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Cathode Field in Diodes under Partial Space-Charge Conditions
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A method for calculating the electric Geld at the cathode of a
diode for any condition of current flow in the diode is presented.
A "universal" curve gives the cathode Geld as a function of diode
current. The equation for this curve is

where I is the diode current, I, is the saturation current cor-
responding to the applied anode voltage as calculated from the
Child-Langmuir equation, E is the cathode Geld, and Eo is the
value of E in the absence of current Bow.

The only restrictions on the derivation are those of an equi-
potential, smooth cathode, and negligible initial velocities of
emission. Only plane and cylindrical diodes have been considered,
but the results are believed to be applicable to any geometry.
Application of the results to the study of thermionic cathodes in
the Schottky emission region is very straightforward.

The variation of the cathode Geld as a function of anode voltage
is also discussed. A method for calculating tlie potential distribu-
tion in a plane diode for any value of diode current is given in the
Appendix.

J,= (1/9s)(2e/m)&V&/d',

I,' = (2/9) (2e/m) & V&/rg', (2)

respectively. P' is the usual Langmuir-Blodgett func-
tion' which has been tabulated as a function of the
ratio of electrode radii, ro/r„V is the anode voltage, J
indicates current density, and I." indicates current per
unit axial length.

The problem of the diode under partial space-charge
conditions has, however, received little attention. Most
textbooks, for example, contain only a simple statement
that as the current, and therefore the space-charge
density, in a diode with constant anode voltage is
increased from zero to the saturation value, the 6eld at
the cathode decreases continuously from that in the
absence of space charge to zero. In many cases, and in
particular the study of electron emission from cathodes
in the Schottky region, *a knowledge of the 6eld actually
existing at the cathode of the experimental diode under
all conditions is necessary. This paper presents a
solution of this problem.

The discussion is restricted to cases where initial
velocities of emission can be neglected. This condition
is not, however, a real limitation, since the anode
voltages employed in practical investigations of the
Schottky eBect are so high that the initial energies of a
few tenths of an electron volt are indeed negligible. The

' C. D. Child, Phys. Rev. 32, 492 (1911).' I. Langmuir, Phys. Rev. 2, 450 (1913).' I. Langmuir and K. B. Blodgett, Phys. Rev. 22, 347 (1923).
~ By Schottky emission is meant thermionic emission under con-

ditions such that the potential barrier at the emitter surface is
lowered signiGcantly by the electric Geld at the cathode.

L INTRODUCTION

HE characteristics of diodes under conditions of
complete space charge, i.e., space-charge density

so great that the electric 6eld at the cathode is zero,
were calculated long ago. The results are expressed by
the familiar Child-Langmuir equations for plane" and
cylindricaP' geometries,

cathode is also assumed to be equipotential and ideally
smooth (i.e., the surface roughness is neglected).

J= pv, (4)

where J is considered positive for electron How, and the
conservation of energy,

mn /2=eU,

where v is the electronic velocity at the point x and the
initial. velocities of emission have been assumed
negligible.

Kith the aid of these equations p and v can be elimi-
nated and a new equation obtained giving the relation
between U and J,

where
d'U/dx'=aU &,

a=4s (m/2e) V.

(6)

The variable "a" can be further simpli6ed by substi-
tuting from Eq. (1),

4J U~ 4I U~
8= ~ ~

9J, d' 9I, d'

If Eq. (6) is multiplied by the factor 2(dU/dx) it may
be integrated directly to give

(dU/dx)' =4a U&+ Cg. (9)

II. THE PLANE DIODE

For simplicity, consider 6rst a diode consisting of
in6nite parallel plane electrodes separated by a distance
d. Let the space potential U and the distance x be
measured from the cathode so the U=O at x=0. The
distribution of the potential in the space between the
electrodes is determined by Poisson s equation, which
in this case involves only the coordinate x,

V'U=d'U/dx'=4s p,

where p is the electron space-charge volume density
(considered a positive quantity). As auxilia, ry relations
one has also the current Qow equation,
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Fzo. i. Cathode Geld in a diode as a function of diode current.

4 Equation (11) has also been integrated to essentially the same
form by Stern, Gossling, and Fowler, Proc. Roy. Soc. AI24, 699
(1929) in a study of Geld emission.

~ Equation (15) and data for the curve of Fig. 1 were also ob-
tained by R. Cockburn, Proc. Phys. Soc. London 47, 810 (1935),
who also considered the effect of initial velocities, but the data
was not plotted in the manner of Fig. i. Cockburn's work was not
known to the author at the time this paper was Grst written
(12/23/48). In the discussion resulting when this paper was pre-
sented at the M.I.T. Electronics Conference (April 7, 1949), it
developed that the case of the plane diode has also been treated
by Mr. Ksterson of the English Electric Valve Company, by
Professor Dow of the University of Michigan, and by Mr. W. M.
Srubaker of the Westinghouse Research Laboratories. None of
these workers investigated the cylindrical diode, however, and
none has published his work.

The magnitude of the electric 6eld, dU/dx, at the
cathode (x=0, U=O) is designated by E. Using this as
a boundary condition, C~=E', and one can rewrite

Eq. (9) as
dx= (E'+4aU&) &d U.

This can be integrated to give4

x= —(1/6a') (E'—2aU&) (E'+4aU&) &+C2. (11)

The constant of integration can be determined from the
requirement that U=O at x=0, or C2=E'/6a'. Sub-
stituting this value and rearranging terms,

2V&rU& E' q
&

I
U& E' q E'

(12)
3a& 4V& 4aV&l LV& 2aV&I 6a'

This equation expresses the potential distribution in
the diode. It can be put into more useful form by
introducing the new dimensionless variable,

E' rI.q I 3Eq
=i - li

4aV& E I) &4Eo&

where Eo, the 6eld in the absence of space charge (I=0),
is given by

Eo= V/d, (14)

and rearranging to obtain'

pxy pIq~ -pU~~ «-tUy»
I
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Fzc. 2. Variation of anode Geld with current in a plane diode.

In the Appendix it is shown how this equation can be
utilized to determine the potential distribution in the
diode.

By definition, U= V when x=d. %hen this sub-
stitution is made in the expression above one obtains
the relation

(I/I, ) & = (1+I)&(1—2u)+2N&. (16)

This expression and Eq. (13) may be considered as a
parametric representation of the relation between
(I/I, ) and (E//Eo), where I is the parameter. However,
these equations can be combined to give the explicit
relation'

I 1 27(Eq'( Eq

I, 2 4 LEo) L. Eo)

Here the negative sign is to be used for values of (E/Eo)
greater than 3, and the positive sign for values less
than 3.

Values of cathode 6eld as a function of diode current
calculated by this method are plotted in Fig. 1 as the
solid curve. It is seen, as might be expected, that the
major portion of the drop in cathode 6eld occurs in the
region close to complete space-charge saturation. Thus,
for a current density which is one-half of the saturation
value, the cathode 6eld has fallen only to two-thirds
of its zero-current value; for a current density 90percent
of the saturation value, the cathode fieM is still 27
percent of the zero-current value.

It is of interest also to investigate the Geld at the
anode of a plane diode under conditions of partial space
charge. From Eq. (10) one may write

E =(dU/dx), g=(E'+4aV~)~.

Substituting the value of "a" from Eq. (8) and intro-
ducing Eo from Eq. (14) gives the resulting expression

Eo/Eo= [(E/Eo)'+ (16/9)(I/I )3~ (19)

Use of the data obtained above for (E/Eo) as a function

e First pointed out to the author by Mr. Esterson of the English
Electric Valve Company. Also obtained by Mr. Brubaker of the
Westinghouse Research Laboratories.
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of (I/I, ) yields the results shown in Fig. 2. Inspection
of the figure shows that the variation of (E,/Eo) with
(I/I, ) is given approximately by the linear relation

space charge) is given from electrostatics as

Eo= V/r, log, (r,/r, ). (25)

E,/Eo= 1+ '(I/I—,). (20)
The anode voltage, V, is given by Eq. (21) as

OI. THE CYLINDRICAL DIODE
V= 1667(r,I') &4'. (26)

Most experimental investigations are made in cylin-
drical diodes rather than plane diodes, so that this is a
very practical case. In the case of a cylindrical diode
under partial space-charge conditions, Poisson's equa-
tion cannot be integrated directly. Rose' has used

series expansion methods to investigate the 6eld at the
cathode of such a diode but the results are not easy to

apply, Crank, Hartree, Ingham, and Sloane, ' however,
have made a numerical investigation of the potential
distribution in such diodes with the aid of the differential
analyzer. The data of their Table I may be utilized to
6nd the electric 6eld at the cathode. ' In their notation,

and

where

U = 1667(rI') '4,

=1667( —
I I

—+~ I,
L, r) ~dg 3 )

&= log (rlr.).

(21)

(22)

(23)

E= 1667(I"/r, )&(dC /dP) r (24)

Eo, the value of E for zero current (i.e., in the absence of

v/VI
s e v s a io

Pro. 3. Maximum cathode field in a diode as a function
of anode voltage.

' M. E. Rose, Bartol Research Foundation, Contract OEMsr-
385, First Progress Report, Supplement I (November 1942).' Crank, Har tree, Ingham, and Sloane, Proc. Phys. Soc.
(London) 51, 954 (1939).

'H. M. Schwartz, of the Bartol Foundation (communication
from W. E. Danforth}, has also suggested use of the data of
Crank ef al.

In Table I they give values of 4 (which may be con-
sidered as a reduced voltage variable) as a function of P

for the boundary conditions C=O at r=r, and for
various values of (dC/d$)~ r„ that i=s, the potential
distribution in the diode for various values of diode
current.

Since we require U=O at r=r„Eq. (21) shows that
4=0 at r=r, and Eq. (22) may therefore be written

Combination of these three expressions gives

E (rc p
t (ray 1 t'd4&)

E, ir. ) &r. ) 4 Idg), =,. (27)

Equation (26) shows that for a given diode at a given
anode voltage, the quantity (I"4) is a constant, so that

I'/I. '= I/I, = (4,/4) t, (28)

where 40 is the value of 4 corresponding to complete
space-charge saturation, i.e., E=O and (dC/d$) =0 from
Eq. (24). 40 is given in the second column of Table I
in the reference cited.

Equations (27) and (28) permit calculation of cor-
responding values of (E/Eo) and (I/I, ). Such calcula-
tions have been made for cylindrical diodes with
various values of r,/r„and a few points are shown
plotted as circles in Fig. 1. The values of r,/r, used are
shown. It is seen that these points fall on the curve
obtained for the planar diode, a fact that was not
expected beforehand.

' I. Langmuir and K. L Compton, Rev. Mod. Phys. 3, 251
(1931).

IV. UNIVERSAL NATURE OF TltE CATHODE FIELD
CHARACTERISTIC AND ITS APPLICATION

The fact that the curve of Fig. 1, relating the two
dimensionless ratios (E/Eo) and (I/I, ), applies to both
plane and cylindrical diodes is very interesting and
leads one to believe that this characteristic is of even
wider application. Apparently the eGect of geometry is
entirely taken into account by the two normalizing
factors Eo and I„one of which is obtained from the
solution of Laplace's equation and the other from the
solution of Poisson's equation for complete space
charge. Although a rigorous proof cannot be given for
the statement, it isbelieved that the cathode 6eld charac-
teristic of Fig. 1 is "universal" and applies also to other
geometries, including those with external cathodes.
Indeed, it seems to be a direct consequence of Poisson's
equation. Probably the only restrictions on its applica-
tion are those of negligible initial velocities and an
equipotential cathode —the same conditions imposed on
the generalized space charge law. " The calculated
value of E assumes that the cathode is ideally smooth.

The universal cathode 6eld characteristic can be
applied very simply to electron emission measurements
in the Schottky region. Here the current I, in a diode,
is measured as a function of the anode voltage V. For
purposes of analysis it is desired to know the current
as a function of the electric field at the cathode. The
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V/V, =(I/I, ) &, (30)

and (E/Eo) can be calculated as a function of (V/V, )
from the data of Fig. 1 giving (E/Eo) as dependent on

(III.)
The results of this calculation are given in Fig. 3. It

is seen that under these conditions an anode voltage
5.4 times the saturation voltage is required to bring the
cathode 6eld to within 5 percent of its space-charge-free
value, while the value to attain 98 percent of the zero-
current 6eld is ten times V,.

In this section it has been assumed thus far that the
saturation is ideal and that the Schottky eBect (and
also field emission) is negligible. U this is not the case,
then the diode current will be increased over the value
Io and the cathode 6eld will always be less than that
predicted by Fig. 3. This 6gure should therefore be
interpreted in this case as giving the maximum cathode
Geld which can exist in a diode as a function of the ratio
of anode voltage to the voltage required to obtain
maximum space-charge-limited emission (the "MSCLE
point"). The exact value can be obtained, of course,
from Fig. 1 as a function of the diode current.

V. SUMMARY

A method has been presented for calculating the elec-
tric 6eld at the cathode of a diode under conditions of
partial space charge. The results are shown by the
"universal" characteristic of Fig. I, which gives the
cathode 6eld as a function of the diode current and is
in a particularly convenient form for use. An analytical
expression has also been given for this universal charac-

saturation current I, corresponding to the applied
voltage V can be calculated from the Child-Langmuir
equation or from an extrapolation of an experimental
Child-Langmuir plot, and the value of the cathode field
in the absence of space charge, E0 can be determined
from the usual formulas of electrostatistics. The existing
value of E can then be obtained directly from Fig. 1
and the measured value of the current I.No approxima-
tions are involved, and it is not necessary to sum a
complicated series expansion.

As a further extension of the universal cathode field
characteristic, consider now a diode with an emitter for
which the Schottky eBect is negligible so that for values
of anode voltage V above the saturation voltage V,
corresponding to the temperature-limited emission Io,
the current is constant and equal to Io. It is desired to
Gnd the variation in cathode 6eld E as a function of V.
For V less than V„ the diode is completely space charge
limited and 8 is zero. For V greater than V„ the current
Io is always less than the current I, which would Row
under complete space-charge limitation and is related to
I, by

I,/I p (V/V, )&.——

Here Io is analogous to I, the current Qowing in the
diode, of the previous considerations, so that
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FIG. 4. Potential distribution in a plane diode.

APPENDIX

Potential Distribution in a Plane Diode

The analysis above also permits determination of the
complete potential distribution in a plane diode. The
quantity 8, defined as

8= (x/d)'(I/I, ), (31)

may be calculated from Eq. (15) as a function of I with
the quantity (U/V) as a parameter. For (U/V) =1.0,
by definition (x/d) = 1.0, so that this case gives values
of (I/I, ) corresponding to the various values of u. The
position of a point x in the diode, expressed as (x/d),
corresponding to given values of (U/V) and (I/I, ) can

"Coomes, Buck, and Petrauskas, Third Progress Report,
Contract NObsr-30028, Physics Department, Uni, versity of Notre
Dame (March 19, 1948).

teristic (Eq. 17). The derivation has been applied only
to plane and cylindrical diodes, but the results are
believed to be applicable to any geometry. The only
restrictions are an equipotential, smooth cathode and
negligible initial velocities of emission. No approxima-
tions are involved in the derivation.

The maximum cathode Geld is also plotted in Fig. 3
as a function of anode voltage. If the current saturation
in the diode is ideal, this curve gives the correct value
of the cathode 6eld, but if this is not the case, the real
value of field is less than that indicated.

Variation of the electric 6eld at the anode of a plane
diode with the diode current is shown in Fig. 2. The
potential distribution in a plane diode under partial
space-charge conditions can be obtained from Fig. 4 (see
Appendix).
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therefore be calculated by means of Eq. (31). The
results of such calculations are shown in Fig. 4. The
curves of this 6gure permit any one of the three vari-
ables (x/d), (II/V), and (I/I, ) to be determined if the
other two are known. The intersection of the contours
of constant (V/V) with the horizontal line correspond-
ing to a given value of (I/I, ) gives the potential dis-
tribution in the diode for that value of current.

Sole Added in Proof: Since this paper was submitted
for publication it has been found that as early as 1920
G. Jaffe (Ann. d. Phys. 63, 145) considered the plane
diode under partial space-charge conditions and ob-
tained an equation identical, except for notation, to Eq.
(17) above. However, Jaffe did not express his results
in the convenient manner of Fig. 1 nor did he consider
the cylindrical diode.
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Non-Equilibrium Phenomena in a Bose-Einstein Gas. I. Transmission
of Second Sound

%II,LIAM BAND
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A model Bose-Einstein gas is considered in which numerical perturbations in the population of the lowest
state have a relaxation time that is long compared with the relaxation time for perturbations in the sym-
metry of the velocity distribution in the excited states. Oscillations of the population of the lowest state
about its equilibrium value are transmitted as second sound waves. The velocity of transmission is found
as a function of temperature below the lambda-point and compared with that of second sound in liquid
helium. In the gas there is a temperature dependent coupling between pressure waves and thermal waves;
the normal modes of propagation are mixed. The high speed mode is pure pressure wave near Ty but goes
over gradually to pure thermal wave as T goes down towards O'K; the low speed mode is pure thermal wave
near Ty but goes over gradually to pure pressure wave as T goes down towards O'K. For T«Tp the thermal
wave has a higher speed of propagation than the pressure (ordinary sound) wave.

INTRODUCTION
'N a recent paper' the formal 6rst order perturbation

& ~ theory of transport phenomena in a Bose-Einstein
gas was considered. In that theory it was assumed that
at every point in the gas the numerical populations of
the various energy states accessible to the gas atoms
remain equal to their equilibrium populations. In other
words the regression of numerical Quctuations was
assumed to be rapid compared with that of asymmetry
Quctuations in the velocity distribution. This assump-
tion is implicit in most applications of hrst-order per-
turbation theory in statistical mechanics and is prob-
ably valid in general. However, in the degenerate
Bose-Einstein gas below a certain transition tempera-
ture the number of atoms in the lowest state becomes
comparable with the total number of atoms in the gas.
The general theory of Quctuations' then leads one to
expect that the numerical Quctuations in the population
of the lowest state become of major importance below
the transition temperature. This may be seen in the
following way.

The standard deviation hn of the population of any
one state from the mean population n is given by

Fermi-Dirae gas It n/n = (1/n —1)&,

Bose-Einstein gas An/n = (1/n+1) &.

' W. Band, Phys. Rev. 76, i937 (1949).
R. H. Fowler, Statgstica/ Mechanics (Cambridge University

Press, London, j.936), Chapter 20.

At very low temperatures in the Fermi-Dirac gas
1/n~1 and the fluctuations tend to vanish as T ap-
proaches absolute zero. In the Bose-Einstein gas, on
the other hand, the Quctuations remain of the order
unity; in particular the lowest state has a population
np—+Ã as T—4 where E is the total number of atoms
in the gas, and np ls comparable with E immediately
below the transition temperature T~. Thus

Ano/no 1 for all T——(Tq.
These hnite Quctuations at low T would be of no

importance if all the states had similar populations and
were closely spaced in the energy spectrum; it could
then be supposed that there would be no correlation
between the Quctuations of neighboring states so that
in any appreciable energy range there would be no
appreciable Quctuation in the total population in that
range. But if the system contains one state or one
degenerate set of states, in the present case the single
lowest state, with a population comparable with that
of the whole gas and, therefore, enormous compared
with the population of any other state, the 6nite value
of hno/no becomes extremely serious. For example, if a
Gaussian distribution is assumed for the actual devia-
tions of the population from its mean value, the fact
that Dna/no ——1 means that the number of atoms in the
lowest state may be 20 percent above or below the
mean value for roughly 23 percent of the time. At tem-


