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The Bose-Einstein Condensation for Charged Particles in a Magnetic Field
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The condensation and accumulation phenomena of charged Bose-Einstein particles in a magnetic field are
examined, neglecting electrostatic interactions. For weak fields a single condensation occurs at the same
temperature as that for uncharged particles; for strong fields there is a separate lower accumulation tempera-
ture, indicating the accumulation of particles in the lowest translational state. The total energy, free energy,
and polarization are calculated, and applied to the properties of a gas of electron pairs, and a solution of
deuterons in a metal, these being systems whose low temperature behavior might show a Bose-Einstein
condensation. It is shown that the Bose-Einstein condensation of free electron pairs cannot provide a theory
of superconductivity.

INTRODUCTION

N the preceding paper' the distinction was made bc-
' - tween a condensation in the thermodynamic sense,
and an accumulation in the statistical mechanical sense.
In this paper we use the conceptions and approximations
there discussed to examine the properties of charged
Bose-Einstein particles in a magnetic field, neglecting
the eGect of electrostatic interactions but including,
where required, spin and intrinsic magnetic moment. We
shall calculate the distribution of the population over
the din'erent classes of states, the total energy, the free
energy, and the polarization.

We repeat here two expressions from I for con-
venience. To replace a sum by an integral we have

b b

P f(m)= I f(m)dm f'(m)/24—
m a ~a—) a

It is valid to use this approximation provided that for
every point e within the interval, u&e&b

f(n+-') —f(n —l)—f'(n)«f(n) (2)

For fof the form 1/(exp(E(n)/kT+n) —1), i.e. the B.K.
integrand, it was found that if this criterion failed for
one value of n in the interval (usually the lowest one) we
could expect an abrupt accumulation of particles in the
corresponding quantum state, and possibly a condensa-
tion. If it failed for every value we could expect a
gradual accumulation in the lowest state.

THE GAS OF IONS IN A MAGNETIC FIELD,
WITHOUT SPIN

Consider an assembly of E particles of mass m, charge
e in a cylindrical container of volume V, radius E, height
I.with a magnetic field IJ along the axis. It is assumed
that the energy levels which the particles occupy are
given by the strength of the magnetic field and dimen-
sion I.alone. Thus, we neglect electrostatic interactions,
and ask: What is the behavior of this system as a
function of the thermodynamic variables H and T? The

' M. F. M. Osborne, Phys. Rev. 76, 396 (1949), hereafter re-
ferred to as I.
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energy levels are given by'

E(l, ng, n p) = pH(2(1+xp)+nr+
~
ng

~ )+enpP

e=hP/8mL', p=eh/4 mxc. (3)
Let

g = preHR'/hc.

o. is determined by

X= g P P 1/(exp(E(l, n„n,)/kT+a) 1), (4—)
nI g l 0 ny l

where the limits of summation on el, the azimuthal
quantum number are determined by correspondence
principle arguments. "' I is the orbital quantum number
and e3 the translational quantum number for motion
along the field.

De6»tions and Approximations

In evaluating (4) we will utilize the following defini-
tions (see Fig. 1):

(1) U(p, )=(1/r(p+1))

X)I des&/(exp(z+ a) —1) (5)
p

= P exp( nj)/j ~—'
j=l

(2) The temperature Tp~, below which we must write
separately the lowest term (l= 0) in the integration over
l (failure of Eq. (2))

Tpz= (E/V U(p', 0))&(h'/2xmk).

Tpl is also the condensation temperature in the absence
of a held. 4

(3) Tpp is defined as the temperature below which, for
l=0, we must write separately the lowest term (np ——1)
in the integration over n3. It is defined so that

2gkTpp/3=%,

' J.H. Van Vleck, The Theory of E/ectric and Magnetic Suscepti-
bilities (Clarendon Press, Oxford, 1932), pp. 354, 358.' L. Landau, Zeits. f. Physik 64, 262 (1930).

4 F. London, Phys. Rev. 54, 947 (1938).
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Too =3oNhc/2orkeHE'

= 3hoNc/16LVmeHA. (9)

Note that T„depends on N/V, and also varies inversely
as Band the dimensions of the system 1.in the direction
of B.Roughly speaking T02 is the accumulation temper-
ature of a one dimensional problem (see Fig. 1 of I),
where the phenomenon is complicated by the presence
of a magnetic field.

(4) T~ is de6ned as the temperature at which the
spacing of the magnetic levels is of the order of magni-
tude of the thermal energy, pH/AT~ 1. Wh——en this is
true it is certainly no longer valid to integrate over any
of the magnetic levels. Note that this circumstance is
not realized abruptly but gradually, so that T~ marks
oG an accumulation band rather than an accumulation
temperature.

(5) For purposes of mathematical completeness
rather than physical significance, we define a tempera-
ture T& at which the average kinetic energy is equal to
the average spacing of the translational levels (o/AT~
= 1), and it is then no longer valid to integrate over any
of the translational levels.

(6) H, is de6ned as a critical 6eld for which To~= Too

H.= (N/V)&(U(-'„0))&3hcor/8Le. (10)

For H&H. the accumulations at Toy and Tp2 occur
separately. For H& H„ the two accumulations occur at
the same temperature Toq (case C). For H& H„T )ooToq,

and T02 ls then simply a parameter by means of which
the population of the lowest magnetic and. higher
translational states may simply be expressed as NT/Too,
an expression valid only for T& To~.

Three other points should be noted in interpreting the
formula which follows:

(1) The approximate behavior of the U functions for
small parameter values, summarized in I, especially the
fact that for

p= 0, n—4, U(p, a) + inn, ——(11)

p& 0, a—+0, U(p, a)-+a". (12)

(2) The behavior of n in the neighborhood of the
accumulation temperatures. Generally speaking, when a
lowest energy term E~,„has to be split off from an
integration, in the separated term a—+ E~,„/AT in just—
such a way that (a+8~,„/AT) has the value to make the
total population X. This is the explanation for the ap-
pearance of n+ pH/AT and a+aH/AT+ o/AT as e8ect-
ive normalization constants. A slightly different way of
putting point (2) is as follows: if we have a series of
complicated terms for N such as (14) or (17) which have
a simple dependence on T, and only one of which is
sensile to n, then those terms electively independent
of 0. have the given dependence of population on T', and
0. is just such a complicated function of T to make the
population of the term in which it does appear signifi-

cantly vary as S minus the rest of the terms. Thus, if 0.
only appears eGectively in one term, we do not have to
solve for 0. to get the relative populations of the different
classes of states. This point will become apparent from
the summary below, and be very useful in evaluating
expressions for the total and free energy.

(3) In deriving the equations below, the lower limit of
integration on ooo must be chosen with care. In (13) for
example, the lower limit zero for n3 is a valid approxi-
mation, in some of the others, a half integral value as
dictated by (1) must be used.

1= (T/To )~U(-' )/U(-' 0)
valid for

a) pH/AT«1, T) To&.

(13)

There is no accumulation in any particular class of
states.

En region 8
1=(2T~/T(g)(T/Top)&U( —L a+loH/AT)/U(-, ', 0)

+(T/Toi)SU(o, a+2pH/AT)/U($, 0), (14)
valid for

o/kT& a+pH/AT, a& pH/AT«1, Too& T& Top.

Since
U(-'„a+2pH/AT) U( '„0), -(15)

the two terms of (14) vary like 1—(T/To~) &, (T/To~)»,

Ho-

COO t
FIG. 1. {Schematic for Fig. 2.) Phase diagram for a gas

of ions in a magnetic 6eld.

The Distribution of the Population

%e can now write the expressions for 0. in the diGerent
regions of Fig. 1 as follows: X has been divided out so
that the terms give the relative fractions of the popula-
tions in the di6erent classes of states.

In region A
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these being the fractions of total population in ground
magnetic and a,ll higher magnetic states. From (14) we
find

u+»oH/AT~(»1H/AT) p(T/Tpi)'&&»1H/AT. (16)
U(——,', u+»1H/AT) (or/(u+ pH/AT))»,

U(——',, u+3»1H/AT) exp( —2@H/AT), (24)

translational state as was the case in region CD. In
region Dj we may use the approximation

valid for
—0/AT& u+ pH/AT& 0/AT,

Trl& T& (the smaller of Toi, Top)

here also

and the relative population of the states are

In region C i.e.

1= (3T1/2TQQ)/(u+»1H/AT+ 0/AT)+T/Top (u+»1H/AT) «1, pH/AT))1.

+(T/Tpi)»U(-'„u+2»oH/AT)/U(p, 0) (17) The relative populations are

1—(2TH/Tpi)(T/Toi)» exp( —2Tlr/T), (25)
(2Ta/Toi) (T/Toi)» exp( —2Tlr/T).

In region Dp, the approximations (24) are not valid, and.

U(-,', u+2»1H/AT) U( '„0), - (18) we must use exact expressions for the U functions.
In calculating Eqs. (13)—(25), the second term of (1)

is neglected.

1—(T/Toi)» —TIToa& T/Top, (T/Toi)», (19)

in ground magnetic and ground translational, ground
magnetic and higher translational, and higher magnetic
and all translational states, respectively. Equation (19)
is valid only if the first term is positive. Equa, tion (17) is
valid to the extent that (2/3)p/AT represents the inte-
gral over np for l=0 in (4), which is only approximately
true (best when lu+pH/AT~&&0/AT) Adeta. iled ex-
amination of this approximation will show that T//Tpp in

(19) indicates an abrupt accumulation in about the
sense that T02' in Fig. 1 of I represented an abrupt ac-
cumulation for the two-dimensional gas—perhaps not
quite as abrupt. T02, therefore, represents in Fig. 1 the
center of a narrow accumulation band.

In region C, D

1= (3/2) (T1/Top)/(u+ I1H/k T+0/AT)+ T/Top
+2(Ta/Toi)(T/Toi)'
X U(——,', u+3I1A/AT)/U(-, ', 0), (20)

valid if

»1H/AT))1, 0/AT&—u+ i'/AT& 0/AT, T& TH.

This expression assumes that almost all the particles are
in the first two magnetic states. This impbes that

U( ——,', u+311H/AT) exp( —2pH/AT)
=exp( —2TiI/T). (21)

The relative population of ground translational and
lowest magnetic, higher translational and ground mag-
net'ic, and next lowest magnetic and all translational
states are

1 T/Tp 0
—(2 Tir/Tp 0) (T/Tpi)» exp( 2 Tts/T)

T/Too (2'/Top)(T/Toi)» exp( —2T~/T), (22)

respectively. The first member of (22) must be positive.
In regions D& and D2 we have u determined by

1= (2'/Toi)(T/Toi)»LU( —0, u+I H/AT)
+U(—-'„u+3i1H/AT) j/U(-,', 0). (23)

This assumes the population is almost entirely confined
to the two lowest magnetic states, which these two
terms represent. There is no accumulation in the lowest

In region CD

U= (lV/l»t 0)PR(TH+ T1)(1 T/Tpp (2T~/Tpi)
X(T/Tpi)»U( —0, u+3I1H/AT)/U( '„0))-
+RTTH/Top
+ (3or»/8) (RT'/Tpp) (T,/T)» U(-', , u+ IIH/k T)
+(3RTlr'/Tpi) (T/Tp 1)»

X U(——,', u+3»1H/AT)/U( ,',0)—
+ (3or»/8) (RT'/Tp 0) (T1/T)»
X U(01, u+3yH/AT) j. (29)

In regions DI, D2

U = (&/ Vo) LRTH (1—2(Ta/Toi) (T/To i)»

X U( ——,', u+3»1H/AT)/U(-'„0))
+RT(Tir/To i) (T/Toi)'U(o & u+»1H/AT)/U(p ~ 0)
+6RTIi(T/To i)»U( '„u+3»1H/AT)/U(—'„-0)-
+RT(T/TQ1)»(TH/T01)

XU(-,', u+3I1H/AT)/U( '„0)j. (30)-
The same approximations as in the corresponding equa-

The Total Energy

We can also calculate expressions for the total energy

U= p E(l, ni, np)n(l, ni, np)
E, nI, r»3

Xo is Avogadro's number, E. the gas constant.
In region A

U= (lV/l»'0) (3RT/2) (T/T, 1)»U(-'„u)/U(-'„0). (26)

In region B
U= (1V/l»'p)LRT~(1 —(T/Tpi)»)

+(RTTIr/Tp 0) (T/Tpi)»U( ,', u+ pH/AT)/U-(-, ', 0)
+(3RT/2)(TIT01)»U(p, u+2pH/AT)/U(-, ', 0)
+2RT~(T/Tpi)»U(p, u+2»1H/AT)/U(p, 0)]. (27)

In region C

U= (&/&0) LR(TH+ T1)(1—(TITo1)'—(TITQQ))
+RTTH/ T02

+(3~'RT/8)(T1/T)'(T/Top) U(p, u+» H/AT)
+(3RT/2)(T/Tpi)»U(-', , u+2I1H/AT)/U(-', , 0)
+2RTH(T/Tpi)»U( —,', u+2pH/AT)/U(-, ', 0)j. (28)
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tions for n also hald. The form of the above equations,
when all the terms are written in the form const. XET
&function of temperature ratios, is convenient when
they are used with a diagram such as Fig. 1. Given an
H, T point of interest, one can quickly estimate the
values of different terms by reading the temperatures
Toy, T~, To~ at which a horizontal line through the H, T
point of interest crosses the Toi, T~ or Tf)~ line.

Equations (26)—(30) may be substantially simplified
and condensed by using the valid approximations for
each set, especially the facts that for all regions but 8
and Do, n+tiH/kT is very small and U(p, n)—U(p, 0)
for n((1 and p& 0. However, they have been left in the
form given so that the energy contribution of each type
of level may be more explicitly identihed, and the
validity of the approximations more critically examined.

THE GAS OF IONS IN A MAGNETIC FIELD,
KITH SPIN

The Relative Populations of the States

I.et us reconsider the above problem when it is as-
sumed that the particles have an intrinsic magnetic
moment JLf, ', and a spin J. In that case, we have to sum
over 2I+1 additional levels p, 'H apart, in addition to
the levels given in (3) above. The expression de-
termining n becomes

oo oo I
X= P' P P g /( exp(E(a, no, t)/kT+n) 1) (31)—

l=o n3=1 rr'=I

F(o, no, 1)= ti'Ho. /I+onoo+2(t+ i2)tiH, -
o = h'/SmI. .', ti = eh/4ormc.

Note that m refers to the (arbitrary) mass of the particle,
so that in discussing particular particles such as
deuterons ti'/ti is not the conventionally tabulated value
for the intrinsic magnetic moment, but the mass number
times it.

If all summations can be replaced by integrals, as will
be the case so long as n& AH/kT, (31) becomes

X= (2I+1)V(2ormkT) t U(-,', n)/h'. (32)

~hen n(AH/kT, it is no longer valid to replace the
sum over the erst terms of / by an integration. The
behavior of a in this circumstance is a little subtle, but
strict attention to the criterion (2) for integration,
together with the expectation that o. will approach close
to the negative of the lowest energy state divided by
kT, wiH show that when it no longer becomes valid to
integrate over the first term of the l-summation, it will
no longer be valid to integrate over the 6rst term of the
cr-summation either. Under these circumstances, split ting
off the first term of the t- and o-summation, (31) gives

1=(2t HlkT(2I+1))(T/To. )'U( —o, no)/U(o, 0)

+(Q (2tiH/kT(2I+1))(T/To, )t
a' I

XU( o no+ti'H&/I)/U(o 0))+(T/To ) (33)

In (33) we have the following definition. To, is the
condensation temperature in the absence of a field H.
It is the solution of (32) for n=0 .no n+——AH/kT

n'H—/kT is the effective normalization constant, and
the first term of (33) is the only term sensitive to its
value. It can be shown, as in the case of (16), that
n«otHi/kT. This together with the fact tha, t U( ——',, no)

~no & will show that the terms of the summ'ation in (33)
are all small compared to the first term of (33).

The three terms of (33) represent the following classes
of states:

(a) l =0, o = —I, lowest magnetic and lowest spin, all
translational.

(b) 1=0, a = I+1 t—o +I, lowest magnetic and all
higher spins, all translational.

(c) /=1 to ~, 0= I to +—I, excited magnetic, all
spins, all translational.

The approximate relative orders of magnitude of the
populations of these states are (a) 1—(T/To, )&, (b)
Order (ti'H/kTI)& (small), (c) (T/To, )i.

The Free Energy and Polarization

Ke can now calculate the free energy F= U—TS and
magnetic polarization P. For T&TO, and de6ning
P= AH/kT, P'= ti'H/kTI, y= o/kT

F= iVkTn+(gkT/4P)(mr/y) t[ (2I+1)U(—a2 n)
p"(2I+—1)'U( 2, n)/24—

+P"U( o, n)/24—
+p'(2I+ 1)U( 2n)—/6] (34)

In obtaining (34) we have expressed P U(-'„n+P'0)

as an integral, using (1), including the correction term
and also expanded this U function as a Taylor series
about u.

For T&TO

F= XkT gkT( /—y)i[ Q—U(-'„+P+ P')

—E U(o, n+2P+~P')/4P

+P 2 U( —o, n+2P+~P')/24] (35)

The polarization, for T& To„ is given byo

F= —(BF/BH) /V,

F= (g(or/'r) ti(2I+1)/V)
X[(2I+1)'(t '/t I)'U( ——,', )/4g
(u'/t I)'U( o—, )n/4g U( —o, n—)/12]—(36)

' See N. F. Mott and H. Jones, Properties of Metals and Alloys
(Clarendon Press, Oxford, 1936), p. 204.
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Fto. 2. Phase diagram for electron pairs. (A) 1(P pairs/cm',
(3) 19' pairs/cd, |',C) 1(P pairs/cms. The Z dimension, along H,
has been taken as 1 cm.

and for T& To,

P=(g(~/v)'/V) 2 (~U(p, ~+8+~8')/28

(~+u'~—/1) U( s, ~+8—+~8')/2

(2~+ I '~/I—)U(s, ~+28+ ~8')/48

—pU( ——,', a+28+ aP')/12

+(2I +I '~P)PU( sp ~+28+~8'—)/24j (3&)

Limiting Form for High Temperature

For high temperatures a))1, U(L a) U(sp, a)
~U(—s, a)~exp( —a) and the polarization is, using
(32) and (36)

I'=v"HN(I+1)I3IkTV Nv'HI3VkT. —(38)

For I=-,'
I' =NIp "H/kTV Ny'H/3kT. V —(39)

and these two terms can just be interpreted as the spin
paramagnetism and the Langevin diamagnetism as
given by Maxwell-Iqloltzmann statistics, which provides
a convenient check on our work.

For T( Tp the polarization is, using Eqs. (37) and
(33) and neglecting quantities of order (pH/kT)&

obtaining Eqs. (34)-(40) one has to include the correc-
tion term of Eq. (1) in replacing sums by integrals and
also must utilize the approximate expressions for the U
functions with small parameter.

Interpretation and Limitations of Formulas

It is appropriate to ask at this point if the temperature
Tpy (or Tp„ for particles with spin) is a condensation
temperature or merely an accumulation temperature,
such as To~. In the limiting case of no magnetic 6eld we
know that To~ is a condensation temperature. We also
know that as the magnetic held increases and we go up
along the Tp~ line (Fig. 1) eventually we reach the TH
band, in which we know there is a gradual accumulation
in the ground magnetic state. Therefore, somewhere
between 0 magnetic 6eld and a magnetic 6eld so strong
that kTpp JMH, Tpg ceases to be a condensation temper-
ature and becomes an accumulation temperature. How-
ever, examination of the mathematics shows that it is
fairly abrupt except in the immediate neighborhood of
TIE. The exact problem of the 6eld strength for which
Toi ceases to be a condensation temperature has not
been examined, though one might conjecture that it lies
near H, .

In the case of the accumulation temperature T02, it
should be observed that it is a function of N/ V as N—p po

but it also depends on km' V—+~ because of the factor
L. If the thickness of the specimen L—+~, T02~,
otherwise it remains 6nite. This again is an example of
how statistical mechanics shows the dependence of
thermodynamic properties on geometry.

One can also point out here a limitation on the validity
of the expressions derived above. It has been stated at
the beginning that the magnetic 6eld which determines
the energy levels in which the particles move is H.
Strictly speaking this is not true since the effective field
acting on the particles is H, ff.=B—XI' where X is the
depolarizing factor depending on the shape of the speci-
men, but in any event is not greater than 4m. However,
it is valid to use H for H, ff. if I' is small compared
to H. Now I', the polarization, was calculated to be
~(Np/V)(pH/kT) above the condensation tempera-
ture Tp~ and N p/V below it. If this latter expression is
small compared to the applied H then the condition of
applicability is met. As will be seen in the discussion of
the numerical examples, this is the case for most prob-
lems of interest. p~10 "for electron pairs, and p,~10—~
for deuterons. For these examples the number of
particles per unit volume has to be greater than 10",
10, respectively, for the theory to fail for fields less than
one oersted.

&=N(~' —~)(1—(TITp.)')/V. (40)

This expression has the quite plausible physical interpre-
tation that there are N(1 —(T/Tp )&) particles in the
ground state of spin and circulation about the magnetic
6eld, each of which contributes a positive magnetic
moment p' and a negative (diamagnetic) moment p. In

Experimental Methods

%e might now make a few remarks on the most
suitable way in which these e8ects could be detected by
measurement. Evidently, the orders of magnitude of the
polarizations below and above the condensation tem-
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perature are as Ey/V and as (Sy/V)yH/kT, with
pH/kT«1. Now above the condensation temperature
the phenomena are essentially the same as though de-
termined by Maxwell-Boltzmann statistics, where
Curie's law applies. Hence, for T))TOI, or T))TO. as
may be relevant, Bose-Einstein effects could not be
distinguished from any others in which the susceptibility
is independent of H and varies as 1/T.

Experimentally, this means that the susceptibilities
are of the order 10 ' and can best be detected by a
weighing method in a strong inhomogeneous field. How-
ever, below the condensation temperature the polariza-
tion is essentially constant, or the susceptibility I'/H
varies as 1/H. It is also larger by a quantity of order
kT/pH from what it is above. This means that it is
not pro6table in a weighing method to use a strong
magnetic 6eld since the force on the specimen would
depend only on the gradient of the magnetic 6eld and be
independent of II. Also the fact that the polarization is
so very much larger means that it would be simpler to
detect it. Thus, a simple measurement of the self-
induction of a coil around a specimen supposed to con-
tain this peculiar gas would begin to change abruptly by
a small amount as soon as the temperature TOI was
reached. For the case of a needle-shaped specimen
(depolarizing factor X=O) Ming a coil of inductance Lo,
below the condensation temperature Toi the inductance
would become L=Lo(1+4+I'/H) where H is the applied
field, t/' the volume and I' the total polarization as given
by (40). This shows that the percentage change in the
inductance would be larger the smaller IJ, with the
restriction for applicability that I'/H«1.

Applications

Let us now consider some possible applications of
these calculations. It was suggested by London, 4 among
others, that superconductivity might be explained as a
condensation phenomenon of Bose-Einstein particles
and Ogg has added de6niteness to this suggestion by
supposing that these particles are electron pairs. Let us
see whether or not this hypothesis is in accordance with
the above calculations. Using twice the mass and charge
of the electron, we see that for the condensation temper-
ature to fall in the range of superconducting tempera-
ture, say less than 10' absolute, the concentration of
particles must be X/V(10". How large is the polariza-
tion under these conditions? It is of order Xp/V~10 '.
However, it is one of the essential features of super-
conductivity that the material be perfectly diamagnetic,
or that the 4xI' be equal and opposite to the applied
magnetic 6eld H. This calculation shows that the
polarization can never be larger than 10 ' oersteds, and
since in practice superconductors are diamagnetic up to
several hundred oersteds, we must reject this hypothesis,
or modify in such a way that the accumulation takes
p/ace in states of much higher I than the lowest. This
calculation does not exclude the possibility that there

can be electron pairs either in a metal or in a metal-
ammonia solution. If there are, and if they are mobile
and can be treated as Bose-Einstein particles, then one
can look for their condensation temperature in the
manner described above, by a small fairly abrupt (like
1—(T/TQ$)&) change in the self-induction of a coil with
diminishing temperature. It would be interesting to see
if this eGect can actually be observed, as it is intimately
tied up with the vexatious question as to how far and in
what particulars one can go in treating particles which
are not free and do interact as though they were free and
did not interact. This is done in the treatment of valence
electrons inside a metal by Fermi-Dirac statistics.
Figure 2 gives the phase diagram corresponding to
Fig. 1, for particles of zero spin and twice the electronic
mass and charge.

A second possibility for testing the above formulas is
suggested by London's refinement of his theory of liquid
helium. In order to 6t the observations of the speci6c
heat of He with a theoretical speci6c heat calculated by
Bose-Einstein statistics, London' proposed that the
helium atoms be divided into two classes. One of these
was to be treated as a crystalline lattice obeying a
Debye T' law, the other fraction was to be treated as a
Bose-Einstein gas which occupied the allowed levels
formed by this laftice. It was the condensation phe-
nomenon of the second class of particles which ac-
counted for the A.-phenomenon of liquid helium. Now
the number of possible particles available to observation
of condensation phenomenon are relatively limited,
because the condensation temperature diminishes with
increasing mass and for helium, already one of the
lightest particles, it is 3'K. One other possibility is
deuterons, and fortunately, we have a mechanism
whereby these might be treated as a gas just as the
valence electrons of a metal are treated. It is known that
certain metals" (Ce, Th, Zr, Ti, Ta, V, Pd, Cb, La)
absorb large amounts of hydrogen and presumably also
deuterium. These solutions cannot be strictly considered
as chemical compounds, since the proportion increases
with decreasing temperature. Therefore, it is suggested
that for deuterium a fraction of the particles (as
deuterons) may be treated as a Bose-Einstein gas in the
sense that they can be imagined to be distributed
throughout the metallic lattice rather than at 6xed
points, and for these we could seek a condensation tem-
perature. If as many as 10"" deuterons/cc could be
considered free, the condensation temperature would be
~1'K.

A possible encouragement for this point of view can be
taken for the case of hydrogen and palladium. Here it is
known that the absorption of hydrogen by palladium

' F. London, J. Phys. Chem. 43, 49 (1939).
~ F. Ephraim, Ieorgeeic Chemistry, 4th Rev. Ed. by P. C. I.

Thorne and E. R. Roberts (Nordeman Publishing Company,
New York, 1943), p. 875. There is a most striking correlation be-
tween the hydride forming and superconducting elements, the
explanation of which is unknown.' A. Sieverts, Zeits. f. angew Chem. 21, 37 (1929}.
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decreases the susceptibility in a linear fashion to zero
and that beyond that point the susceptibility remains
zero. '"This has been interpreted that the protons fill up
the d levels (0.55 holes per atom). Presumably the excess
ones wander about the lattice, and part of them could be
treated as a gas of free particles in the desired way. "
There is also evidence that hydrogen dissolved in the

' See reference 5, p. 200.
'0 B. Svenson, Ann. d. Physik 18, 294 {1933}.
» It was pointed out to the author by S. I.iebson that if one had

a case where the "free proton theory of the hydrides" was ap-
proximately valid, one might expect that at very low temperatures
there would be proton superconductivity, not to mention the
formation of proton pairs!

metal is dissolved as protons and if this were also true
for deuterium the deuterons stripped of their external
electrons could be considered as Bose-Einstein particles.

These considerations are at best speculative, and
ignore completely interactions and the periodic nature
of the potential in which the particles move. They do
suggest that an experimental study of the relative low
temperature behavior of solutions of hydrogen in a
metal and of deuterium in a metal would be most
illuminating in revealing the eAect of the two diferent
statistics on the behavior of the system, and in indicating
the nature of possible modifications in the theoretical
approach to such problems which might be made.
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It is proved that Sommerfeld s well-known electromagnetic surface wave does not exist in the radiation
of a Hertzian dipole over a plane earth because it does not fulfill the so-called "radiation condition. "The
path of integration chosen by Sommerfeld is correct, but there is another saddle-point overlooked by this
author which just annuls the surface wave due to the residue. These results are in agreement with Burrow's
measurements.

'
N a well-known paper published in 1909, Sommerfeld'

~ ~ treated the problem of the propagation of radio-
waves along the surface of the (plane) earth. If we
make the (P, 4) plane coincide with the plane of the
earth surface (the s axis pointing upwards) and if we
consider a vertically oscillating dipole in the air at the
point s=r=0, the Hertzian vector II describing the
electromagnetic field may be expressed as follows:

e'~ ii p~ Jp(gr)gdg exp[ —s(g' —ki')&j

R (X'—ki2)&
s)0. (1)

For 2 &0 we have a similar formula with k2 replacing kl.
Here k1 and k2 denote the wave numbers of the upper
and lower medium (air and earth). Taking into account
the radiation reflected by the earth, we get in the
upper medium (air), for the resulting Hertzian function

p" 10(Xr) exp[ —s(X'—ki2) &]Adlai

~0 ki2(X' —k2')&+kns(X' —kis)&

where II and J are the usual cylindric functions. %e
can displace the path of integration of the integrand of
(2) containing Ho&'& into the upper part of the complex

*For a preliminary report see T. Kahan and G. Kckart,
Comptes rendus 226, 1513 {1948}.' A. Sommerfeld, Ann. d. Physik 28, 665 (2909).

wo ——const. e'" exp[ —s(s' —k P) &j/r', (5)

s being the pole of the integrand of (4) defined by:
s= k, sing, ; ps= tan-i(k, /k, ), (6)

p~ being the Brewester angle.
In 1919 %eyP tackled the same problem but with a

diBerent mathematical approach. His solution contains
~ H. Acyl, Ann. d. Physik 60, 482 (1919).

p lane X, and the path of integration containing IIO"'
we can shift into the lower half-plane X. The integrals
eGected along the circle of infinite diameter are zero, the
two integrals conducted along the imaginary axis com-
pensate each other. As the integrand of (2) has no
singularities in the lower quadrant, we have left only
the following integral in the upper half-plane X:

t
8'0&" (Xr) exp[ —z(X' —ki')&jXA

const. l

k '(X' —k ')'*+ks2(X' —kP)l

conducted along the following three paths (Fig. 1):
(a) Along the loop 1 around the branch-cut going from
the branch point ki of (4) to in6nity in the upper half-
plane; (b) along the loop 2 around the branch-cut going
from the branch point k& of (4) to infinity; (c) and along
the circle 3 around the pole P of (4). Path 1 provides
the so-called space-wave; path 2 gives no appreciable
contribution; path 3 gives rise to the famous surface
wave expressed by:


