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therefore be calculated by means of Eq. (31). The
results of such calculations are shown in Fig. 4. The
curves of this figure permit any one of the three vari-
ables (x/d), (U/V), and (I/I,) to be determined if the
other two are known. The intersection of the contours
of constant (U/V) with the horizontal line correspond-
ing to a given value of (I/I,) gives the potential dis-
tribution in the diode for that value of current.
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Note Added in Proof: Since this paper was submitted
for publication it has been found that as early as 1920
G. Jaffe (Ann. d. Phys. 63, 145) considered the plane
diode under partial space-charge conditions and ob-
tained an equation identical, except for notation, to Eq.
(17) above. However, Jaffe did not express his results
in the convenient manner of Fig. 1 nor did he consider
the cylindrical diode.
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A model Bose-Einstein gas is considered in which numerical perturbations in the population of the lowest
state have a relaxation time that is long compared with the relaxation time for perturbations in the sym-
metry of the velocity distribution in the excited states. Oscillations of the population of the lowest state
about its equilibrium value are transmitted as second sound waves. The velocity of transmission is found
as a function of temperature below the lambda-point and compared with that of second sound in liquid
helium. In the gas there is a temperature dependent coupling between pressure waves and thermal waves;
the normal modes of propagation are mixed. The high speed mode is pure pressure wave near T but goes
over gradually to pure thermal wave as T goes down towards 0°K; the low speed mode is pure thermal wave
near T\ but goes over gradually to pure pressure wave as T goes down towards 0°K. For 7T the thermal
wave has a higher speed of propagation than the pressure (ordinary sound) wave.

INTRODUCTION

N a recent paper! the formal first order perturbation
theory of transport phenomena in a Bose-Einstein

gas was considered. In that theory it was assumed that
at every point in the gas the numerical populations of
the various energy states accessible to the gas atoms
remain equal to their equilibrium populations. In other
words the regression of numerical fluctuations was
assumed to be rapid compared with that of asymmetry
fluctuations in the velocity distribution. This assump-
tion is implicit in most applications of first-order per-
turbation theory in statistical mechanics and is prob-
ably valid in general. However, in the degenerate
Bose-Einstein gas below a certain transition tempera-
ture the number of atoms in the lowest state becomes
comparable with the total number of atoms in the gas.
The general theory of fluctuations? then leads one to
expect that the numerical fluctuations in the population
of the lowest state become of major importance below
the transition temperature. This may be seen in the
following way.

The standard deviation Az of the population of any
one state from the mean population 7 is given by

Fermi-Dirac gas  An/A=(1/A—1)},
Bose-Einstein gas An/A=(1/7+1)%
1 W. Band, Phys. Rev. 76, 1937 (1949).

2R. H. Fowler, Statistical Mechanics (Cambridge University
Press, London, 1936), Chapter 20.

At very low temperatures in the Fermi-Dirac gas
1/7—1 and the fluctuations tend to vanish as 7" ap-
proaches absolute zero. In the Bose-Einstein gas, on
the other hand, the fluctuations remain of the order
unity; in particular the lowest state has a population
ne—N as T—0 where N is the total number of atoms
in the gas, and 7, is comparable with N immediately
below the transition temperature 7. Thus

Ang/7o=1 for all T<T\.

These finite fluctuations at low T would be of no
importance if all the states had similar populations and
were closely spaced in the energy spectrum; it could
then be supposed that there would be no correlation
between the fluctuations of neighboring states so that
in any appreciable energy range there would be no
appreciable fluctuation in the total population in that
range. But if the system contains one state or one
degenerate set of states, in the present case the single
lowest state, with a population comparable with that
of the whole gas and, therefore, enormous compared
with the population of any other state, the finite value
of Ano/7s becomes extremely serious. For example, if a
Gaussian distribution is assumed for the actual devia-
tions of the population from its mean value, the fact
that Ano/7io=1 means that the number of atoms in the
lowest state may be 20 percent above or below the
mean value for roughly 23 percent of the time. At tem-
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peratures not more than 40 percent below T’ there are
already over one-half the atoms of the gas involved in
this uncertainty.

The foregoing equations are exact only so long as
e N because the fundamental theorems of statistical
mechanics are exact only under this restriction. As soon
as 7ip becomes comparable with N it would be more
appropriate to treat the lowest state as a separate phase
and the above conclusions can hardly be accurate. The
approximation is still good, however, if we are not too
far below T\ and comparatively large fluctuations are
to be expected even well below the transition. Because
the condensation into the lowest state occurs only in
momentum space, these very large fluctuations have
only secondary effects on the density of the same order
of magnitude as the classical fluctuations near the
critical point of a vapor.? Perhaps for this reason these
large fluctuations in the Bose-Einstein gas have hitherto
been regarded more as a mathematical curiosity than a
physical reality. But if, for some reason, the relaxation
time for these fluctuations happens to be long compared
with the relaxation time for asymmetrical perturbations
of the velocity distribution, then it is clear that such a
situation would place the problem completely outside
the scope of ordinary first-order perturbation theory
and alter the whole character of transport phenomena
to be expected in the assembly.

To make the mathematical problem as simple as pos-
sible, consider a quasi-ideal Bose-Einstein gas in which
the lowest state is separated by a finite energy gap, say
e. from the next state, and let e, be large (by a factor of
the order 10) compared with the average spacing
between adjacent levels.

With such a model it may reasonably be assumed
that the relaxation time for re-adjustments of equi-
librium following an imposed change in the populations
of the lowest state is comparatively long.* We shall
call this the population relaxation time. It will further
be assumed that the model has the following convenient
properties: let there be three relaxation times, 7o the
population relaxation time for the lowest state, 7, the
asymmetry relaxation time for the velocity distribution
in the whole gas, and 7, the mean population relaxation
time for the individual excited states; it is assumed only

that
(A)

Under (A) there may conceivably occur physical proc-
esses for which significant times ¢ lie well within the
range 7>!> 7, For such processes, which will be
called ““t-processes,” the atoms in the lowest state will
behave as an almost independent assembly having no
appreciable interaction with the remainder of the gas,
while the latter, which will be called the “high energy

3 L. L. Schiff, Phys. Rev. 57, 844 (1940).

* In other words, it is assumed that the large energy gap reduces
the transition probability between the lowest state and the other

states, while no such anomaly on average exists between other
pairs of adjacent states.

To>>Ta>>T1.

559

component,” remains separately in equilibrium with
respect to all external perturbations because of the
relation (> 7,>71.

For t-processes this Bose-Einstein gas model behaves
like a mixture of two fluids similar to the two fluid
model proposed by Tisza* for his phenomenological
theory of helium II.

The conditions under which this two-fluid model is
applicable to the Bose-Einstein gas are, therefore, the
following: first, there must exist three relaxation times
of the type described under assumption (A), and
secondly, (B) the mean population of the single low
energy state or degenerate group of states must be
large compared with that of any other single state.

Any physical system that conforms to conditions (A)
and (B) will be superfluid for ¢-processes if the states of
lowest energy can include particle transport.® Such a
system may conform to (A) and (B) because it is a
Bose-Einstein gas of the model here described. But
there may be other physical systems that conform to
(A) and (B) for entirely different reasons. In particular,
electrons are known not to obey Einstein-Bose statistics,
and yet assemblies of electrons can, under appropriate
conditions, become superfluid. The statistics are evi-
dently not in themselves basically decisive, but rather
conditions (A) and (B) enunciated above, and it has
to be determined in each case of superfluidity why the
particular assembly happens to satisfy these conditions.

The calculations to be reported in the present paper
were undertaken with the familiar idea that helium II
may possibly happen to satisfy conditions (A) and (B)
because the statistics applicable to the gas phase
influence the behavior of the liquid phase in some way
not yet fully understood. The results, namely the
existence of second sound propagation of thermal waves
in the Bose-Einstein gas, would appear to add to the
gradually accumulating evidence that tends to support
this point of view.

The proof that this model also yields supercon-
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Fic. 2. Phase relation between superfluid and high energy
component displacements in the normal modes of sound in B.-.E.
gas.

ductivity for heat of the same general character as that
observed in helium IT is reserved for a later paper.

In the first section of this paper some of the thermo-
dynamic functions of the high energy component of the
Bose-Einstein gas are calculated on the assumption that
there does exist an equilibrium parameter A\, and a tem-
perature 7', defining the distribution in energy among
the excited states, but that there does not exist any
necessary relation between these parameters and the
ratio p,/p. In other words, three independent variables
exist as required for #-processes in describing the
assembly as a mixture of high and low energy com-
ponents.

In the second section the Lagrangian for oscillatory
t-processes is expressed in terms of the above thermo-
dynamic functions with special reference to oscillations
that carry the state of the assembly back and forth
through an equilibrium center that would, if the
ordered kinetic energy could be removed, correspond to
an internal thermodynamic equilibrium. The Euler
equations for this Lagrangian are the wave equations
for first and second sound.

In the third section the velocities of propagation of
the two modes of propagation are evaluated as functions
of mean temperature, and in the last section the velocity
of propagation of ordinary sound above the lambda-
point is shown to be continuous with the curve for first
sound at the lambda-point. Figure 1 shows the two
curves calculated for the gas whose atoms are equal in
mass to the helium atom. Both the shape of the curve
and the magnitude of the velocity for second sound are
remarkably like those observed in liquid helium.

It turns out that when the Lagrangian is expressed
in terms of the most obvious variables—velocity of the
mass center of the mixture and relative velocity between
the two components, respectively—there is a strong
coupling between the two. In other words, the normal
modes of wave propagation are not in general pure
pressure waves (mass center oscillations) and pure con-
centration waves (relative velocity oscillations). The
coupling is removable formally by transforming to other
variables, and mathematically this is equivalent to
treating the two modes as plane polarized components
that can each be resolved into two ‘directions,” one a
pure pressure and the other a pure concentration wave.
Figure 2 shows the “polarizing angle” as a function of
temperature. The first sound mode at 7\ is pure
pressure wave and the second mode has zero phase
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velocity. As T drops below T the “plane of polariza-
tion” of the first mode rotates gradually until at
T1=0.63T) it is 45° which means that here the first
mode involves both pressure and concentration changes
in equal proportions. Below T the first mode becomes
predominantly concentration wave and as 7—0 the
proportion of pressure oscillation approaches zero. The
second mode on the other hand starts at just below T,
as almost pure concentration wave, passes through the
neutral mixture at 7 and becomes predominately
pressure wave as 1" approaches zero.

This would mean, for example, that if a source of
either pure pressure or pure heat oscillations were
present in the gas, the latter would act like a doubly-
refracting medium; in particular, if the temperature
were near 17, the two modes would carry roughly equal
shares of the transmitted energy, and a “beat” phe-
nomenon between the two might be possible.

It is particularly interesting to note that below T}
the heat wave would propagate most of its energy in
the high speed first mode, while the pressure wave
would be found predominately in the lower speed second
mode of propagation, thus reversing the relationship
existing near the lambda-point.

If one tries to fit the Bose-Einstein gas model more
closely to helium II by arbitrarily assigning to (p./p) a
(T/T))¢ law in place of the ideal (7/T))} law, the
present calculations yield the somewhat surprising
result that second mode of propagation then has a pure
imaginary phase velocity. In other words, such a model
might simulate liquid helium in its C,-curve, but it
would fail to give second sound propagation.

NON-EQUILIBRIUM THERMODYNAMIC FUNCTIONS

Under conditions (A) of the last section, the high
energy component of the Bose-Einstein gas below T3,
considered separately, forms an assembly in internal
equilibrium and the number of atoms in volume V is

Nou=VQ@rmkT) A1, 3). 2.1)

In this equation the expression A,(1, $) is the same as
A(1, 3) of the previous paper,! written in terms of T,
and A\, instead of 7" and \; T, is the temperature appro-
priate to the normal component separately, and A, is
its logarithmic free energy. The expression A,(1,3) is a
series in powers of X, whose coefficients depend only on
the quantity e,/kT,.

If the whole gas were in equilibrium, the low energy
component would have the same X and 7. Actually the
low energy component must always have A=1. The
radius of convergence of the \,-series in the expression
A,(1, 3), however is at

An=1/(1—e./kT,)>1

so that it is possible for N, to oscillate both above and
below its equilibrium value of unity. It is interesting
that theexistenceof thefiniteenergy gape,isformally nec-

(2.2)
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essary to permit oscillations about equilibrium, for if e,
were zero, A, would only vary below unity. The tempera-
ture and \-values for the low energy component do not
have to appear formally: given N/V, T, and \,, the pop-
ulation N, of the low energy state can always be cal-
culated from the identity

N=N,+N,. (2.3)
The energy per unit volume in the normal component
is

E./V=3)kT.2emkT ) 3A,(2,5/2). (2.4)
where A,(2, 5/2) is another \-series defined in the first
paper! and here expressed in terms of N\, and T',. The
energy per excited particle is obtained from (2.4) and

(2.1):
En/A7n= (3/2)anAn(27 5/2)/Aﬂ(1! 3/2)' (2'5)

It is clear that if both T, and \, vary in such a way as
to keep N, constant, the energy E, will vary, alter-
natively E, could be kept fixed but then N, will vary.
In equilibrium X\, would be determined at unity. Here
fluctuations about equilibrium are being considered and
evidently A,—1 may be regarded as a measure of de-
parture from equilibrium.

The entropy of the high energy component may be
defined as

Sa=k Y, In(1— \ne /¥ 7)1+ E,/T,— N,k Ink,, (2.6)

where the sum over e, extends from the lowest normal
state upward. Since the state =0 is excluded, the
logarithm may be expanded

In(1—N\pe—erl® Tn)~l= Z j=1(1/j) Nnle—ierlkT

and it is easy to show that in terms of the notation
used previously

So=EV (2emkT ) h=3A(1, 5/2)
+E,/Ta—NukInka. (2.7)

The extra “j” factor in the denominator yields
Aa(1,5/2) in place of A.(1,3/2). Neglecting N,k In\,
because A\, is almost unity for all T<T), (2.7) can be
rewritten in the form

S/ V=kQamkT )3 {A(1, 5/2)
+(G3/2)AA(2,5/2)}. (2.8)

The entropy per excited particle, later needed, is ob-
tained from (2.8) and (2.1), namely:

o=S./N.=k{A,(1,5/2)
+G/2)AA(2, 5/2)} /A1, 3/2).  (2.9)

This is a function both of 7, and \,; and again these
two quantities may vary in such a way as to keep N,
constant, when of course o will vary; or vice-versa
T, and N\, may vary in such a way as to keep o con-
stant, when N, will vary. Incidentally the value of ¢
under equilibrium for the whole gas, T,=T and \,=1
is

o=0g.,=k{A.(1,5/2)

+@/2DA:(2,5/2)} /A1, 3/2).  (2.10)
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Here the A, expressions are evaluated at A=1, but they
are still functions of 7. Thus under equilibrium ¢«
becomes a function of 7" only*** while in the absence
of equilibrium both 7', and A, must be known to find ¢.

The most obvious variables to choose in specifying
a non-equilibrium state of the whole system are N/V,
T, and \,. However, by using (2.9) and (2.1) all
functions can be expressed at least formally in terms
say of the three variables p, x=p,/p, and &, where
pn=mN,/V and p=mN/V.

THE LAGRANGIAN EQUATIONS FOR OSCIL-
LATORY {-PROCESSES

In the foregoing argument an additional independent
variable has been introduced which becomes dependent
on the true thermodynamic state variables under the
proper conditions. For convenience the ratio x=p,./p
may be chosen as this new variable. Let .S and V be
the thermodynamic state variables and consider a
three-dimensional space (S, V, x). The equilibrium de-
pendency of x on .S and V:

x=x(S, V). 3.1)

Let the surroundings be such that the gas can be
supplied heat or work without altering the temperature
T or the pressure P of the surroundings, no matter how
rapidly the exchanges may be effected. For slow changes
the gas will also be kept at T and P, and the energy
exchange is

A.E=TAS—PAV, 3.2)

where AS and AV refer to the gas. During this displace-
ment the representative point of the gas in (S, V, x)-
space remains on the surface (3.1). Now consider an
oscillatory exchange in which the surroundings lose
entropy to the gas by an amount that fluctuates £AS,
while its volume varies =AV,. If this oscillation is at
sufficiently low frequency the representative point of
the gas traces out a curve in (3.1) ; but if the frequency
is rapid enough it will trace out a curve that lies outside
of this surface, intersecting it only at the “equilibrium
center.” The energy of the gas at one extreme of this
oscillation can be expressed in terms of the three dis-
placements AS, AV, Ax to second-order terms

AE;=(3E/3S) :AS+(0E/V) AV +(0E/0%) A%
+1(2E/05?) eAS*+1(RE/ V), AV?
+1(82E/822) s A2+ (32E/ 029V ) AxAV
+(82E/ 0x0S) ,AxAS+(2E/3S3V) . ASAV. (3.3)

On the other hand the energy received from the sur-
roundings is exactly

AEy=TAS,— PAV,, (3.4)

*** The expressions A. and therefore o. depend on T because
e./kT differs from zero. If we neglect the energy gap, the entropy
per particle ¢ becomes independent of T below the transition
temperature, and for a first approximation in numerical calculation
it is sufficiently accurate to replace (2.10) by

o=(5/2)k 2 1/§52+ 2 1/32=1.285k.
i=1 i=1
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where AVo=—AV exactly. The second-order terms in
AE, are absent because under the “bath” conditions
assumed in the surroundings 7 and P are independent
of the displacements.

The additional work needed to drive the gas through
the displacement (AS, AV, Ax) is

AW =AE,—AE,. (3.5)

This, in practice, must be obtained from the ordered
kinetic energy present in the gas as it passes through
the equilibrium center in the course of the oscillations.
It is clear that the equilibrium center must, by de-
finition, be such that the first order terms in AW vanish
identically when AS, AV, AX are measured from that
center. Thus,

—TASo+PAV o= (0E/38):AS+(OE/ V) ,:.AV
+(3E/93x),0x.  (3.6)

This is essentially a projective relation between two
vectors in (S, V, x)-space, one in the surface (3.1) and
one lying in a direction intersecting that surface. The
relation tells us the point on the surface towards which
the gas in the non-equilibrium state (AS, AV, Ax) tends
to relax. In the present paper this relaxation question
will not be discussed.
Using (3.6) in (3.5) remembering (3.3) we have

AW =1(32E/3S?) 1, AS™+3(62E/8V?) . AV?
+L(PE/922) A2+ (2E/ 329V ) AXAV
+(PE/0x0S) AxAS+ (82E/3SIV),ASAV. (3.7)

To make use of this it is first necessary to transform
the variables to o, p and x in place of .S, V, and «,
o=S/x and p=1/V. The calculation is elementary and
it is found that

AW = %(azE/aaz)uAa'L}’% { (*E/3p*) 20
+(2/p)(0E/p)ze} Ap*+3(°E/ 32%) A%
+ {(8°E/0230),— (1/%) (0E/35) ) AxAc
+(8E/823p) yAxBp+-(3°E/30dp) Achp.  (3.8)

The present paper considers only the high frequency
limit when S« N, so that Ac=0, implying absence of
transitions between the two components. Thus

AW =3{(0’E/3p") 2o+ (2/p)(0E/dp) s} Ap?
+3(62E/ 822) , A%+ (02E/ 0x3p) AxAp.  (3.9)

This has been written out on the assumption of com-
plete absence of transitions between the two com-
ponents, but in calculating the coefficients appearing in
(3.9) full equilibrium will be assumed. This is the same
approximation as used by Tisza? in his first derivation
of second sound in helium II; in that work an error of
some 15 percent resulted.® In the present problem the
error will be similar with the difference between ¢ and o-;
it vanishes with e,/k7. On this understanding first
approximations will be obtained for the various terms
appearing in (3.9), writing E, for E.

¢ W. Band and L. Meyer, Phys. Rev. 74, 386 (1948).
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To the approximation here accepted the A-sums in
(2.1), (2.4) and (2.9) can also be regarded as constants.
Then from (2.1)

x=pn/p=(TH/T\)}= (T/TV}, (3.10)
while from (2.4) E,p« T,%* Therefore,
E,xx%3/p, (3.11)

where the constant of proportionality depends only on
the mass of the atom, etc. From this relation

(0E,/0p)z=—E,/p and (3%E,/dp?).=2E,/p%
so that

3(9*Ea/0p%) s+ (1/0)(0E4/0p)=0.  (3.12)
Also, (dE,/0x),=(5/3)E./x so that
(6°En/02%) ,= (10/9)En/2?, (3.13)
and
(8E,/9x3p) = — (5/3) En/xp. (3.14)

Let the displacement of the mass center of the
mixture of low energy and high energy components be
Y and that of the high energy component relative to the
mass center be X. Then make the transformation

Z=(ps/ps)X, (3.15)

where p, means the partial density, or mass per cm?
due to the low energy component. Then the complete
Lagrangian for unit mass of the mixture, namely,
L=K.E. per gm—AW becomes:®

L=1Y4 1224 f(V-Y)2+g(V- 2+ h(V-Y)(V-Z), (3.16)

where the coefficients f, g, % are constants expressed in
terms of the partial derivatives (3.12)—(3.14) as follows:

f=—3%0*0%E./3p%):— p(3E+/9p)=
—30%(0°E ./ 9%,
(3.17)%*

=—3x(1—2)(0°E./32%),,
=—[2(1—x)]}p(8En/9xp)
— 2x[x(1—x) J}(E./3x%),.

Using (3.12)-(3.14) in these relations
f==35E./9=—(5/6)P/p,
g=—(5/6)[(1—«]P/p, (3.18)
h=—(5/6)[(1—x)/x]*P/p.

The h-term represents coupling between density and

thermal fluctuations and it is evident that it is not

generally small. It is, therefore, necessary to transform

(3.16) so that the second quadratic form becomes

diagonal while the kinetic energy form remains in-

variant. This can be done by means of a simple rotation
in Y—Z space:

Y =Y* cos6— Z* siné,

Z=17* cos6+Y*sing, (3.19)
where 6 is a constant for a given equilibrium tem-

** See Eq. (C9) of reference 6 where the term in (0E/3p). was
inadvertently omitted.
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perature and pressure, namely,

tan20=h/(f—g). (3.20)
The Lagrangian then becomes
L=3Y"4 3204 FV-Y*4+G(V-2*), (3.21)
where
F= f cos?0+g sin?6+ £ sinf cosé, (3.22)

G=g cos?0-+ f sin’0— & sinf cosH.

THE TWO MODES OF SOUND PROPAGATION

The Lagrangian (3.21) gives Euler equations in the
form of two-wave equations, one in terms of Y* and
the other in terms of Z*. The former will be called
first sound, and roughly corresponds to normal sound;
it has a velocity of propagation V, given by

Va.i=—2F, (4.1)

and this happens to coincide with the velocity of normal
sound at the lambda-transition, as will be proved later.
The other form of wave propagation will be called
second sound and has a velocity of propagation V,
given by

Vi=-—2G. (4.2)

The expressions (3.22) and (3.20) have to be examined
to find the temperature dependence of the two ve-
locities. After some manipulation it is found that

AT RIS
G=3(+)— (- g+

Using (3.18) these can be expressed as follows:

i e
G=—(6/12)(P/xp) {1~ (1=3a(1—)}. |

The following asymptotical expressions are of interest:

(4.3)

G——(5/8)(1—x)P/p—0. ’
T—0  F—s—(5/6)P/xp—0, } @)
G—>— (5/8) P/ p—0). :

Figure 1 shows the two curves.

Just below T first sound is almost pure pressure
wave, but (3.19) and (3.20) show that as T falls, the
proportion of thermal wave present in first sound
increases until the temperature at which f=g, or
20=%r, Y*=(Y+Z)/V2. This temperature is given
by writing f=g in (3.18): thus say T=7; when
(1—x)/x=1, or x=%: T1:=0.63T,. Below this tem-
perature first sound becomes predominately heat wave,
while second sound becomes predominately pressure
wave. The values of cosf and sind as functions of tem-
perature are plotted in Fig. 2.

The relation (3.19) is identical with that between
two polarized components of light waves in an optically
active medium. The difference of velocity between the
two polarized components in the present case is, how-
ever, comparable with the velocity of both, instead of
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being small. If pure pressure fluctuations were produced
by a source in the gas at some temperature in the
neighborhood of 7, it would split up into two
“polarized” components on transmission in the gas,
which would recombine at a receiver either as heat
waves Oor as pressure waves, or as some mixture of the
two, depending on the phase relation of the two com-
ponents, i.e., on the length of the path at the receiver.
A receiver sensitive only to thermal waves that could
be moved along the direction of propagation, could be
used to measure the coupling by observation of the
“beats’ between the two waves. The heat wave in this
case would be of the type that carries only the kinetic
energy of relative motion between the two fluid com-
ponents alternately hotter and colder than the equi-
librium temperature.”

It has occasionally been suggested that by suitable
modification of the density of the lower energy states
the Bose-Einstein gas could be made to behave more
like He II in respect to the temperature dependence of
the normal fluid concentration, namely to make

x=(T/TV*, (4.7

where k has a value somewhere in the neighborhood of
Sor 6. It is of interest to see what such a relation as this
would do to the transmission of second sound in such a
modified gas.

In order to simulate the equilibrium thermal proper-
ties of liquid helium it would also have to be assumed
that the energy spectrum did not modify the relation

E.pxxT
so that, using (4.7)

E, xR /o (4.8)

in place of (3.11). By the same type of argument as used
before, it is now quite easily shown that

f=—30+RE./B, g=—3(1+k)(1—2)E,/xk,
h=—(+k)(2—E)[ (1—x/x) PE./R

The discriminant of the quadratic form is —3A%4fg
and if this is negative, the form reduces to two straight
lines and is no longer positive definite; the velocity of
transmission of the second sound would become purely
imaginary. This restricts £ to the range

3ZE21.

The value 5.5 for & required to simulate the equilibrium
properties of liquid helium would eliminate the pos-
sibility of second-sound transmission in the model.
Incidentally by choosing a model in which k=2 it is
seen from (4.9) that coupling between the two modes
would be zero, and first sound would be pure pressure
waves and second sound would be pure heat waves at
all temperatures. Second sound would have a higher
velocity of transmission below 7 than first sound,

(4.9)

7W. Band and L. Meyer, Non-Equilibrium States in He II,
(communicated to Phys. Rev., April 4, 1949).
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however, so that it would still be true that heat waves
would travel faster than pressure waves at such low
temperatures.

VELOCITY OF NORMAL SOUND ABOVE T,

To complete the study of this model it is desirable to
know the behavior of the velocity of normal sound V
just above T'. defined by the equation

V2=(dP/dp)s. 5.1)
Neglecting the effect of the energy gap,
N/V=QQrmkT)h2 3 N/}, (5.2)
=1
P=kTQuemkT)}3 3 N/, (5.3)
i=1
S=Nk{(5/2) 3 N/pp2+3" Ni/ji—Ink;. (5.4)
=1 =1
One needs to compute
(3P/0p)s=(9P/dp)r+(0P/0T),(dT/dp)s. (5.5)
Write (5.2) in the form
> Ni/jt= (oh/m)QemkT),
=1
then one can easily obtain the partial derivatives
(9N/3p)r=(N/p) T N/j*+22 N/}, (5.6)
=1 =1
(ON/0T),=—(@N2T) L N/A+2 N/ (5.7)

=1 =1

WILLIAM BAND

Using (5.6) one then derives from (5.3)

(0P/dp)r=(RT/m)A(3)/A(3),
and using (5.7) similarly obtains
(aP/oT),=(P/T)

(5.8)

X {5/2—(3/2)A3/2)/A5/DAB).  (5.9)
Because
(dT/dp)s=—(8S/dp)r+(8S/0T),  (5.10)
it follows from (5.4) that
(dT/dp)s=—(9N/dp)z/(0N/AT),=2T/3p. (5.11)

Finally substituting (5.11), (5.9) and (5.8) into (5.5)
after using (5.2) and (5.3) in the following form:

(kT /m)=(P/p)A(3/2)/A(5/2) (5.12)
one finds
(8P/dp)s=5P/3p,
r
° V2=(5/3)P/p. (5.13)

This curve coincides with the velocity of first-sound
at the lambda-point and has the same gradient.

It is of interest that isothermal sound, if it could
exist, would theoretically have a velocity given by

Vil=(3P/9p)r=(kT/m)A)/A (%)
=(P/pAGP/AGDAG). (5.14)

But because A(3) diverges, as T goes down to T the
isothermal velocity would vanish at the lambda-point.
Physically this is clear because at this temperature the
pressure ceases to depend on the density and becomes a
function only of the temperature: “isothermal” would
then mean “constant pressure’” and so would eliminate
pressure waves.

The writer is very grateful to Dr. Lester Guttman
and to Dr. Lothar Meyer for their helpful discussions.



