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Two variational methods are proposed for computing the phase shifts for an electron scattered by a neutral
atom. These methods are shown to be different formulations of the same physical principle, i.e., the sta-
tionary property of the phase shift. By applying one of these methods to the S scattering of an electron by a
hydrogen atom, the phase shifts are computed for various kinetic energies. A comparison is finally made with
the results which Morse and Allis have derived from the solution of the Fock equation.

I. INTRODUCTION
' 'HE problem of the elastic scattering of electrons

by hydrogen atoms has been considered by
Chandrasekhar and Breen ' Massey and Mohr, '
McDougall, ' and Morse and Allis. 4 While the latter
authors solved the appropriate Fock equations' and
determined the phase shifts, the others used the Hartree
6eld. As both the Fock equation and the Hartree field
are derived from a variational principle on the assump-
tion that the coordinates of the free and the bound
electron are separable, it would be of interest to see if
one can formulate a similar principle without such an
assumption. For the case of 5 states, the author has
shown that' such a formulation is feasible. And the use
of this later variation method has the further advantage
that the numerical work involved is much less than is
required for the solution of the Fock equation.

The method we shall adapt is an extention of the
work done by Hulthen' and by Tamm. ' Both of these
authors have treated nuclear scattering and conse-
quently limited the problem to the encounter of two

particles. In the probjem which we propose to consider,
three particles are involved in each encounter; a more
general formulation of the variational principles of
Hulthen and Tamm is necessary. We shall formulate the
necessary generalization. It may also be stated here
that, of the two formulations, that of Hulthen appears
to be the more general while Tamm's has the merit of
being more simple and direct.

We shall 6rst present these two formulations in their
generalized forms and then show their equivalence.
Finally, we shall illustrate the principles by considering
the 5-scattering of free electrons by a neutral hydrogen
atom in the ground state.

II. THE VARIATIONAL PRINCIPLE

If we adopt the Bohr radius and Eh as the unit of
length and of energy, respectively, the wave equation
corresponding to a free electron in the field of a neutral
hydrogen atom is

(I. E)$=0, —
where

' S. Chandrasekhar and F. H. Breen, Astrophys. J. 1Q3, 41 (2)(1946).' H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. A136,
289 {1932). The eBect of the term in r» has been mostly neglected;

J. McDougall, Proc. Roy. Soc. A136, 549 (1932}. and we are particularly interested in it. However, this
term does not acct the formulation of the variational
principle. Insofar as the potential 6eld in which the free' I- H&It"&&, K py»osr S«»& «&d pacha'&& &4, No 2t electron is moving tends to zero faster than 1/r& (where

(1944).
s p 'p

T& J p Th ph (R ) ltt N 4 p& 1) for r—+oo (this is evidently the case for motion of
(I94s).

'
an electron in the field of a neutral atom), we can write
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the asymptotic form for the wave function:

lk( )=[(21+1)/(4 )]'[(e '/ )

&& Pi(cosHz) sin(krz —lzr/2+ rz~)

&(e "'/rz)Pi(cosHi) sin(kri —lzr/2+it&)], (3)

the sign being plus or minus according as the state is
symmetrical or antisymmetrical, respectively. This
asymptotic form represents a final state in which the
bound electron is in its ground state and the free electron
is at infinity with a kinetic energy k . In addition, the
wave function should, of course, not have any singu-
larity at ri=o, or r~ ——0.

I.et

)I Pt(I E)tk—tdridr. ,

where
~F(r„H, , r„r„)P(icos Hi), 'r, ], (11)

F(ri, Hi, rz, riz) = (zrkrz/2) J i+(k )rfz( i,rHi, rz, r»)

+(zrkrz 2)lJ t t(krz)g(ri, 8,, r., r, .), (12)
such that

and (10) will give n+1 equations which will determine
completely p& and the n parameters. It is thus seen that
the phase shift plays in the continuous spectrum the
same role as the energy in the discrete spectrum. It is
due to this reason that Hulthen" introduced the name
"eigenphase" for g~.

As the wave function should approach the asymptotic
expansion (3) when the free electron is at infinity and be
finite when it is at the origin, it is natural to write it in

the approximate form:

pi= [(2l+1)/(4zr)]i[F(ri, H„r, , r»)Pi(cosHz)/r.

and consider the variation. By Green's theorem, f~e "' coszzi and g~e "' sinzz~ (13)

0'i%1 84'idr1 =
J &klVl+ldrl

(/'Br I dSI. 5

as rz—i~. In Eq. (12), J~&~+,i(kr) represent Bessel
functions of order &(l+ zz), resPectively.

III. A RESTRICTED FORM OF VARIATIONAL
PRINCIPLE

The surface integral in Eq. (5) can be evaluated at
ri~~ by using the asymptotic expansion (3) of the
wave function. It can, in fact, be shown that

t'

) PzVi'Qidr, drz )) hP——P7i'fidridrz zrk8rii —(6).
The corresponding integral with subscript 2 can he

similarly transformed. Thus,

hZ=2)t )"ref &(L E)g,dr, drz+—2rrkbzti

If fi satisfies the wave equation, we have

In spite of the general nature of the method derived
in Section II, the mathematical formulas for actually
working out the variational integral are very com-
plicated. It would, therefore, seem that a somewhat less
general but a mathematically simpler formulation of the
principle is more suitable. For states with spherical
symmetry and zero angular momentum this can be
accomplished in the following way: In this case' the
wave function can be completely expressed in terms of
three coordinates ri, r2, and r~~.

Transforming Eq. (1) into new coordinates, we get

(HQ/Hr P)+ (2/ri) (8$/Hr i)+ (8+/Hrz')
+ (2/r2) (%/Hrz)+ 2(HV/Hrlz )+ (4/rlz) (V/Hr 1.)
+[(ri r2 +r12 )/rlrlz](8+/HrlHr12)
+[(rz rl +r12 )/rzr»](HQ/Hr"Hr12)

+[E+2(1/rz+1/rz —1/riz)]1k=0. (14)

which will reduce to

8Z = 2xkbgg, (g) Similar to Tamm's treatment' we make the substitution,

$(rl rz rlz)

if the phase shift g~ is stationary. Or, in other words,
under the stationary condition of pt, the wave equation
assumes a variational form which is given by Eq (9). .
Regarding now

(10)

as qn equation which determines g~, we can conversely
impose the stationary condition by making use of Eq.
(9). A practical procedure which this principle suggests
is the following. Form an approximate wave function
ski which satisfies the required boundary conditions and
at the same time contains zz parameters. Then Eqs. (9)

=(e ' r/)z[sinkr +zu(r irz, riz) coskrz]. (15)

Equation (14) now becomes

[(8'u/Hr, ')+(2/r, )(Hu/Hr, ) 2(Hu/Hr, )+(Hzu/H—r'')-
+2 (8'u/Hrzz')+ (4/r, z) (Hu/Hr»)] coskr,
—2k(Hu/Hrz) sinkr, +[(riz —rz'+rzzz)/rzri. ]
X[(8'u/Hr, &r») (Hu/Hriz)] coskrz-
+[(rz rl +rlz )/rzrlz][(H u/Hr28r12) coskr2
—(Hu/Hriz)(coskrz/rz) —k(Hu/Hriz) sinkrz]

+2[(1/rz) —(1/riz)](sinkrz+u coskr, ) =0. (16)
' H. A. Hy11eraas, Zeits. f. Physik 54, 347 (1929); H. Bethe,

Handbuch de Phys~k I,'1933), Vo1. 24, p. 354.
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a=0 as ri 0——
u= u(k) as r ~~ J' (18)

As Eq. (14) is symmetrical in ri and r2, the wave func-
tion appropriate to the physical problem can be written
in the form

A= P(r„r;, r12) ~g(r2, ri, r12),

where $(ri, rir») , is defined in Eq. (15). In Eq. (19)

we have the plus or minus sign according as we are
dealing with the singlet or triplet state.

It can now be shown that Eq. (16) is the Euler
equation of the variational integral:

6%=0;

In making the substitution we have used the energy
relation

E= —1+0', (17)

which is true in Rh unit.
From Eq. (15) it is apparent that. N(ri, r2, r12)

becomes the tangent of phase shift as r2~~. Accord-
ingly, we may call Eq. (16) as the equation for the
eigenphase. The boundary conditions on u(r» r2, r12)
are therefore

the various steps briefly. Substituting Eq. (15) into
Eq. (9) we carry out the variation; one part would be
equal to zero on account of Eq. (16); the remaining
terms are then reduced by integration by parts; the
integrated terms do not contribute anything as the
variation vanishes on the boundary surface; most of
other terms cancel one another, and we are finally left
with

BZ=$BS.

IV. S-SCATTERING OF ELECTRONS BY THE
HYDROGEN ATOM

(24)

Here we shall apply Eq. (20) to derive the phase shift
of the 5 waves for the case of a free electron scattered
by a hydrogen atom. As our trial function, we shall

suppose that

u= (1—e "2)La+(fi+cr»)e "'], (25)

F„(c2,m; k)= (1 e")"e "r" cos—'krdr
~o

where u, b, and c are three parameters which are to be
determined. Substituting the foregoing form for I in

Eq. (20) we carry out the integration. In order to
express our result simply, it is convenient to define the
functions:

0 M ()

XF(u, , u1, ui„u; r„r„r„), (20)
(n-O, m-=-n), (26)

v here

F= e "' cos'kr2(rir»(ui'+N2'+2N12 )/r'

+ (rl r2 +rl )ulu12i r'1

+rl(r2 rl +r12 )u"u12

—(2rir»/r. )(1,'ri —1/ri. )(2u tankr2+N2)] (21)

and

u1= BN/ Br i u„=Bu/Br2, N12 =Bu/Br12 (22).

It is of interest to note that the integral F reduces
to that given by Tamm in the special case where
u=u(r2) only, and where —2(1/r2 —1/r12) can be ap-
proximated by an expression which involves r2 only
(as for example, by a potential V(r2) of the Hartree
field of the hydrogen atom). For in this special case the
integration with respect to r~2 and r~ can be effected
directly, and the fina1 integral

dr2[n22 cos'kr2+ Vu' cos'-'kr,

+ Vu sin2kr2 J (23)

G„(c2, m; k)= I (1—e ")"e ~'r"' sin2krdr

(n O, m —n-1), (27)

1.(a; k)= (1—e ")"(1—e "-)(e-"/r'-) cos'krdr

(n~ 1), (28)

J.(n; k)= (1 e")"(1—e'")(e—'/r') sin2krdr
n

(n=0), (29)

M(c2 k) = )I (1 e '")(e ~—'/r—) cos'krdr, (30)
0

where m and n are integers. In terms of these functions
5 is a quadratic function in the parameters u, b, and e.

The variational principle would then give three
equations for the three parameters. It is found. that
these three equations have the following forms.

is identical with what Tamm has given.
To derive the variational principle expressed by Eq.

(20) from Eq. (9) is a straightforward matter, although
it is quite long and tedious. We may therefore indicate

B&/Ba= A ia+Bib+Cic D1=0, —

BP/Bb =A2a+B2b+C2c D2=0, —

Bc=A &a+Bsk+ C2c D2 0———

(31)

(32)

(33)
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3-para

a

0-0.4038—0.8499—1.3978-2.158—3.394
+5.254
+2.037
+1.6636
+1.8372
+2.059
+2.280
+2.580
+3,656

+25.635-5.763—2.743—0.8622-0.3102—0.1535

ALE I. Coeffidents of u.

2-parameter
approximation
0 C

meter approximation
5 C

0 0
+0.16954 —0.4199
+0.3572 —0.8938
+0.5883 -1.4970
+0.9099 —2.368
+1.4348 —3.840—2.246 +7.147—0.9067 +2.947-0.8899 +2.071-1.3059 +1.6403—1.4506 +1.6050-1.5294 +1.706S—1.7028 +1.939S—2.523 +2.909

-20.46 +22.87
+5.076 —5.501
+2.564 -2.722
+0.8841 -0.9083
+0.3276 —0.3330
+0.1616 —0.1649

0-0.4067—0.8576—1.4160—2.202—3.520
+4.616
+1.8132
+1.4068
+1.3687
+1.4722
+1.612711.7897
+2.309
+5.389—24.69—4.098—0.9303-0.3181—0.1562

0-0.3944—0.8425-1.4208-2.274—3.765
+6.146
+2.649
+1.7846
+l.1761
+1.0362
+1.0567
+1.1607
+1.5629
+4.Q45

-19.758—3.493
-Q.8192—0.2853—0.1404

1-parameter
approxi-
mation

6

0
+0.3102
+0.6066
+0.8777
+1.1155
+1.3162
+1.8280
+1.8969
+1.8572
+1.7809
+1.7484
+1.7253
+1.6924
+1.5891
+ 1.3282
+1.1004
+0.9262
+0.4983
+0.2037
+0.1022

I„(a;k), and J„(a;k). Also there sts the relation
7L)

xjF (n, m; k)/Bk= —G (a, +1;k .„a, m ; . (45)

Another relation which is usefu
'

is
w ic is useful in the numerical work

BF„(n, m; k)/xja= —F„(n m+1; k .BF„n — „n,m; . (46)

Similar formula exists for G„(n, m; k .

~00

I.(n; k)=) IdL(1 —e-) (1—e-x

0

Xe '" cos'kr]/drI(dr/r)

=kG„(n+2, —1; k) kG—„(n —1 k

—nF (a, —1;k)+IF (n+1, —1; k)

(35)

(47)

In a similar manner it ca b hn e s own that

J„(n; k) = 2kF„(n+2, —1;0)—2kF~(n, 1;0—
+4kF„(n, —1;k) 4kF„(n+—2, —1; k

(36)
—nG. (a, —1 k)+nG. (a+1 —1; k

+(a+m+2)G„(a+2, —1' k). (48)

(37)
Also in deriving Eqs. (34 —42 we have made use of

3f(n; k)=Fx a —1.x~a, —;k)+Fg(n+1, —1 k) (49)

It is theree ore sufhcient to evaluate onl a
ns occurrmg in Eqs. (34)—(42). The rest

l80 p

~ X

90—

Ax= Po(2, 0; k)—2F,(2, 0 k) 2F (2—, —A& P2 ——— , , —,, —1; k), (34)

Ax=R=Fo(3, 0; k) —F,(2, 0 k)—2Fx(3, 0; k) —2Fo(3, —1;k),

+(n+I+2)P„(n+2, —1; k).

A o= Cx =Po(3, 1; k) —F,(2, 1;k)+P, (2, 0; k

+oFi(4, 0 k) 'F (5 0—-k) P2 —1—k

—2Ix(1; k) —Ix(2; k),

Bx=Fx 2, 0; k) —2Fx(4, 0; k) —2Fx(3, 0; k)
+Po(4, 0; k) —2Fx(4, —1; k),

Bo=Cx=Fx(2, —1) k) —2Fg(3, —1; k)—F&(4, —1;k)+7F,(5, —1;k)—
o Px(4, 0; k) —Fx(2, 0; k)j2Fx(5, 0; k

+Px(3, 0; k) —~oFo(6, 0.k)+F
x(3, 1;k)+Fo(4, 1; k) —I,(2; k),

Co=Fx(2, 2I k) —2F, (3) 2; k)+F '4
o(, ; k)+2F&(3, 1;k)+5Fx(2, 0; k)—Px(4, 0; k) —6Fx(3, 0; k)+3P, (4, 0; k)—4Fx(2, —1;k) —2Fx(4, —1 k) (39)

Dx=Gx(2, 0; k)+G, (2, —1;k,
Dx=Gx(3, 0 k)+G, (3 —1

& , —1;k),

Do= Jx(1; k) ——'Gx(3, —1; k .

(41)

t
e formal solution of E ~31'—

of d t i t follows
qs. ( )—(33 will b

e=(DBC)/(ABC), b=(ADC)/(ABC,
c= (ABD)/(ABC). (43)

Before we give the result of the calculatio
d t o t th the fue s in t e evaluation of

I

0. First we

I 2
k

g recurrence formula hold
FIG. i. Phase shifts f h
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Fo(a, 0; k) =1/(2a)+n/[2(n'+4k')], (5o)

can be obtained by making use of the relations Eqs.
(44)—(49). And the basic functions are:

3-parameter
approximation

fjQ qQ

2-parameter
approximation
'gQ qQ

1-parameter
approximation

QQ qQ

TAsLz II. Phase shifts and cross sections of the S wave.

F,(n, —1; k) = )" [aF,(a', —1; k)/an']dn'

a

Fg(a', 0; k)dn'

= 2»g[(a+ 1)/u]

+-,'- log I [(n+1)'+4k'-]/(n'+4k') }, (51)

G (n 0 k) =2k/(u'+4k') —2k/[(u+1)'+4k'] (52)
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2.00
2.50
3.00
4.00
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180'
158' 0'.7
1S9' SS'.2
125' 34'.8
1i4' 52'.0
106' 25r.O
79' 13'.5
63'51r.2
5S'59'.4
61'26'.4
64' 5'.7
66' 19'.1
68' 48'.6
74' 42'.2
87'46'. O
99' 50'.6

11O' V.S
139' 14'.O
162' 45'.9
171' 16'.4

704.7
527.1
369.4
258.6
185.00
48.51
18.001
9.231
4.SO9
2.542
1.686
1,214
0.730
0,348
0.191
0.111
0,014
0.0004
0.00003

180'
157' 52' 3
1S9' 23'.0
125' 13'.8
114' 25'.2
105' 51'.6
77' 46' 5
61 ?r.4
54' 35'.6
53' 50'.9
55'4s'. s
58' ll' 9
60' 48'.3
66' S4'.9
79' 29'.2
92' 19'.2

103' 42'.9
137' 4'. 1
162' 21'.2

7'.4

713.2
532.6
372.7
260.5
186.04
48.01
17.131
8.348
3.642
2.150
1.453
1.064
0.661
0.338
0.196
0.118
0,015
0.0005
0.00003

0'
17' lS'.9
Sl 14'.5
41' 16'.4
48' ?'.5
52'46'. 4
61' 19'.2
62' l2'.2
61' 42'.0
6O'4V. 1
60' 13'.9
59' 54'.2
59'25'.S
57' 49'.1
5s' v.4
47' 44'.2
42' 48' 3
26' 29'.3
11' 30'.8
5' 50'.0

441~ 1
338.0
243.0
174.18
127.48
38.69
17.482
9.741
4.246
2.368
1.505
1.035
0.563
0.222
0.108
0.058
0.006
0.0003
0.00001

a

Gg(u, —1; k) =
J [aG~(a', —1; k)/aa']dn'

= tan '[(n+ 1)/(2k)] —tan —'[u/(2k)]. (53)

tango= lim I=&) (54)

and the cross section of 5 wave by

qo
——4n (sinQO/k)',

they can be computed directly from Table I; they are
given in Tabid II. The phase shifts are further plotted
in Fig. 1 where Morse and Allis's results are also shown.

That this integral vanishes at the lower limit is as
obvious as that of the integral (51), if we combine the
two terms into one term according to the trigonometrical
identity.

Instead of computing the values of a, b, and c from
Eqs. (43) for various values of k, it is simpler to get the
numerical solution directly from Eqs. (31)—(33) once
their coefIicients have been evaluated. The results of
the calculation are given in Table I. For comparison,
the results for a 2-parameter (a, c) and a 1-parameter
ia), trial functions are also included; they are labeled as
2-parameter and 1-parameter approximation, respec-
tively.

As the phase shift qo is given by

Our results are not in agreement with theirs and unfor-
tunately no experimental data are available for com-
parison. But one common feature between the results
of Morse and Allis's and ours is worth noticing. awhile

the j.-parameter trial function which does not contain
a term in r12 gives a variation of the phase shift, similar
to that computed from the Hartree field, approaching
0' as k—+0, the introduction of the r~2 term (the 3-param-
eter and the 2-parameter approximations) makes
go~180 as k~0; in this respect it is similar to the
introduction of the exchange effect in the manner of
Morse and Allis. There is, however, an important dif-
ference between these two results. So far as the phase
shift is concerned, there is no diGerence in our formula-
tion for symmetrical and antisymmetrical states, but
Morse and Allis give different values of go for these two
states.

In a later paper we propose to use the wave functions
derived here to the evaluation of the radiative cross
sections for the free-free transition of an electron in
the field of a neutral hydrogen atom. "

I wish to express my sincere thanks to Professor
S. Chandrasekhar who suggested this problem and for
valua, ble discussions.

"S.Chandrasekhar and F. H. Breen, Astrophys. J. 104, 430
{1946).


