, )=..(~+ )..(~),
(30)

f(&, T+dT) f(t, T) =—IA'(cosp(t+ TjdT)
—COSIP(3+ T)) Coslg(/) r

where p, (t) =tttcog(t), f being the angle of the dipole
relative to the s-axis.

Our basic assumptions will be (a) that the prob-
ability of a collision taking the rotator from the ele-
ment of solid angle dko into Ao' in a time dr is

SMa „„d7., (31)

and (b) that this probability is obviously independent
of the azimuthal angle q between c4 and d~', and there-
fore is a function only of the polar angle 8 between
these two directions. Ke know that

cosf(dot') =cosrjr(dot) cosH+sintI(dot) sinH cosy. (32)

Since, upon averaging the difference of cosines in (30)
over all possible collisions, the last term in (32) will
vanish because of the factor cosy, we can use

cosp(t+T+dT) —cosp(/+T) =cosf(t+T)(cosH —1). (33)

Then we actually perform the average of (30) over all
times, using again our impact theory assumption of
short collisions. It is clear that the result is:

dgr(T) = vdTtg~ dtre~tt (cos8 1) gr(T)r
J

F. Solution for the Correlation Function in the
Classical Debye Case

Since the classical Debye problem of the spectrum
of a rotating dipole perturbed by collisions has fre-
quently been considered by absorption methods, ~' in
particular the very general method in the appendix of
the paper by Van Vleck and Weisskopf, it is of interest
to show how easily this problem is solved by correlation
function methods. Here we can see that the spectrum is

The two terms in 0 (34) correspond to the y and 8 of
the Van Vleck-Weisskopf paper.

G. The General Quantum-Mechanical Case

It is possible to do the quantum-mechanical non-
resonant, or Debye, case by a generalization of the
above arguments similar to that employed in the paper
by Van Vleck and Weisskopf. However, the arguments
for this and for the general quantum-mechanical case
involving spacial degeneracy are quite equivalent. We
shall give only the latter, regarding the Debye case as an
obvious special application.

We want to find the breadth of the line corresponding
to a dipole transition between two states i and f, of
angular momenta j; and jt, with jq ——j,+1 or j,.$tf
Equation (17) for the correlation function applies here,
with the spectrum given by (16). Before proceeding
farther, we must prove a theorem about the expression
(17), or ratger about the following part of it:

P. ,„-((m~ T*-t(~~t+T)
(
m')(m'~ p, *&~ m')

X (m T (t~~+ T)
~
m ))average over t

= (m (T' (~~t+T)pr' T (~~~+ T))average over t~ m )
(36)

Suppose we apply a rotation of the coordinate axes to
(36) in the sense that we do all of our computations
with respect to a new set of axes x', y', z'=R(x, y, z).
We must use the fact that, since in the course of the
time average we consider collisions from all conceivable
directions and of all possible types in equal number,
the affect of the (T' '*TI) factor is essentially an iso-
tropic one. (This is equivalent to the step (32)—+(33).)
Mathematically,

R(T 'IA, T)Ar=((RT ')(Rttta)(RT))Ar

=(T '(Ry, )T)Ar

= 7l;,(T 'P,T)A„+lt;„(T—
'IA, T)A„

+7, ,(T 'I,T)A„, (37)-
where the X's are the direction cosines of the new axis
system with respect to the old. Thus the quantity (36)
has the transformation property of a vector com-
ponent. . But the i, f matrix elements of any vector
component are determined, exclusive of a constant
factor, by the transformation property. "Thus we can
say

( ) g
—near

tr=
~

do(1 —cos8) (real).

(34) (m~ (T' '(t~t+ T)JL,'~T~(t~t+T))A„over t ~

m"')
=P( )(m~p. ' ~m"'), (38)

where F(T) is a scalar.
We are now in a position to set up the differential

I(or) = nlttrtd j[cv'+ (nza)' j (35)

This gives, with the correct external factor co, the Debye
line form:

tft The case of higher multipole transitions is easily worked out
and, interestingly, leads usually to a different breadth."E.U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1935), Chapter III.
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equation for ip(r), or, equivalently, for F(r), since

e(r) =2-, -" 1(ml p**'Im"') I'F(r),

de(r) =2-, "
I (ml p*'Im"') I'dF(r),

= Tr ~ dtp, f"[T' '(t~—t+ r+dr)p, 'f

X Tf(t~t+ r+ dr) T* '—(T~-t+ r)p.'f

XTf(t~t+ r)] . (39)

We introduce a matrix T~ T(t+r~——l+r+dr) (the
notation T~ indicates that this matrix is not a dif-
ferential); then

T(t~t+ r+dr) = T(t~t+ r) T,. (40)

Again we can make use of the reasoning of Section E,
(24)~(25): we use the assumption of short collisions to
enable us to take independent averages of the happen-
ings in t~t+r and t+r~t+r+dr Then w.e introduce
Eq. (40), Eq. (38) for F(r), and get for (39):

I {m p (m')I'dF(')
=F(r)Tr[(p,f'Tq' 'p, 'fTQ paif)])p„««—as d, }. (41.)

Now we introduce the probability assumption (21) for
types of collisions:

p(dir in dr) = rtedadr.

If a collision of type do occurs in dv, the T matrix T&

will be characteristic of the collision do-. In fact, T is
obtained by integrating Eq. (9') from t= —~ to +~,
using for IIq'(t) the time-dependent interaction Hamil-
tonian for just one collision of type d0 occurring in the
whole range of t. The initial condition is T(—~)=1.
This integration is legitimate because of our assumption
that d7. can be chosen long compared to the duration
of one collision. We call the resulting T matrix T(do);
then the average in (41) gives the following equation
for F.

[dF(r)/dr]= rtoaF(r), F—(r)= e ™a', (42)

Tr(T'(do) 'p, "fTf(da)p,f')
0.= dg -1 . (43)

Tr 6 *"p*")

It is obvious that the shift in frequency and the line-
breadth follow from the real and imaginary parts of
the number o, precisely according to (28). Thus the
problem of the line-shape is solved in principle.

Before proceeding further with the evaluation of o.,
the "collision cross section for line-broadening, " it is
necessary to generalize formula (43) to a case which we
shall frequently treat —that in which the interaction
Hamiltonian II& (t) is a matrix involving the quantum-
mechanical states of both the perturbing molecule and
the radiating molecule. The line of reasoning is prac-

tically identical, except, of course, that the radiation
occurs according to the operator

p*(1)+p*(2). (44)

The two molecules of interest are called (1) and (2).
It is clear that it is legitimate to use only the 6rst
half of (44), regarding, therefore, molecule (1) as
the radiator, (2) as a perturber (the line-shape for
molecule (2) will be included in the implicit average
over all molecules in the gas). Then, in place of the
transformation property "vector component, " we use
essentially "vector' mo/ecule(1) scalar' molecule (2).Without
going through the reasoning for the case of two mole-
cules, which diBers from the preceding only in that the
Boltzmann factors for molecule (2) must be included
and that T-matrices involving any transition whatever
for molecule 2 are of interest, we present the correct
result for cT.

da {[ 2 (mla2
I
T' '(da)

I
my'b2) (ps)~~

m$, mt
mi", mi"'

a2bs

X(m~'lti, 'f Im, ")(m,"b,
l
Tf(do) lm, "'a,)

X(m,"'lp.f lm, )]
X[X l(milp*"lm~') I'7 ' —1} (45)

mtmt

a2, b2 designate the various states of the second mole-
cule. Two possible cases occur in which this expression
can be simpli6ed to a usable form. First we have the case
in which no transitions occur in molecule (2) quantum
numbers, except perhaps for degenerate ones; second,
that case in which transitions in molecule (2) quantum
numbers can occur only simultaneously with those of
molecule (1), so that T' and Tf are still essentially
diagonal in molecule (2) because they are so in molecule

(1) (this is the interesting case corresponding to resonant
interactions). In either case, o reduces to the following
simple form:

0 = Oa2~

a&

oa2 ——(ps)a2

Tr(Ti, a2(da)( —&)& ifTf, ag(da)ti fi)

XJ da —1 . (46)
Trb "p")(2i s+1)

The trace includes a summation over nz2, the molecule
(2) degenerate index, and 2ja2+1 is the degeneracy of
the a2 level.

H. Reduction of a to Computable Form

I. Use of Rotational Iwoariawce to Relate 3fatrix Elemertts
fo "Collision Axes"

In the form (43) it is still practically impossible to
compute cr, since we must 6nd the T-matrices not only
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for every impact parameter, or distance of closest
approach of the two molecules during collision, but for
every set of direction angles of the colliding molecules
relative to the polarization direction. It is possible to
use the fact that the J'do implies an average over all
conceivable sets of direction angles to remove this
latter difhculty. %e do not do this rigorously, since it
involves some rather long group theory. The following
argument, however, indicates the method.

The integrand of (43) is, as it stands, rotation invari-
ant, since it is a trace. Essentially, this means that the
component of p, we deal with is immaterial. Suppose we
can compute the T-matrices for one specific set of direc-
tion angles (for instance, suppose we know them for a
system quantized along b, the impact parameter).
Then it is possible to leave these T-matrices as they
stand and to take the direction average by rotating the
z-axis, i.e., the component of p which is used in (43).
Since (43) is quadratic in y„ it is allowable merely to
average over the x, y, and s-directions. Then we get
simply

o Tr(p, '~p,I') =-', Q, „, 2~bdb
"o

xTrLT & '~(b)I., „,.'&TI(b)1., „„&'

-~*,w. ."~*.*'], (47)

where T'(b) designates the T-matrix in the "collision-
axis" coordinate system.

Since a great deal of further manipulation with (47)
is necessary, we shall use an alternative form for it,
based on the identity between the vector matrix and
the Vhgnerian coefIj.cients. "

(ml~. "'I~)=(&Ij.~l jIIv0) (48)

and similarly for 1/v2(ji, chili„), with 0 replaced by &1.
Then it is easy to show that (47) is the same as

(j,fq,ml q, ll M)
2xbdb Q (jg1j,m'IjI1y'M)

w ~ ~ (2j;+1)
P~ I

XLb- ~- —(ml T' '(b) lm')(~'I T'(b) l~)j (47')

A similar formula can be written in the two molecule
case of Eq. (46).

tions with the assumption that J'Hi'di/b is small. We
use the following procedure:

T—Tp+ T$+ T2+ ' ' ' TQ 1p

t' Hi'(t')
i7iT, =Hi'To, Ti(t) = ' dt',

ih
(49)

ti H r(~ii)
&AT2=Hi'2i) T2(&)= d$'

~

d&", etc.
ih, ~ „ ik

If we could assume that H&'(i') commuted with Hi'(t")
at all times, the result of this process would be simply
the seals, r solution of the linear differential Eq. (9'):

' H '(~')
T(t) =exp ~ di' .

ih
(50)

On the other hand, it is clear from the definition (10)
of Hj' that it does not commute with itself at all times,
but only because Hi and Ho do not commute. Hi(i) is a
function of the coordinates only, in general, and will
always commute with itself.

An investigation was made into the size and meaning
of the "non-commuting" terms by which (50) divers
from the accurate solution of (49). Those terms in-
volving high frequency elements of Hi' ("high" com-
pared to the rate of change of Hi) were found to be
precisely equivalent to the terms obtained in (50) by
including, in H& itself, the 2nd-, 3rd-, etc. , order forces
due to the high frequency elements of Hj'. On the
other hand, such terms are small if they involve low
frequency elements of H&'.

Therefore it seems permissible to ignore the non-
commuting terms and to use (50) for T, including at
least the second-order (Van der Waals') forces in Hi.
These terms have not been computed accurately ac-
cording to (49), because they appear first in the suc-
cessive terms T2 (shift) and T4 (broadening). The Van
der Waals' procedure introduces the second-order forces
in the same manner as the first-order ones in T~ and T2
where they are much easier to handle. It is an inter-
esting check on our method to note that the second
order effects of high levels would derive naturally in the
correct form from the general theory.

For simplicity we limit ourselves to the first three
terms of (50). These are

2. Introduction of un Approximate Form for T.

For the purpose of computing o. from (47), an ex-
pression for the T-matrices in terms of the interatomic
forces must still be found. This cannot be done exactly.
However, a device which has been frequently used is
the following expansion of T in successive approxima-

where

T(b)~Tp+ Ti+ T2,
TO 1; Ti iP; T2= P'/2——,

———

1
P= ~H, '(t)dh. —

(51)

(51')
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paper. "Also using the fact that T-i = —Ty, we get

(mlP'lm) it (tilPIlti)
Si=i P — —P . (54b)

m- —i, 2j +i i- i, 2j—I+1

Referring to the definition (51) of P, it appears that
this, the first "shift ' term in o., is just the first term in
the simple phase-shift approach, averaged over all
directions.

There are two possibilities for obtaining second-order
terms in the 5 sum. We have the choice of taking
Tp 'X T2~ or vice versa, or of taking the terms involving
Tj'XT~~. The former pair of terms follow precisely as
did the Si terms; we call these (S2) outer.

3. Use of the APProximation for T in ComPutI'ng o and
Ii ne-Broadeni ng

Let us repeat the formula (47) here, in a. slightly
different form:

o = 2nbdbS(b). ,

(I IT2'IP)
(S2)-I-= —Z +Q

2j+1 ~ 2jf+].
(54c')

1 (i, ml P'Ii, m) (f, tiI P'If, tI)+2
2 m 2j;+1 t 2jf+1

(jr1j mljr1tiM)(jI1j &Ijyfp'M)
s(b) =

m, m', M 2j'+1
Ix. 8

X(&„& —(ml T' '(b) Im')( 'I T'(b) IP).

(52)
The second type of term, however, must be left in its

original form; we call the sum of these (S2)

(s2)middie= p (i Ili .mls fit M)
2j,+1 m, m, m'

~e a,re going to expand S(b) in powers of the P-matrix
of Eq. (51'):

5=SQ+Si+S~+ (53)

In order to get terms of the zero'th order in P, we must

pick T'= TQ' Tf= TQf, and we get

SQ= 0. (54a)

The first-order terms are obtained by including either
T'= TQ, Tf= T~ or vice versa. The result is

(j,1j,mlj, 1pM)
Si= —Q (gtly, m'Ij pip'M)

M, m, m' 2g I+ 1

XL(ml Ti*-Ilm)b„„+(tI'I TiIIp)b ]

The sums over M are easily performed, one by the
unitarity of the Wignerian coefficients, and one by this
and the "permutation of indices" property of these
coeScients which appears most easily from Racah's

This is greatly simplified by the fact that the Wignerian
coefficient (jq1j;mljq1pM) vanishes unless m=ti+M;
thus if p, =p', m=m', or vice versa, and S~ is simply

S,= —P P IU, 1j,mlj, 1&M)l
M mory

xL(ml Ti' 'lm)+(I I
TI'lt )g.

X (jrlj,m'I j 1''M)(im
I Pl im')(fp, 'I PI fp). (54c")

Further terms are prohibitively diKcult; in any case,
the "non-commuting" part of T can no longer be
neglected in Ta.f/)

4. The Interpolation Process

Since the expansion (53) of S(b) is valid only for
small P, and P increases very strongly with decreasing b

(r ' for first-order, r~ for second-order forces), ob-
viously the first two non-vanishing terms of S, derived
above, are of no help for collisions for which b is small.
For this range of b we must use physical reasoning,
based on the fact that "strong" collisions such as these
must have an effect equivalent to complete interruption
of the radiation. The T-matrix for complete interruption

"G. Racah, Phys. Rev. 62, 438 (1942).
gf It is clear that in (54c) the degenerate and non-degenerate

levels play essentially different parts. One can interpret these
terms by saying that transitions to non-degenerate levels act like
complete interruptions of the radiation, while transitions among
degenerate levels take on the character of phase-shifts to a greater
or lesser extent, whence the terms (54c"). This phenomenon, and
the question of when a level is or is not "degenerate, " are allied
to the general problem of coherence of radiation of different fre-
quencies which crops up in many fields.

In this case, the problem is fairly simple. It is easy to see that
the different behavior of degenerate and non-degenerate levels
follows from the step of dropping the terms of finite frequency in
Section D, Eqs. (13) and (14). We noted there that this step was
allowable if the frequency difference of the levels was much
greater than 1/7. In addition, (54c") can be shown to vanish for
first-order dipole-dipole interactions in any case, so that ob-
servable effects of this cause seldom appear.
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can have two forms: For the pure phase-shift case, that
of an arbitrary phase-factor, averaging to zero; for the
transition case, that of complete oB-diagonality,
meaning that the molecule has certainly changed its
state. In either case S(b) contains only the b b»
factors, and a simple summation shows that

tion will be completely interrupted. Then

r2 —$2+ p2t2 (59)

(aI PI b) =K dt exp(4, ~t)(b'+s't') & ' ' (60)

S(b small) = 1 or averages to 1. (55)

The problem of interpolating between the region of
large b, where S(b) is small and satisfies (54), and that
of small k, or (55), is insoluble in principle. However,
several simple models and some general reasoning have
led us to conclude that a definite upper limit for the
real part of 0, and a probable lower limit, can be
assigned on the basis of two rather arbitrary choices of
S(b), while a third choice gives a good working approxi-
mation.

Figure 1 illustrates the various possibilities. Our
three approximate "ideas" for curves are labeled "ap-
proximation g 1, 2, 3."0 1 is essentially the S(b) curve
used in the phase-shift theory.

SP i(b) = 1—cos(2$2(b)) &. (56)

It is easy to show that because of the factor b in (52a)
this is an upper limit for all conceivable shapes. One can
look upon the true curve as an average of several curves
like $1, with diGerent asymptotic strengths; then it
might well resemble curve (a) or (k). g 2 is the approxi-
mation obtained by using S2(b) from (54c) to the point
at which S= 1; then we use exactly (55). 43 is a rather
arbitrarily set lower limit

SP 3(b) = 1—exp[ —252(b)]. (56')

We will find that the three approximations are never
more than 20 percent from each other, which is usually
less than experimental error. Where the experiments are
more accurate, g2 does indeed seem to be the best
choice.

5. Some Remarks on the Matrix "P"

Before concluding the theoretical part of this work
it is well to make some remarks about the magnitude
of the a, b elements of P as a function of the separation
in energy of the levels a, b. An element of P is given by

(aIPIb)= dt exp(icd bt)(GIai(t) Ib) (57)

H&(/) will always be either a first- or second-order dipole-
dipole interaction; therefore it will have a form like

Hi(t)=Kr ' or Kr (58)

We can always assume that the paths followed by the
colliding molecules are straight lines, since one can
show that if the molecules collide with sufhcient strength
to have curved paths it is quite certain that the radia-

Now we define

x= ~t/b, k = b(u, a/v, (61)

following Foley then (60) becomes

k et Ice

(~ I PI t) = dx
b'v orb's" „(1+x')'"i (60')

These integrals can easily be done by contour integra-
tion; however, the main features of the two solutions
are the same. Both integrals have nearly the same
value as at k=0 ("fast" collisions or degenerate levels)
for a fairly large region of the parameter k (relating
speed of collision to frequency) approaching k=1.
Then there is quite a rapid falling o8 until at k =4 or 5
(60') essentially vanishes.

We may interpret this according to the uncertainty
principle. As long as the collisions are suHRciently fast
(k&1), the energy-difference corresponding to co,z acts
as though it were negligible: AEAt& h implies that there
is a region of "vagueness in energy" of the width k/At,
with At the time in which a collision occurs. Since the
P-matrix element gives, by (51), the probability of
occurrence of transitions between the states a and b,
these transitions will occur as though these states were
resonant throughout the region k&1. This is a point
which is frequently ignored in the theory; qualitatively,
it was previously made by Foley. We shall find oppor-
tunity to use the "region of resonance" idea repeatedly
in the applications of our theory. On the other hand,
for large k—slow collisions —no non-adiabatic transi-
tions will occur, since the motion is adiabatic.

SUMMARY OF THE THEORY

At this point it will clarify the exposition to present
a summary of the theory up to this point. We have,
essentially, found the line shape of a pressure-broadened
spectral line under the following assumptions:

(a) that the relative motion of the molecules is classical; this
enables us to write down the generalized Fourier integral (2}.

(b} that the time between collisions is long compared to the
duration of the collisions; this enables us to separate the Fourier
integral into component parts referring to the separate spectral
lines ((16) and {17)),to find a general expression for the correlation
function (42), and to write down the broadening cross-section a
occurring in this expression in terms of collision operators T (43).

(c) that the collision operators are smooth functions of the
collision parameter b between large b (where we have the ex-
pansion (51)) and small b, where complete interruption occurs.
Then we are able to apply the interpolation process, and obtain
for cr the expression (52), S(b) given by the formulas (56) fitted
to the large —b expansion (54),
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TABLE I. Comparison of theory and experiment. function with respect to inversion.

Theory Experiment ~4+=4+x+4 », -~4 =4-+x 4 —»-
Approx.

0.86
g2 4-'3

0.77 0.68 cm '/atmos. 0.74 cm ' /atmos.

TABLE II. Comparison of theory with experiment —relative
breadths in the ammonia spectrum.

Here +E and —E denote the "single-ended" states,
whose degeneracy is raised by the well-known inversion
or "tunnel effect."

First we consider the interaction between two am-
monia molecules (first-order only). The Hamiltonian of
this interaction is

2
3
3
3

5
5
5
5
6
6
6
7
7
8

10
11

(b)

1
1
2
3

1
2
3
5
3
4
6
5
6
7
9
9

Theoretical
breadths:
this thesis

(c)

2.6
2.3
3.3
4.5
4.6
1.8
2.5
3.3
4.8
2.8
3.5
4.8
3.7
4.3
4.3
4.5
4.1

Experi-
mental
data:

Bleaney
(d)

2.6
2.4
3.2
4.5
4.5
1.8
2.6
3.3
4.7
3.1
3,6
47
4.1
3.9
41
42
2.9

Quasi-
em pirical
formula:
Bleaney

(e)

2.7
2.2
3.4
4.5
4.6
1.6
2.5
3.3
4.65
3.1
3.6
4.7
3.8
4.3
4.35
4.5
4,2

(yg r)(p2 r)-
H= P1P2—3 r 3,

r'

where p1 and p2 are the dipole moment matrices of the
two rnolecules considered, and r is the distance between
the molecules. Equation (2) can easily be expanded in.
terms of direction-angles in a system of reference in
which the impact parameter b is the polar axis of
spherical coordinates for each molecule. Then 81, y1
and 82, y~ are the polar angles of p1 and p2 referred to b,
while /=tan 'L(vt)/(b)] is the angle which r makes
with b. The result for II is

II=tI,'/r'[cos8~ cos82(1 —3 cosQ)+sin8~ sin82

X (cos(p~ —
q 2)

—sing cosy ~ cosy2)
+terms in cosP sing]. (3)

Data are half-widths in cm 10&10 4 at 0.5 mm Hg pressure.

The procedure to be followed in computing line
shapes is this: given an assumed type of intermolecular
forces, one computes the matrix I' (51') in the collision-
parameter coordinate system. The interaction energy
H&' is given by (10). The elements of this matrix in-
volving the initial and final states are then averaged
over directions according to (54b) a,nd (54c' and c").
The S2 averages (54c) are employed in the approxima-
tions (56) and the 0-integral (52) to obtain a broadening
cross-section, which gives the line-breadth from (28);
a shift, if present, can be computed similarly from 5&

(54b), (52), and (28).

PART II. APPLICATIONS OF THE THEORY
TO SPECTRA

A. Cases Involving Permanent Dipole
Interactions

I. Ammonia Self Broadening-cg

We shall begin with various problems involving per-
rnanent dipole interactions, since there is much experi-
mental work on them and since, in general, the
"difficult" term (S2)~;~d~, vanishes in these problems.
Self-broadening in the inversion spectrum of ammonia
has been studied most extensively.

The states of the ammonia molecule, exclusive of
vibrational and electronic quantum numbers, are
specified by four quantum numbers: J(total angular
momentum), M(equatorial), E(symmetric top quantum
number), and &, denoting the symmetry of the wave-

We must obtain the matrix elements of the com-
binations of functions of 8 and y which occur here.
One theorem simplifies this problem greatly. All matrix
elements vanish between states which are both + or
both —,while the (+ l p l

—) elements are precisely
those of the ordinary symmetrical top for states of the
correct J, E and M. The proof is obvious upon observ-
ing that

(Els IK) = —(—Elm l
—K); (Elvl —K)=—o (4)

The latter holds true within the order of the tunnel
frequency compared to a vibrational frequency, or 10 '.
Then (1) leads directly to our theorem.

We present here a tabulation of the required matrix
elements. "
(JE M

l
cos8l JE M) =EM/J(J+1)

(JE M
l
sin8e+'4'l JK M&1)

= WK/J(J~1) ((JaM+1) (JWM)) t,

(J E Ml cos8l J+1 K M)

I L(J+1)'—K']L(J+1)' —M'] I
'

(J+1)L(2J+1)(2J+3)]&

L(J'—K') (J'—M')]&
(JE M

l
cos8 l J—1 E M) =-

JL(2J+1)(2J—1)]'*

&' R. de L. Kronig, and I. Rabi, Phys. Rev. 29, 262 (1927),
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(J E Ml »n«+'
I
J 1—E M~I)

[(J'—E')(JWM —1)(JWM)]&

J[(2J—1)(2J+1)]&

(J E Ml»»""I J+1 E M~1)

I [(J+1)'—E2](J+1&M)(J+2&M)}&

(J+1)[(2J+1)(2J+3)]l
8 @4

S2(J2, E,) =-
9 b'B'72' J2(J2+1)J2(J2+1)Of course, these elements are to be understood, ac-

cording to our theorem above, as always oG-diagonal
in the index ~, which is not explicitly written in.

There are two kinds of matrix elements of the "inter-
action matrix" I' which do not vanish, for all practical
purposes: (a) those corresponding to a simple "6rst-
order Stark eGect" interaction involving the J—+J
elements of (5), and (b) those corresponding to rota-
tional resonance and involving J—2J&1 elements of (5).
All others are negligible because of the large energy-
changes (order of 10 cm ') involved; we neglect the
second order e8ects and vibrational resonances, the
latter because few vibrationally excited molecu1es are
present.

However, it is necessary to observe that there is no
resonance e6ect as far as the inversion frequency is
concerned. The parameter k of Section H-5, Part I, is
small for the inversion frequency, and therefore col-
lisions of + molecules with + molecules or of —with
—,in which each type must undergo a+—+—transition
(total energy change about 1.6 cm ') are as effective in

+ ~
broadening as the truly resonant collisions.

This applies as far as both effects (42) and (b) are con-
cerned. The parameter k is actually

(Stark effect). (8)

For the two rotational resonance S2's, in case the
radiating molecule J~, E~ collides with a molecule with
J2=J~+1, we get

8 JLf,
4

S2(J4—1, E2) =—
9 b'u2h2

(J2 E2)(J2 E2)
X (rot. res. ) (9a)

J42(2J2+1)(2J,—1)

~2
S2(J2+1, E2) =—

9 b4v282

[(J2+1)'—E '][(J+')' —E2']
X (9b)

(J2+1)2(2J2+ 1)(2J2+3)

For collisions with molecules of J2= J~&1, one must
add (9a) or (9b) and (8) together to get the total S2 sum.
These are (S2),„„,sums; no (S2);„„„sumsenter in this
problem because the elements of p are all oG-diagonal
in the non-degenerate index &.

We must now obtain the quantity 0 (or rather the
separate 4r(J2, E2) to average over J2 and E2 by Part I,
Eq. (46)). Without bothering to do the integrals, "we
present here the three possible o-'s for our three approxi-
mations of Part I, Section H-4. We use the notation

b22 &(A)X10 X3X1.6X10' X22r
b(A) XO 0'35.

8&104
(5)

We shall never consider impact parameters b greater
than 15A. A k of 0.5 may lead to an error of a few per-
cent.

These considerations lead us to the following pro-
cedure: we shall calculate the P-matrix (Part I, Eq.
(51)) ignoring the exponential time factors entirely, and
then substitute the resulting P-matrix into the sum S2
(I, Eq. (54c)). Since we are ignoring the time-factor, it
is permissible to perform the time-integral of (3)
previously to taking the matrix elements. We use the
formulas:

(10)S2(J2, E,) =A2/b4.

Then the three approximations give

g 1. 4r2(J2, E2) = pB(J2, E2)22r(1.11A),
02(J24 E2) pB(J24 E2)22rAp

g3. 02(J2, E2) = pB(J2, E2)22r(0.885A),

or

42(J2) E2) 22rA pB(J2p E2) XC,

(6) where C has the valuesr2~ b2+u't2 cosg= b/r sing =vt/r,

At this point it is very easy to calculate the correct S2
sums. Ke present merely the result, which includes the
identical sums for initial and 6nal states. For the simple
Stark e8ect we get the following S2 sum, applicable to
collisions of the radiating molecule, quantum numbers
J& and E&, with molecules of any J2 and E2 (222 in the
general formula (46) of Part I for the two-molecule case
being here J2, E2).

and the result is

f Hyde 2@2
=—[—cos84 cos82

h, b2mk —sin82 sin82 sin4p2 sin4p2]. (7)

C= 1.11 g 1,
C=1.00 02,
C= 0.885 03.

"H. Jensen, Zeits. f. Physik. 80, 448 (1933).
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Then we have Eq. (46) of Part I
o= g r(Js, Es),

and
(dv) cm-'= (ev/2~c) o (12)

1.e

1.6

1.4

1.0

+ 0,8

0.6
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FIG. 2. Comparison of theoretical and experimental results.

which determine the line-breadth from Eqs. (8)—(11).
Two types of experimental information are available.

The most extensively measured single line in the am-
monia inversion spectrum is the J~=3, E~=3 line. ""
For this line we can neglect, with one or two percent
error, the e8ect of the rotational resonance sums (9a)
and (9b). Then we can compare our theoretical values
from (8)—(12) with the experimental results. ( The
result shown in Table I (all breadths are half-widths in
cm '/atmos. at O'C). This shows the agreement of our
theory with experiment as far as absolute values of the
broadening are concerned. Certainly the experimental
value lies within our computational error, and it, is
interesting that the working approximation g 2 is
fairly close.

The second type of experimental data available is
that on the relative breadths for all the lines in the
ammonia spectrum, taken by Bleaney and Penrose. "
In Table II we present our theoretical results on relative
values. In order to avoid the ambiguity due to the
interpolation procedure, we have normalized the theo-
retical value for the 33 line to fit the experimental value
precisely. Columns (a) and (b) give the J and E values
for the various lines; column (c) gives our values using
the Stark eflect, from Eq. (8), plus an approximately

computed correction for the rotational resonance e6'ect,
from Eq. (9). These values are normalized as explained
above. Column (d) gives Bleaney and Penrose's experi-
mental data, and column (e) gives predictions from a
theoretical formula of Bleaney based on the arbitrary
assumption that the broadening eGect of a collision
depends on the maximum interaction energy of the two
mclecules. This formula is

(dv)~ (E'/(J(J+1)) *.

It does not seem very well based since it takes no
account of rotational resonance. All breadths are in
10 4 cm ' at 0.5 mm pressure.

The computational error in our approximate method
for the rotational resonance is about O. i cm 'X10 '.
Bleaney states that his experimental error is of the order
of 0.2 cm ')(10 4. %ithin these errors, our agreement
is excellent, except for the last four lines, which seem to
allow no reasonable explanation. The fortuitous agree-
ment of Bleaney's formula (e) with experiment is
interesting, but not, apparently, significant.

(2) ' J 'p,
((1")")'(~ ~-1)=

~

—
l

— (13)
43) (2J—1)(21+3) R'

in the case of rotational resonance of dumbell molecules.
Then this energy change is inserted as the diagonal P(t)
in the simple phase-shift theory. This is for precise
resonance; if imprecise resonance occurs, the "quasi-
resonance" type of calculation such as the following is
used. If two levels are separated by a small difference
in energy 6, and an interaction V;& is assumed between
them, the energy E of the perturbed levels is computed
from the secular equation

(d/2) —E
(—d/2) —~ (14)

B. Other Cases: HCH and HC1 Vibrational
Band Spectra

I.indholm"" has taken a great deal of experimental
data on line-breadths in the vibrational bands of HCl
and HCN. He has also made theoretical calculations of
the line-breadths for these spectra, as has Foley. '
Before giving our own theory, it will make our procedure
somewhat clearer to indicate how these older theories
worked. gg

For cases in which resonances occur, as in the mole-
cules under consideration, the standard practice has
been to find a mean square direction-averaged energy
perturbation due to resonance, for instance~

"B.Bleaney and R. P. Penrose, Proc. Roy. Soc. A189, 358
(1947)."C. H. Townes, Phys. Rev. 70, 166 (1946).

$ Bleaney's experimental value seems the soundest.
~0 B. Bleaney and R. R. Penrose, Proc. Phys. Soc. London S9,

424 (1947); 60, 540 (1948).

~' E. Lindholm, Zeits. f. Physik 109, 223 (1938).
gg Lindholm in reference 10 himself stated that he found this
type of theory very bad in atomic resonance problems and that he
used it only because his own rigorous theory was too difBcult in
these cases.

~ H. Margenau, Rev. Mod. Phys. 11, 1 (1939).
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Then
&=~((~/2)'+(l"~)')'.

(4) Second-order Keesom alignment forces, operative primarily
when the colliding molecule is not in resonance with either state
of the radiator.

In the application of the method used by these
authors, a mean square perturbation such as (13) is
introduced as V;~, and that solution of (14) chosen
which reduces to the correct level at V;y=O. Then this
E is used in the phase-shift method.

Two objections can be made to this idea, considered
simply as an interpolation method between the first
order, resonance region and the second-order, r force
region for V. In the 6rst place, the criterion for the
point at which the change in type of forces occurs is
whether V='6, apparently independent of the speed of
collisions, which enters into the criterion for our own

theory. This can be shown to be not a serious dis-

crepancy, using the fact that on both theories a col-
lision must be both long and strong enough to cause a
certain P-matrix element before it has an. appreciable
eGect. However, the two criteria are not identical; the
quantitative results of the two theories differ con-
siderably.

The second objection is more fundamental. A par-
ticular choice of the solution of (14) is made; thus in

general it appears that a center-frequency shift should
be expected, larger the closer to resonance the levels
come. However, experimentally and theoretically it can
be shown that there is no shift due to precisely resonant
collisions: both signs in (14) occur when 6=0. This
contradiction is a true defect in the quasi-resonance
theory.

We are not able to present a good theory of the inter-
polation region between 6rst order (r ') forces and r~
forces, or even, in the particular case of the rotator, of
the second-order, r~, region. Therefore, since the
answers for HCl depend strongly on how these regions
are treated, we do not present detailed work on this
molecule. We are able to attain fair (30 percent) agree-
ment with Lindholm's observed widths for this spec-
trum, but no better agreement than that of his quasi-
resonance theory. However, his theory predicts much
greater breadths for the I' than the R branch, which are
not observed; our method of treating near-resonance
could never lead to such a great diBerence, and thus
agrees better with experiment.

We have been able to make fairly quantitative calcu-
lations for the HCN molecule. This molecule is a
dumbell rotator with a large dipole moment 2.65)& 10 "
esu. The observed spectra are the P-branches of the two
bands at 11500 cm '

(v& ——1, w& ——3) and 12500 cm—'
(v3 ——4). There are several types of interactions to be
considered.

(1) Vibrational resonance; this is neglected because the dipole
moment for this interaction is quite small.

{2) Rotational resonance of the ground state (J=J1) with unex-
cited colliding molecules, having J=J1+1.

{3) Rotational resonance of the excited state (J=J1—1) with
unexcited colliding molecules having J=J1, J1=2.

Effect (1) is ignored. Effect (2) we can compute on
much the same basis we have already used for am-
monia: in fact, we can take over the S2 sums (9) bodily
from the ammonia problem, if we specialize to E=O
and realize we must take only half of the sum there used,
since only one state of the two involved in the radiation
is undergoing the 6rst-order perturbation.

4 p4 (Jg+1)'-
S2(J2= Jg+1)=—

9 b4u'k' (2Jg+1)(2Jg+3)
(15)

4 J 9

Sg(J2——Jg —1)=—
9 b4v'k' (2Jg—1)(2J)+1)

The effect (3) is not a precise resonance, because the
moment of inertia of the HCN molecule depends on
vibrational quantum number. If we express the rota-
tional energy approximately as

Es(J)=B.J(J+1).
Then"

8,= 1.4878—0.0093(vi+ —',)
+0.0007(v2+ 1)—0.0108(vs+ ~~).

8 is therefore about 0.04 cm ' diQ'erent in excited and
normal states. Since the quantum exchanged in the
rotational resonance is about 28J wave numbers, the
total amount by which the excited and ground states
fail to be in resonance is approximately

Ace(off resonance) =0.08J' cm '.

Then our parameter k is

k=bAco/v=2 9X10 'b(. A)J (17')

The maximum collision parameters for this problem are
about 30A; then

0&0.09J (17")

~ G. Herzberg, Infraref and Raman Spectra (D. Van Nostrand
New York, 1945), p. 393.

and it is only for values of J 10 that an appreciable
correction for failure to resonate should appear. We
shall ignore this correction entirely, both because it
should not be large for the interesting lines and because
it is extremely dificult to compute. Then for the eGect

(3) we also use Eqs. (15), except that J~ must be
replaced by J&+1.

Lindholm finds a large correction for quasi-resonance
in this case, not depending much on J.We do not agree
with this result. In addition, this is the point in which
his HCl treatment divers greatly from ours: we find
that if (as is necessary for most lines) a correction is to
be applied for this eBect, it should be fairly symmetric
between the I' and R branches of the band.
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Effect (4) we have not been able to treat rigorously
by our own methods, since the sums required become
quite diaicult for the second-order alignment forces. It
seems likely that the results for these forces obtained
by the simple direction-averaged phase-shift theory
should not be very far wrong; in order to include this
important effect, we have simply borrowed the result
of Lindholm and Foley for these forces (they agree)
and added their line-breadths for these forces to our
own for resonant forces. This simple addition is legiti-
mate, since the important contributions these forces
make come from different collisions from those con-
tributing to the resonant line breadth.

We use the "working approximation" number (2).
Then the cross section is given by (11) with C= 1, and
A defined by (10). We use S2 from (15). The line
breadth can then be computed from (12) and Eq. (46)
of Part I, for all resonant collisions (eBects (2) and (3):
sum over J2=Ji—2, Ji—1, Ji, Ji+1) with a con-
tribution computed from Lindholm's figure (7) added
in for the alignment forces.

Before comparing our results with Lindholm's experi-
ments in Fig. 2, we should like to make some comments
about his experimental data. These were taken in the
photographic infra-red, by means of densitometer
analysis of plates. His best data are those on the 11.5
)(10' cm ' band at pressures of 25 cm and 58 cm Hg;
he also has data on the 12.5X10' cm ' band at three
pressures, 25, 40, and 58 cm Hg. The most obvious fact
about his original breadth data is that they are not pro-
portional to the pressure, as one would expect on any
theory at these pressures, but that instead they are
given by

av= const. +(const. )&(pressure,

within the experimental fluctuations. One can interpret
the constant in this expression as an experimental
broadening due to slit width, 6nite resolving power,
etc. ; this would be the case if these effects were sum-
marized by a dispersion form of curve, to be smeared
with the true line breadth. This constant is about 0.13
cm ' in half-width, a very reasonable value for experi-
mental effects. To get the true width one should sub-
tract this constant from all data. ****

In Fig. 2 we present both sets of experimental data:
the actual observations at 58 cm extrapolated to 1 atm.
pressure using simple proportionality to pressure, and
the same with the constant term in (18) subtracted,
which we expect to be the true impact theory line
breadth. The legend explains that the lower (o) values

** * In a private communication, Lindholm suggests that while
there must be some error of the type suggested here, he cannot
agree that it could be quite so large. One may consider that the
correction for experimental error is uncertain by perhaps half
its total value, and thus that the data is uncertain by 0.06 cm '/
atmos. Gordy has recently reported microwave measurements on
the HCN rotational spectrum (Rev. Mod. Phys. 20, 668 (1948))
and it is to be hoped that the observation of one or two of these
lines will definitely settle the question.

TABLE III. Comparison of measured and computed diameters.

Molecules
Radiator Perturber

Line-breadth
(b)

Computed
collision

diameter A
Measured

diameter A

(c)
Kinetic
theory

diameter (A)

NH3
NH3
NH3
NH3
NH3
H20

He
H.
N2
02
A
Air

1.5
1.9
2.6
2.5
2.6
3.3

2.4
3.5
6.4
4.8
4.6
5.6

3.2
3.4
3.4
3.5
3.7
3.5

are the corrected data. In addition, we present three
theoretical curves for comparison: (1) is our own theory
for resonance, borrowing the Lindholm-Foley values for
the small contribution of alignment forces; (2) is
Lindholm's curve for this spectrum; and (3) is Foley's
published values for the HCX spectrum. Lindholm's
curve is appreciably lower than Foley's for two reasons.
He has a correction for quasi-resonance, which is, in our
opinion, unfounded. Foley need not use this correction
in any case, since his theory applied to the 14@, funda-
mental band. In addition, it seems that even taking into
account this correction Foley's values are some 20
percent higher than Lindholm's; perhaps this is a
numerical error in Foley's work, since we get agreement
with Lindholm's values upon re-computing by their
common method.

Two forms of agreement can be claimed for our
curve: (a) excellent agreement with the experimental
variation with J, a factor which is unchanged by any
method of correcting for experimental error; and (b)
good agreement quantitatively with the corrected data.

C. Foreign Gas Broadening: Van der
%'aals Interactions

24 G. E. Seeker and 5. H, Autler, Phys. Rev. 70, 300 (1946).

Broadening of microwave lines by pressures of
foreign gases has been the subject of some experimental
investigations. ""The theoretical approach to the
problem of foreign gas broadening has generally been
that of computing the Van der Waals interactions be-
tween the molecules concerned and using these to obtain
broadening cross sections. Ke have followed this pro-
cedure with our more accurate theory. In general, it can
be shown that the r~ term in the interaction between
two molecules is, for the Debye induction type of
forces:

H;„q = (u2iii'/2r') (1+3cos'8), (19a)

where o.2 is the polarizability for the non-polar molecule,
assumed isotropic, pl the dipole moment of the polar
molecule, and 8 the angle which pl makes with the
intermolecular distance r. Very similarly, the London
dispersion forces for two interacting non-polar mole-

cules, one assumed isotropic, are approximately given
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IiIg 30.2
Hd;„.= —(3a'+a"+(a"—a') cos'8), (19b)

Ig+I2 4r'

where 0.2 is still the polarizability of the isotropic mole-
cule, I~ and I2 are the fundamental frequencies from
one-term dispersion formulas, or the ionization poten-
tials, for the two molecules, and n' and a" are the
polarizabilities along the two diGerent axes of the
polarizability ellipsoid of the non-isotropic molecule,
assumed to be an ellipsoid of rotation. (A somewhat
similar formula holds in case the anisotropic molecule
has three different polarizabilities. ) 8 is the angle
between the axis of the polarizability ellipsoid and the
intermolecular distance x.

For states separated by microwave frequency dif-
ferences, the isotropic parts of (19) make no con-
tribution to broadening, and one need consider only an
interaction of the form

H = const. X (cos'8/r').

S2 sums can be computed using this interaction, and
inserting appropriate constants for various cases. These
sums are quite difFicult, both because the cos'8 term
introduces essentially a second-order I.egendre poly-
nomial symmetry into the matrix I', and because the
diflicult term (S2);„„„doesnot vanish. They are evalu-
ated easily only by using the group-theoretical methods
of Racah;" however, using these methods they can
be done in general, even for forces of more complicated
symmetry.

%e do not present this evaluation because the
results, in general, do not have any relation to experi-
mental results. It is found that the collision broadening

cross sections 0 calculated by means of the known
Van der %'aals forces come out usually to be consider-
ably smaller than the kinetic theory cross sections com-
puted from viscosity, etc. This means that the forces
which cause broadening must be the higher order and
exchange forces which come into prominence at the
diameter corresponding to the kinetic theory cross-
section. As would be expected, the measured broadening
cross sections are at least as great as the kinetic theory
ones in most cases.

Table III summarizes the situation very well.
Column (b) is from Bleaney and Penrose's paper, "
except the H20 line, which comes from Seeker and
Autler. "Column (c) is from Stuart's book."

One more problem was computed. The microwave
spectrum of oxygen has been measured" in some detail.
This case is even more complicated that the preceding,
because transitions among states having different total
angular momenta (J) but the same E, or molecular
quantum number, must be considered. J= K+8, where
S is the spin angular momentum of O~, ~S~ =1. The
splitting of the states J=%+1, K is very small, since
this is the line observed at microwave frequencies, and
thus this type of transition occurs easily upon collision.
Another theorem of Racah was used to simplify this
computation. Here the agreement with experiment was
somewhat better than would be expected from the
kinetic theory diameters and Table II, but this is not
significant since the experimental data are only on the
entire unresolved set of lines near 2 cm '.

I should like to express my gratitude for the wise
direction, help, and encouragement given me in my
work on this problem by Professor J. H. Van Vleck.

~H. A. Stuart, Molekulstruktur (Verlag J. Springer, Berlin,
1934},Table II."J.H. Van Vleck, Phys. Rev. 71, 413 {1947}.


