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Two variational methods are proposed for computing the phase shifts for an electron scattered by a neutral
atom. These methods are shown to be different formulations of the same physical principle, i.e., the sta-
tionary property of the phase shift. By applying one of these methods to the S scattering of an electron by a
hydrogen atom, the phase shifts are computed for various kinetic energies. A comparison is finally made with
the results which Morse and Allis have derived from the solution of the Fock equation.

I. INTRODUCTION

HE problem of the elastic scattering of electrons

by hydrogen atoms has been considered by
Chandrasekhar and Breen,! Massey and Mohr,?
McDougall,? and Morse and Allis.* While the latter
authors solved the appropriate Fock equations® and
determined the phase shifts, the others used the Hartree
field. As both the Fock equation and the Hartree field
are derived from a variational principle on the assump-
tion that the coordinates of the free and the bound
electron are separable, it would be of interest to see if
one can formulate a similar principle without such an
assumption. For the case of S states, the author has
shown that® such a formulation is feasible. And the use
of this later variation method has the further advantage
that the numerical work involved is much less than is
required for the solution of the Fock equation.

The method we shall adapt is an extention of the
work done by Hulthén” and by Tamm.? Both of these
authors have treated nuclear scattering and conse-
quently limited the problem to the encounter of two

( ! S.) Chandrasekhar and F. H. Breen, Astrophys. J. 103, 41
1946).
2H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. A136,
289 (1932).
3 J. McDougall, Proc. Roy. Soc. A136, 549 (1932).
4 P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
8 V. Fock, Zeits. f. Physik 61, 126 (1930).
6S. S. Huang, Phys. Rev. 75, 980 (1949).
a ’41‘1) Hulthén, K. Fysiogr. Sillsk. Lund Férhandl. 14, No. 21
944).
a ;4%) E. Tamm, J. Exper. Theor. Phys. (Russian) 18, No. 4

particles. In the problem which we propose to consider,
three particles are involved in each encounter; a more
general formulation of the variational principles of
Hulthén and Tamm is necessary. We shall formulate the
necessary generalization. It may also be stated here
that of the two formulations, that of Hulthén appears
to be the more general while Tamm’s has the merit of
being more simple and direct.

We shall first present these two formulations in their
generalized forms and then show their equivalence.
Finally, we shall illustrate the principles by considering
the S-scattering of free electrons by a neutral hydrogen
atom in the ground state.

II. THE VARIATIONAL PRINCIPLE

If we adopt the Bohr radius and Rk as the unit of
length and of energy, respectively, the wave equation
corresponding to a free electron in the field of a neutral
hydrogen atom is

(L—E}=0, ¢))
where
L=‘*VIZ—'ng-“2/71—2/72+2/712. (2)

The effect of the term in 7, has been mostly neglected ;
and we are particularly interested in it. However, this
term does not affect the formulation of the variational
principle. Insofar as the potential field in which the free
electron is moving tends to zero faster than 1/7? (where
p>1) for r—oo (this is evidently the case for motion of
an electron in the field of a neutral atom), we can write
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the asymptotic form for the wave function:
V(e )=[Q2+1)/@m) (e /r2)
X P (cosby) sin(kro—Ir/2+n1)
=+ (e7"2/r1) Pi(coshy) sin(kri—Ix/24n)], (3)

the sign being plus or minus according as the state is
symmetrical or antisymmetrical, respectively. This
asymptotic form represents a final state in which the
bound electron is in its ground state and the free electron
is at infinity with a kinetic energy %2 In addition, the
wave function should, of course, not have any singu-
larity at =0, or 7,=0.
Let

£=ffyl/1(_]a—E)\///dﬂd72‘ (4)

and consider the variation. By Green’s theorem,

ftl/sz25\Ped71=f6¢szz¢zdn

+f[¢’l(35!//1/3'1) —&i(3yi/9r1) JdS,.  (5)

The surface integral in Eq. (5) can be evaluated at
ri— by using the asymptotic expansion (3) of the
wave function. It can, in fact, be shown that

fflﬁlvxz&tllldndfz: ff&lhvlle/zdﬂd‘rg—-rkém. (6)

@ £

The corresponding integral with subscript 2 can be
similarly transformed. Thus,

~I

5£=ZffW[(L—E)¢sz1d12+21rk5m. (7)

If ¢, satisfies the wave equation, we have
82="2rkén, 8)

which will reduce to
3£=0 9

if the phase shift n; is stationary. Or, in other words,
under the stationary condition of 7,, the wave equation
assumes a variational form which is given by Eq. (9).
Regarding now

£=0 (10)

as an equation which determines 7;, we can conversely
impose the stationary condition by making use of Eq.
(9). A practical procedure which this principle suggests
is the following. Form an approximate wave function
¥ which satisfies the required boundary conditions and
at the same time contains # parameters. Then Egs. (9)
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and (10) will give 41 equations which will determine
completely 7, and the » parameters. It is thus seen that
the phase shift plays in the continuous spectrum the
same role as the energy in the discrete spectrum. It is
due to this reason that Hulthén” introduced the name
“‘eigenphase’ for 7.

As the wave function should approach the asymptotic
expansion (3) when the free electron is at infinity and be
finite when it is at the origin, it is natural to write it in
the approximate form:

¢/1= [(21‘*‘ 1)/(41[’)]%[:F(7’1, 01, 7o, rlg)Pl(COSBQ)/fg

+F(rs, 02, 71, r12) Pi(costy) /r1], (11)
where
F(Y], 01, 7o, Tlg)z (kag/Z)%J/Jrg(er)f(fh 01, 7o, 712)
+ (wkrs 2)5.7_1*;(krz)g(h, 01, 72, 712),  (12)
such that
f—e T cosy; and  g—e "t sing (13)

as ro—». In Eq. (12), J_.q4y(kr) represent Bessel
functions of order =4=(/+1%), respectively.

III. A RESTRICTED FORM OF VARIATIONAL
PRINCIPLE

In spite of the general nature of the method derived
in Section II, the mathematical formulas for actually
working out the variational integral are very com-
plicated. It would, therefore, seem that a somewhat less
general but a mathematically simpler formulation of the
principle is more suitable. For states with spherical
symmetry and zero angular momentum this can be
accomplished in the following way: In this case® the
wave function can be completely expressed in terms of
three coordinates 7y, 72, and 7.

Transforming Eq. (1) into new coordinates, we get

(0%/0r2)+(2/r1)(0y/r1)+ (9%/ rs?)
+(2/79)(3W/ dra)+2(0%/ 0r12®) + (4/712) (3Y/ 97 12)
+ [(1’12— 722+7'122)/7’1"12](3%/3”16"12)
+[(1’22— 712+’122)/72712](azlp/af23712)
+[E+2(1/71+1/72—'1/']2)N=0 (14)

Similar to Tamm’s treatment® we make the substitution,

Y(r1, 79, 712)

= (e"1/ry)[sinkrotu(ry, ra, 712) coskrs].

(15)
Equation (14) now becomes

[(8%r/0r®)+(2/r1) (Ou/ dr1) — 2(0u/ dr1)+ (8*u/ Ors?)
+2(0%u/dr122)+ (4/712) (Ou/ dr12) ] coskr,
—2k(9u/dr2) sinkro+[ (ri¥—rl2+r12%) /11712 ]
X [(8%u/3r10712) — (0u/d712) ] coskr,
+L(r2—ri>4r12?) /ror12 ][ (8°u/ Or20712) coskr,
— (9u/ dr12) (coskrs/re) — k(u/ dr1s) sinkrs ]
+2[(1/r2)— (1/712) )(sinkrs+u coskrs)=0. (16)

9E. A. Hylleraas, Zeits. f. Physik 54, 347 (1929); H. Bethe,
Handbuch der Physik (1933), Vol. 24, p. 354.
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In making the substitution we have used the energy
relation
E=—1+4+F,

which is true in Rk unit.

From Eq. (15) it is apparent that wu(ry, rs, 712)
becomes the tangent of phase shift as r,—. Accord-
ingly, we may call Eq. (16) as the equation for the
eigenphase. The boundary conditions on u(ry, 72, 712)
are therefore

(17)

=0 as ry=0 |

1t=u(k) as r._,—vx:I' (18)

As Eq. (14) is symmetrical in 7; and 7,, the wave func-
tion appropriate to the physical problem can be written
in the form

Yo=y(r1, 73, 112) (73, 11, 112), (19)
where ¥(ry, 7o, 712) Is defined in Eq. (15). In Eq. (19)
we have the plus or minus sign according as we are
dealing with the singlet or triplet state.

It can now be shown that Eq. (16) is the Euler
equation of the variational integral:

65=0;

0 ) ritre
SF:f d?’gf dflf dfm
0 0 |ri—ra|

XF(%], U, Ure, Uy Ty, T2, 1’12), (20)

where
F=e1 cos?kra[ r1r12(ur®+us+ 2u10?) /7
F (r2—ro2 7w /1,
+r1(re? =219 uatra/ 12*
— 2ririe/re)(1/ 72— 1/712) (2u tankrs+u®)] (21)
and

wr=0u/dr,, wus=0u/ory, wu1a=0u/dry. (22)

It is of interest to note that the integral & reduces
to that given by Tamm in the special case where
u=1u(rs) only, and where —2(1/7,—1/r12) can be ap-
proximated by an expression which involves 7, only
(as for example, by a potential V(r;) of the Hartree
field of the hydrogen atom). For in this special case the
integration with respect to 712 and r; can be effected

directly, and the final integral

F= f dra us® coskre+ Vu? cos*kr,
0
+ Vusin2kry]  (23)

is identical with what Tamm has given.

To derive the variational principle expressed by Eq.
(20) from Eq. (9) is a straightforward matter, although
it is quite long and tedious. We may therefore indicate
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the various steps briefly. Substituting Eq. (15) into
Eq. (9) we carry out the variation; one part would be
equal to zero on account of Eq. (16); the remaining
terms are then reduced by integration by parts; the
integrated terms do not contribute anything as the
variation vanishes on the boundary surface; most of
other terms cancel one another, and we are finally left
with

(24)

IV. S-SCATTERING OF ELECTRONS BY THE
HYDROGEN ATOM

Here we shall apply Eq. (20) to derive the phase shift
of the .S waves for the case of a free electron scattered
by a hydrogen atom. As our trial function, we shall
suppose that

u=(1—e"2)[a+ (b+criz)e 2], (25)

where a, b, and ¢ are three parameters which are to be
determined. Substituting the foregoing form for # in
Eq. (20) we carry out the integration. In order to
express our result simply, it is convenient to define the
functions:

Fala, m; k)=f (1—e)me "™ coskrdr
0

(n=0, m=—n), (26)
Gala, m; k)= f (1—e)"e~orr™ sin2krdr
0
=0, m=—n—1), (27)

I(a; k)= fw (1—e)"(1—e ) (e /r?) cos*krdr

(n=1), (28)

Ta(a; k)= f (1—e")"(1—e ) (e /r?) sin2krdr

(n=0), (29)

and

M(a; k)= f i (1—e?) (e~ /r) coskrdr, (30)

where m and # are integers. In terms of these functions
F is a quadratic function in the parameters a, b, and c.

The wvariational principle would then give three
equations for the three parameters. It is found that
these three equations have the following forms.

6§/6a=A1a+Blb~+Clc—D1=0, (31)
95/08b= Asa+ Bob+Cac— D=0, (32)
ag/aC=Aaa+Bab+C36—D3=0,‘ (33)
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TasBLE 1. Coefficients of «.

1-parameter
s 2-parameter approxi-
3-parameter approximation approximation mation
k a b c a c a
0 0 0 0 0 0
0.05 —0.4038 --0.1695¢4 —0.4199 —0.4067 —0.3944 4-0.3102
0.10 —0.8499  +0.3572 —0.8938 —0.8576 —0.8425 +-0.6066
0.15 —1.3978  4-0.5883 —1.4970 —1.4160 —1.4208 -+0.8777
0.20 —2.158 -+0.9099 —2.368 —2.202 —2.274 +1.1155
0.25 —3.394 +1.4348 —3.840 —3.520 —3.765 +1.3162
0.50 -+5.254 —2.246 +7.147 +-4.616 -+-6.146 -+1.8280
0.75 +2.037 —0.9067 +2.947 +1.8132  +2.649 +1.8969
1.00 +1.6636 —0.8899 +2.071 +1.4068 -1.7846 +1.8572
1.50 +1.8372 —1.3059 +1.6403 +1.3687 +4-1.1761 +1.7809
2.00 +2.059 —1.4506 +1.6050 +1.4722  +41.0362 +1.7484
2.50 +2.280 —1.5294 -+1.7069 +1.6127  4-1.0567 +1.7253
3.00 +-2.580 —1.7028 +1.9399 +1.7897  +1.1607 +1.6924
4.00 -+-3.656 —2.523 +2.909 +2.309 +1.5629 +1.5891
6.00 425635 —20.46  +422.87 +5.380  44.045 +1.3282
8.00 —5.763 +5.076 —5.501 —24.69 —19.758 +1.1004
10.00 —2.743 +2.564 —2.722 —4.,098 —3.403 +0.9262
20.00 —0.8622 +-0.8841 —0.9083 —0.9303 —0.8192 +0.4983
50.00 —0.3102 --0.3276 —0.3330 —0.3181 —0.2853 -+-0.2037
100.00 —0.1535 +-0.1616 —0.1649 —0.1562 —0.1404 -+0.1022
where
A1=Fy(2,0; k)—2F3(2,0; k)—2F,(2, —1; k), (34)

As=B1=F(3,0; k)—F1(2,0; k)

—2Fy(3,0; B)—2Fy(3, —1; k), (35)
As=C1=F(3, 1; k)—F1(2, 1; k) +F1(2, 0; k)
+5F1(4,0; ) —3Fo(S, 0; k)= F1(2, —1; k)
—20,(1; k) —11(2; %), (36)
By=F3(2, 0; k)—2F,(4, 0; k)— 2F (3, 0; k)
tFo(4,0; k)—2Fx(4, —1;%), (37)
B;;=C2=F2(2, - 1, k)—2F1(3, - 1, k)
+F1(3, 05 k) —4Fo(6, 0; k)+Fa(2, 1; k)
—2F:(3, 1; B)+-Fo(4, 1; ) —11(2; ), (38)
—2Fy(2, 1; )+ 2F,(3, 1; B)+5F3(2, 0; k)
—F3(4,0; k)—6F1(3, 0; k)+3F¢(4, 0; &)
—4Fy(2, —1; k)—2Fs(4, —1; k), (39)
Di1=G1(2,0; k) +Gi(2, —1; k), (40)
Dy=Gy(3,0; k)+Gi(3, —1; %), (41)

The formal solution of Egs. (31)-(33) will be given in
terms of determinants as follows:

a=(DBC)/(4BC), b=(ADC)/(ABC),
¢=(ABD)/(ABC).

Before we give the result of the calculations, we shall
indicate some steps in the evaluation of the functions
defined by Egs. (26)-(30). First we may observe that
the following recurrence formula holds,

Fn(ay m; k)=Fn—1(a7 m; k)_Fn—l(a+11 m; k)) (44)

provided every function in the formula is convergent.
Similar formulas can be written down for G.(a, m; k),
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I.(a; k), and J,(a; k). Also there exists the relation
between F, and G.,,

OF u(ay m; k)/0k=—Gnle, m+1; k).  (45)

Another relation which is useful in the numerical work
is
OF (o, m; k)/da= —F (o, m+1; k).

Similar formula exists for G,(a, m; k).
In order to express I,(a; k) in terms of other more

easily calculable functions, we intergrate by parts, and
find

(46)

Ias = [ {dl—er1—e")
0
Xeor coskr]/dr} (dr/r)
=kGn(a+2, —1; k) —kGo(a, —1; k)
—aF,(a, —1; k)+nF.(a+1, —1;k)

+(et+n+2)Fo(at2, —1;k). (47)
In a similar manner it can be shown that
Jala; k)=2kF(a+2, —1;0)—2kF (e, —1;0)
+4kF, (o, —1; k)—4kF (242, —1; k)
—aGula, —1; B)+nGa(a+1, —1; k)
+(a+n+2)Gnla+2, —1; k). (48)

Also in deriving Eqs. (34)-(42) we have made use of

the obvious identity:
M(a; k)=Fi(a, —1; k)+Fi(a+1, —1;k). (49)

It is therefore sufficient to evaluate only a few funda-
mental functions occurring in Egs. (34)-(42). The rest

.
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Fi1G. 1. Phase shifts 7o of the S wave in degrees against electron
velocities % in atomic units. The curves labeled 1, 2, and 3 are
computed from the 1-, 2-, and 3-parameter trial functions, re-
spectively, in the present paper. The curves labeled @, b, and ¢
are Morse and Allis’ results. Curve ¢ is obtained for an electron
moving in the Hartree field. Curves b and ¢ give the phase shifts
of symmetrical and antisymmetrical waves, respectively, when
the effect of exchange is taken into consideration.
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can be obtained by making use of the relations Egs.
(44)-(49). And the basic functions are:

Fo(a, 0; k) =1/(2a)+a/[ 2(a*+4k%) ], (50)
Fila, —1; k)= fa[aFl(a', —1;k)/dd' Jdo'
— f * P, 0; Bda!
=3 log[(a+1)/a]
+5 log{[(a+1)*+4k*]/(*+4kY)}, (51)
Gila, 0; B) =2k /(a®+-4k2) — 2k/[ (a+- 1)+ 487], (52)

Gi(a, —1; k)=f [8Gi(a/, —1; k)/0a’ Jda’

=tan [ (a+1)/(2k)]—tan"[a/(2k)]. (53)

That this integral vanishes at the lower limit is as
obvious as that of the integral (51), if we combine the
two terms into one term according to the trigonometrical
identity.

Instead of computing the values of a, b, and ¢ from
Egs. (43) for various values of #, it is simpler to get the
numerical solution directly from Egs. (31)-(33) once
their coefficients have been evaluated. The results of
the calculation are given in Table I. For comparison,
the results for a 2-parameter (e, ¢) and a 1-parameter
(a), trial functions are also included ; they are labeled as
2-parameter and 1-parameter approximation, respec-
tively.

As the phase shift #, is given by

tanno= lim u=a, (54)

r2—

and the cross section of S wave by
go=4m(sinno/k)?,

they can be computed directly from Table I; they are
given in Tablé II. The phase shifts are further plotted
in Fig. 1 where Morse and Allis’s results are also shown.
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TaBLE II. Phase shifts and cross sections of the S wave.

3-parameter
approximation

2-parameter
approximation

1-parameter
approximation

k 70 q no @ 70 qQ
0 180° —_— 180° —_— 0° _
0.05 158° 0.7 704.7 157°52'.3 713.2 17°13.9 4411
0.10 139°38".2 527.1 139°23".0 532.6 31°14’.5 338.0
0.15 125° 34'.8 369.4 125°13'.8 372.7 41°16'.4 243.0
0.20 114°52'.0 258.6 114°25'.2  260.5 48° 7.5 174.18
0.25 106° 25’.0 185.00 105° 51°.6  186.04 52°46’.4 127.48
0.50 79°13.5 48.51 77° 46’5 48.01 61°19°.2 38.69
0.75 63°51.2  18.001 61° 7.4 17131 62°12°.2  17.482
1.00 58°59°.4  9.231 54°35'.6  8.348 61°42.0  9.741
1.50 61°26'.4  4.309 53°507.9  3.642 60°41.1  4.246
2.00 64° 5.7  2.542 55°48'.8  2.150 60°13’.9  2.368
2.50 66°19°.1  1.686 58°11’.9  1.453 59°54’.2  1.505
3.00 68°4%.6 1214 60°48’.3  1.064 59°25.3  1.035
4.00 74°42'.2  0.730 66°34°.9  0.661 57°49’1  0.563
6.00 87°46’.0  0.348 79°29'.2  0.338 53° 1.4 0.222
8.00 99°50.6  0.191 92°19'.2  0.196 47°44.2  0.108
10.00 110° 1.8 0.111 103° 42.9 0.118 42°48'.3 0.058
20.00 139° 14°.0 0.014 137° 4.1 0.015 26° 29’.3 0.006
50.00 162°45°.9  0.0004 162°21°.2  0.0005 11°30°.8  0.0003
100.00 171°16.4  0.00003 171° 7.4 0.00003 5°50°.0  0.00001

Our results are not in agreement with theirs and unfor-
tunately no experimental data are available for com-
parison. But one common feature between the results
of Morse and Allis’s and ours is worth noticing. While
the 1-parameter trial function which does not contain
a term in 7y, gives a variation of the phase shift, similar
to that computed from the Hartree field, approaching
0° as £—0, the introduction of the 71> term (the 3-param-
eter and the 2-parameter approximations) makes
70—180° as k—0; in this respect it is similar to the
introduction of the exchange effect in the manner of
Morse and Allis. There is, however, an important dif-
ference between these two results. So far as the phase
shift is concerned, there is no difference in our formula-
tion for symmetrical and antisymmetrical states, but
Morse and Allis give different values of 5, for these two
states.

In a later paper we propose to use the wave functions
derived here to the evaluation of the radiative cross
sections for the free-free transition of an electron in
the field of a neutral hydrogen atom.!?

I wish to express my sincere thanks to Professor
S. Chandrasekhar who suggested this problem and for
valuable discussions.
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