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Phase Shifts in Proton-Alpha-Scattering

C. L. CRITCHPIELD AND D. C. DODDER

Department of Physics, University of Minnesota, Minneapolis, Minnesota

(Received May 31, 1949}

Phase-shifts in S and P waves are found that fit the observed scattering of protons by helium (4) within
the experimental accuracy of the recent Minnesota results. The S wave phase is negative and rather small.
The P'f and Ps/~ waves have different phase-shifts, both positive, but there are two sets of possible values,
one corresponding to a normal doublet in Li, the other to an inverted doublet. In both cases there is resonant
scattering and strong polarization of the proton beam. Measurement of the polarization would decide
between the doublets. The values of the phase-shifts presented are those that minimize the sum of squares
of percent differences between observed and calculated differential cross sections.

'HE scattering of protons by helium (4) has been
measured recently at Minnesota by Freier, Lampi,

Sleator, and Williams. Their results for the differential
cross sections are more extensive and more accurate
than those obtained in earlier investigations. ' Within
the estimated accuracy, however, there is no essential
discrepancy between the earlier and the later results.
The Minnesota group bombarded helium gas with pro-
tons from the electrostatic generator at eight different
energies ranging from 0.95 Mev to 3.58 Mev. The
scattered protons were counted at a number of angles
relative to the incident beam. The angular range ex-
tended from 12.5' to 168' (in the center of mass system
of coordinates) for most of the energies used.

The accuracy and completeness of the recent results
make it possible to determine the phase shifts involved
as functions of the energies and to an estimated accu-
racy of a degree or two. It is the purpose of this paper to
present the phase-shift analysis for the p —He' colli-
sions. No evidence for anomalous phase-shifts in colli-
sions with angular momentum greater than that for I'
waves was found. The 5 wave phase-shifts are small
and negative; the P wave phase shifts are double valued,
but the I'3~2 and the I'~ waves are refracted very differ-
ently above 1.5 Mev. It is impossible to conclude from
the differential cross sections alone whether the P~ shift
is larger than the Pg2 (i.e., a normal doublet in Li') or
whether the doublet is inverted.

Values of the I' wave phase-shifts are of particular
interest. First, it may be hoped to interpret them in
terms of spin-orbit forces between nucleons. Since the
nuclear forces between He4 and a proton in a I' state
are attractive (the phase-shifts are positive), a normal
doublet would fit, qualitatively, with Dancoff's' calcu-
lations based on tensor forces between nucleons,
whereas, an inverted doublet wouM be evidence for the
spin-orbit splitting from the Thomas precession as sug-
gested by Inglis. 4 Secondly, the fact that there is de6nite
spin-orbit splitting means that the scattered protons

'Freier, Lampi, Sleator, and Williams, Phys. Rev. 75, 1345
(1949).

2N. Heydenburg and N. Ramsey, Phys. Rev. 60, 42 (1941);
C. B.O. Mohr and G. E. Pringle, Proc. Roy. Soc. 160, 190 (1937).

3 S. M. Dancoff, Phys. Rev. 58, 326 (1940).
4 D. Inglis, Phys. Rev. 50, 783 (1936).
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are partially polarized' and this effect is o& interest not
only as a possible source of fast, polarized protons but
also as a means of resolving the ambiguity in the I' wave
phase-shifts. The polarization to be expected from the
normal doublet turns out to be quite different from
that in the inverted doublet.

The method of analysis of the scattering data follows
the customary lines of considering the incident beam
as an infinite plane wave in relative coordinates, ex-
panding in eigenfunctions of orbital angular momentum
and introducing the effects of nuclear refraction as phase
shifts in the asymptotic form at large separation. In the
absence of spin-orbit effects the scattered amplitude
takes the familiar form

&(8, g, 8~ ) = k 'I ——,'g csc'-', 8 exp(ig ln csc'8/2)

+g (21+1)P~(cos8) exp(ib~+ip~) sin8~I, (1)

where 8 is the angle of scattering (center-of-mass
system), the 8& are the phase-shifts induced by non-
Coulomb forces in the partial waves of orbital angular
momentum lk, the angular dependence of the latter
being given by the Legendre polynomials P&(cos8). The
quantities, k, q, and p& are related to the reduced mass
M and to the velocity at infinite separation, v, by

k = Mv/k g = 2e'/hs =0.31612EM,„—''

kg=5.5450)&10" cm ', &0=0,
(2)

1+i' l+ig
gi P l ~ ~ ~ l&0.

In Eq. (2), EM, is the energy of the proton beam in
millions of electron volts and 5 is Planck's constant
divided by 2m.

In the presence of spin-orbit coupling the waves will
be refracted differently, depending upon the relative
orientation of spin and orbital momentum. Let the
normalized spin wave function be designated by p~ for

~ L. Wolfenstein, Phys. Rev. 75, 1664 (1949); J. Schwinger,
Phys. Rev. 69, 681 (1946); 73, 407 (1948). The authors are in-
debted to Dr. Wolfenstein for the opportunity of reading his
manuscript before publication and for several helpful discussions
concerning the polarization.
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spin pointing in the direction of the incident proton
beam (s axis) and x « for spin pointing in the opposite
direction. The component of the incident beam that is
proportional to (2l+1)x«PI(cos8) must be considered as
a superposition of eigenstates of total angular momen-
tum, f;, with j=l+2 and j=l—-', :

(2l+1)X«PI(cos8) = f1+«+/I «,

PI+«= (l+1)X«PI(cos8) —X «sin8e'~P1'(cos8), (3)
«l I «=lX«PI(cos8)+X «sin8e'~PI'(cos8),

In the variables defined in Eqs. (7) and (g), and multi-

plying by four, we obtain the equation that is used in
the following analysis:

4k'0 (8) =R'—2R Icos(u —1)+p cos8 cos(P —f') }
+1+2p cos8 cos(a —P)

+-',p'(3 cos'8 —1)—3p COSP sin'8. (9)

The unknown quantities at each energy are a, P, and p
which are related to the desired phase-shifts by

where 4 is the azimuthal angle about the direction of
bombardment and

P,'(cos8) =d P(Ic os )8/d cos8.

b0=2(~+41),
2 sin2b1++sin2b1 = p sinP,

2 cos281++cos2b& = p cos+3.
(10)

If we denote the anomalous phase-shift in QI+«by
b&+ and in ««««by bI, the scattered amplitude arising
from incident particles of spin x~ is proportional to

A;(8, II, ) = k 'x«I —-', I«csc'-', 8 exp[iI« ln csc'F8]

+g [(l+1) exp(ib1+) sinb1++l exp(ibI ) sinbI ]
l=P

Xexp(i@I)PI(cos8)}+k 'X «p [exp(ibI ) sinb&
0

exp(ib—I+) sinbI+j exp(ipI+iC) sin8PI'(cos8). (4)

The analogous calculation for incident particles of spin

x ~ leads to the scattered amplitude

A «(8, 11, )=k 'x «I
——,'1«csc'F8 exp[i' ln csc'-,'8j

+P [(l+1)exp(ibI+) sinbI++1 exp(ibI ) sinbI ]
Xexp(i&1)PI(cos8) }

—k 'X«p [exp(ibI ) sinbI
E I

exp(i—bI+) sinbI+7 exp(i&1 —i4) sin8PI'(cos8) (5).
The diGerential scattering cross section for an un-

polarized beam is then the average of the absolute
squares of the amplitudes given by Eqs. (4) and (5),
summed over spin components. In the following, we
shall use only the terms involving l=0 and l=1; the
formula for the cross section 0(8, 11), multiplied by km

then becomes:

k'p (8, I«) =
}
——,

' I«csc'-', 8 exp[iI« ln csc'2'8]+ e'" sinbo

+cos8[2 exp(ib1+) sinb1++exp(ib1 ) sinb1 ]
Xexp(«d I) }'+sm'8 sm'(b1 ——b1+). (6)

As a preliminary step in the reduction of the data, the
cross sections at only three angles of scattering were
used, viz. :8= 90', 54' 44', and 125' 16'. The latter two
angles are those at which the D wave component
vanishes and, hence, also the term in Eq. (9) that is
quadratic in p. By reading values for 0 (8) at these angles
from graphs of the experimental results and by assum-
ing a value for a, say cx', we obtain a pair of equations
in p sinP and p cosl8. Solving these and substituting in
Eq. (9) as applied at 8=90', we then solve for a. By
plotting the assumed values of 0.' against the calculated
values, the roots were located. At E=1.49 Mev, for
example, there were three sets of solutions which may
be labeled by the corresponding values of n, vis. ,
n= —67.3', —14.0', and 36.5'. Using the values of 0,,
P, and p for each set, the cross section was computed for
all the angles at which observations were made. ' In
this way it was found that only the set belonging to
n= —67.3' predicted cross sections that were close
enough to the observed values to be acceptable. For ex-
ample, the percent diGerence between calculation and
observation at 0=25' was found to be —1.5, 39.6, and
—39.5, in the sets with 0,= —67.3', —14', and 36.5',
respectively.

Consideration of the continuity of the phase-shifts
leads one to conclude that negative o, characterizes the
correct set of roots at all energies. At E=3.58 Mev, there
are four sets of roots two of which have negative a, e~z. ,
e= —91.0' and —132.9'. Again comparing results of
computation with the observations at various angles we
found that only 0.= —91.0 gave an acceptable 6t. The
percent diBerence at 0=25' was 3.4 with n= —91.0'

For convenience of calculation we de6ne the rea1. quan-
tities p and P such that Energy

(Mev)

TABLE I. Results of least square reduction.

p cosP p sinP
pe'&= 2i[2 exp(ib1+) sinb1++exp(ib1 —

) sinb1 j
= 2 exp(2ib1+)+exp(2ib1 ) 3—(7)

We also define three new quantities, a, f', and R, such
that

n= 280—Qg

R slI1(i +4tI) = 11 csc $8 cos(II 111 csc S8)
R Cos(f+ QI) = 1—I«CSC S8 S1I1(I«111CSC S8).

—0.010&0.060—0.493&0.034—1.077+0.053—2.238&0.103—3.089+0.037—3.954&0.028—4.097a0.018—3.958+0.024

—59.9+5.6—65.2&2.0—62.3&3.1—74.3&6.6—77.4+2.6—78.9&2.3—84.4a2.2
-89.4&1.5

0.95
1.49
1.70
2.02
2.22
2.53
3.04
3.58

Note.—& quantities are estimated standard deviations,

0.344&0.042
1.445&0.020
1.914+0.016
2.274+0.073
2.033&0.059
1.202&0.072
0.068&0.063—0.374~0.059
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TABLE II. Percent deviations in Gnal fit.

8 F =0.95 1.49 1.70 2.02 2.22 2.53 3.04 3.58

12 38'
18 52
25 3
31 13
37 20
43 23
49 23
55 21
61 10
66 54
72 37
90 7
94 22
99 28

104 36
110 14
114 22
120 14
132 37
140 14
149 22
150 14
160 14
164 59
168 2

4.1 4.3 2.5 2.4
2.4 4.7 —0.3 3.2
3.3 0.8 0.4 2.3
3.1 —3.8
0.6 —4.0 —1.S 3.1

—1.5 2.3 —0.6

2.6 —1.5—0,2 0.2
0.6 0.6—1.8 —3.4
1.7 —1.8
2.4 4.5

—0.7
2.3

0.1

1.1 —0.5 —0.4

0.7 1.7—1.4 2.1 0.1

—0.4
2.1

2.0
0.4

0.5

—2.4

—4.7

3.1 —1.2 —2.1

3.4 0.8 —1.3

2.7

1.9

0.5 —1.0 0.5 —1.7 0.6-3.1
1.1

—2.4 0.1 —2.2 1.0

—1.4 1.0—0.8 1.1
1.2 1.3
1.6

0.3—2.2 0.1

1.4 —1.0

—2.3 —1.6
2.5

1.6

3.4
0.5 2.0—2.8—0.5 —1.5—2.2 2.1—0.4 2.5—4.4 —1.3
2.2 2.1
0.5—1.2 —3.4

S 2.9 3.1 2.3 2.7 2.0 2.4 1.9 2.2

and 34.8 with n= —132.9'. In contrast to the result
at 8=1.49, it is the next lowest value of a that gives
the best fit at E=3.58, instead of the lowest value.
Hence, it appears that the two series of negative roots
cross over, there being a double root at some intermedi-
ate energy. This interpretation is corroborated by the
fact that at E=2.53 Mev there are no real, negative
roots for a, a possible result of being near the double
root and making a small error in estimating the cross
sections at the three angles used.

Although the method described above serves to locate
the correct branch of the multiple solutions, the exist-
ence of a double root makes it useless as a way of obtain-
ing preliminary values of n, P, and p at intermediate
energies. With the values of 0. at E=1.49 and 3.58,
however, those for the other energies can be estimated.
The method used is that presented by Breit and his
collaborators' wherein we rely on the fact that the
function

' See G. Breit and W. G. Bouricigs, Phys. Rev. 75, 1029 (1949).

f(g, 8o) = (e' '—1) 'm cot8o —lug+1. 202vP

should be very closely a linear function of the energy.
By drawing a line through the points obtained at
8=1.49 and 3.58, the other bo's, and hence 0.'s, were
found. Then, from two observed points, preliminary
values of P and p were obtained.

With the preliminary values of a, P, and p as obtained
by the procedure described above, values of 4k'o(8)
were computed from Eq. (9) for every angle and for
every energy for which observations were made. The
percent diGerences, eg, between calculated and experi-
mental values of 4k'o(8) were then taken. First-order
corrections to n, p cosP, and p sinP were found at each
energy so as to minimize the sum of squares taken over

all angles, i.e.,

Ming
(

8 lno (8) 8 ino(8)
An+ A(p cosP)

Bp cosP

8 ino(8)
+ A(p sinP)—

8p sinP ioo

Energy
Inverted doublet
Py Pals

Normal doublet
P$ Ps/s

0.95
1.49
1.70
2.02
2.22
2.53
3.04
3.58

—12.0 a2.8—18.1 W1.0—17.6 ~1.6—24.6 &3.3—26.7 %1.3—28.2 &1.2—32.0 %1.1—35.2 &0.8

3.3% ?
4.1 &1.8
4.2 ~2.2
8.1 %1.9
9.4 &1.6

13.1 ~2.7
15.7 &2.5
20.3 ~4.0

3.3& ?
20.4 &1.0
31.1 &1.4
47.8 &0.6
60.6 &0.6
78.8 &0.8
96.6 &1.7

105.4 &6.6

3.3% ?
25.8 %1.7
40.7 &1.4
63.2 ~2.1
83.1 &1.6

115.3 ~1.4
160.7 &2.0
181.0 &5.6

3.3~ ?
9.6 &0.8

13.8 ~0.3
23.7 +0.9
31.9 ~0.6
49.6 ~1.1
79.8 ~1.9
95.9 ~2.1

No allowance is made for possible uncertainty in the
value of the energy, or of angle, and all results are con-
sidered to be of the same weight. With the first-order
corrections made, new values of eg were computed and
the procedure repeated. For the most part, the correc-
tions indicated by the second calculation were of the
order of one percent.

The semistatistical procedure in minimizing the sum
of squares of the deviations permits rough estimates of
the standard deviations of the individual observations
and of the va. lues obtained for n, p cosP, and p sing.
The results of the calculation are presented in Table I
and the resulting percent deviations, observed less
calculated, are given in Table II for each angle and
energy presented in reference i. The quantities labeled
s in Table II are the estimated standard, percent devia-
tions of the single observations. It is apparent that the
magnitudes of s are in accord with the estimated prob-
able error of 1.5 percent claimed by the experimentalists
of reference 1.The fact that the deviations at the higher
energies are no worse, and in fact somewhat better, than
those at lower energy indicates that higher partial waves
are not important to the scattering by nuclear forces.

Using the values in Table I and solving Eq. (10), we
obtain the values of the phase-shifts. As remarked
above, there are two sets of solutions for the P waves,
one a normal doublet, the other an inverted doublet.
The results are shown in Table III which includes the
estimated standard deviations. In the event that the
doublet is inverted, only the phase-shift of the P3/2
wave passes through 90', and that occurs at about 2.8
Mev. For the normal doublet, however, both P waves
pass through resonance, the P~ at a proton energy of
2.3 Mev and the P3/2 at 3.4 Mev. The first resonance
level is presumably the lowest quantum state of the Li'
nucleus which, therefore, lacks being bound by about
1.8 Mev. The splitting caused by spin-orbit coupling
would be 0.9 Mev. The width of the P~ level at half-
maximum is also about 0.9 Mev and the width of the
P3/2 levels are even larger, perhaps by 50 percent.

TABLE III. Phase-shifts in S and P waves.
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The 5 wave phase-shifts are similar to those that
would be produced by a weak, repulsive potential of
fairly long range. If the S wave potential is assumed to
be independent of the energy, the phase-shifts as ob-
served can be obtained by assuming the Coulomb repul-
sion to apply down to a separation, S.7SX10 "cm, and
substituting a constant positive potential of 3.8 Mev at
smaller distances. On the other hand, the 5 wave inter-
action probably is not energy independent and the
square well picture has no immediate significance.

Although the existing results on the complementary
system formed by scattering neutrons in helium are not
of comparable accuracy, it is of interest to compare
them with our results. Staub and Tatel' have found
that the backward scattering of the neutrons exhibits a
double resonance which can be accounted for by either
a normal doublet in the P waves and a negative S wave
phase-shift or an inverted doublet with a positive 5
wave phase-shift. They preferred the former possibility
which corresponds to our normal doublet if one assumes
similarity between neutron-neutron and proton-proton
forces. In fact, if we had imposed the condition that
both P waves go through resonance in the energy range
used, we should have obtained the normal doublet as a
unique solution. On the other hand, the proton-alpha-
scattering shows only a single maximum in the back-
ward scattering. In any event, it is clear from the
analysis above that a description by means of phase
shifts will always lead to two solutions for the P waves
and it is only by an additional assumption that a unique
solution can be derived from the differential cross
section alone.

The question as to whether the P wave doublet be
normal or inverted can be settled, in principle, by deter-
mining the polarization of the scattered protons as a
function of the energy of bombardment. Following the
line of reasoning presented in reference S, we compute
the expectation value of the x component of the spin

' H. Staub and H. Tatel, Phys. Rev. 58, 820 (1940).

TABLE IV. Percent polarization at 90'.

Energy

0.95
1.49
1.70
2.02
2.22
2.53
3.04
3.58

Inverted doublet

0—70—90—98—92—68—39—15

Normal doublet

0
79
96
80
42—32—87—57

of the scattered proton, cT,

Calculations with the phase-shifts obtained above are
presented in Table IV. It is evident from the numerical
results that the protons scattered at 90 are almost
completely polarized at energies somewhat less ( 0.5
Mev) than the resonant values. It will be observed also
that the direction of polarization changes sign in the
case of the normal doublet. Hence, relatively inexact
measurements of the proton polarization should sufFice
to decide which of the two solutions to the scattering
problem is the correct one.

%e should like to thank the members of the electro-
static generator group at Minnesota for their coopera-
tion in the investigation reported above. This work was
supported in part by the ONR.

in each of the waves, Eqs. (4) and (5), average the
results and divide by the cross section at the same
energy and angle. This gives the fractional polarization
which, since it varies as sin8 will be near maximum at
8=90'. The fractional polarization in the x direction is
also proportional to sin4 and is therefore a maximum
along the y axis. Considering only P waves and setting
0= 4 =90', we obtain for the percent polarization p:

p=200 sin(6~ —8~+) Iq sin(Q&+&~ +8~+—0.69')—sin80 sin(@~+8~ +8~+—80) I/O'0. (90'). (ll)


