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Now Op can be put into the following form

Qp= Qp'Qp"

where Qp' depends only on the variables of the trans-
verse photons and 00" depends only on those of the
jongitudinal photons belonging to the vacuum. Equa-
tion (41) becomes

g&'&(k)Q "=0 2*&"(k)Q0"=0 (42)

Since, as pointed out in the footnote before, the solu-

tion Eq. (40) does not depend on the exact form of

Qp", the factor Qp" can simply be omitted from Eq.

(40). This means that instead of choosing Qo to satisfy
Eq. (41), one can simply consider it as independent of
the variables of the longitudinal photons. In other
words, vacuum is considered as containing no longi-
tudinal photons at all. This is just the convention
adopted in the usual treatment in which the longi-
tudinal 6eld has been replaced by the Coulomb
interaction.

In conclusion, the author wishes to express his thanks
to Professor Bethe for helpful suggestions and discus-
sions and also to Professor Feynman for detailed ex-
position of his theory before publication.
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The distinction is made between a condensation temperature in the thermodynamic sense, where the

thermodynamic functions have a discontinuity, and an abrupt accumulation {in the statistical mechanical

sense) of particles in the ground state of a system. The criterion for the latter is that an integral will not

approximate one term of a sum. The problem of a thin film of gas is solved to illustrate this distinction. For
gms thicker than a critical thickness a condensation occurs at the same temperature as that for bulk ma-

terial. The thinner films are electively two dimensional and have an abrupt accumulation temperature lower

than the bulk condensation temperature. Films of liquid helium are brieBy considered.

INTRODUCTION

]~ONSIDERABLE interest has been provoked by~ London's proposaP that the X-phenomenon of
helium is a Bose™Einsteincondensation, or accumulation

of a 6nite fraction of all the particles in the ground state
of a potential hole of macroscopic dimensions. Tisza' has

extended this suggestion to discuss helium in terms of

the hydrodynamics of a two-Quid system, and more re-

cently Ogg' ha, s proposed that phenomena which he has

observed in metal-ammonia solutions and possibly also

the phenomenon of superconductivity might be ex-

plained by the condensation of a gas of electron pairs

formed from the free electrons of the material. It is the

purpose of this paper to examine in some detail the

conditions under which these condensations occur and

to discuss some examples of physical interest. The

particular examples we shall discuss are: (1) Three-

dimensional gas of uncharged particles in a thin 61m,

(2) Two-dimensional gas, and in a subsequent paper (3)
Gas of charged particles in a magnetic 6eld, neglecting

electrostatic interactions.

Condensation and Accumulation Temperatures

In classical thermodynamics a condensation tempera-

ture implies a discontinuity in one of the thermodynamic

' F. London, Phys. Rev. 54, 947 (1938).
'L. Tisza, Phys. Rev. 72, 838 (1947).
' R. A. Ogg, Preliminary Report to ONR, "Electronic Processes

in Liquid Dielectric Media. The Constitution of Metal Ammonia
Solutions. "April 11, 1948, p. 20.

functions which describe the system. Such discon-
tinuities are also described by phase changes of 6rst,
second, third order, depending on whether the function
or one of its higher derivatives becomes discontinuous.

From the standpoint of statistical mechanics we shag.
de6ne an accumulation temperature Tp as a temperature
at which a 6nite fraction of all particles begin to ac-
cumulate in just one state or set of states with the same
energy. By "6nite" fraction we mean less than, but not
a great deal less than unity, or very much greater than
1/S, S being the total number of particles. We can
speak of an "abrupt" accumulation if the fraction in a
given state changes from "small" to "6nite" in a small
temperature range AT&&Tp. Such 6nite fractions can
usually be expressed as 1—(T/Tp) T( To. We speak of
a gradual accumulation if it occurs over a range AT~TO.
Only in the 6rst case would it be appropriate to speak of
a well-de6ned accumulation temperature, in the second
case one might speak of an accumulation temperature
band. Consider the expression for X, the total number of
particles in a Bose-Einstein assembly.

X= g 1/(exp(E(k, l, m)/kT+n) 1)—
f(E(k, l, m), a, T),

where k, l, m are quantum numbers specifying the level

«en«gy &(k, &, m) and ~ is de6ned implicitly as a
function of T by this relation.



BOSE —EINSTEIN CONDENSATION 397

If the value of pa~, ~f(E(k, f, m), a, T) can be re-

placed by J'J'J'dkdidmf(E(k, f, m), a, T) there is no
accumulation of particles in any particular energy state.
In general, on replacing a sum by an integral we have

P f(m)= f(m)dm f'(—m)/24, (2)

valid provided

f(n+') f(n—', ) —f-'(n—)«f(n), (3)

where a& e& b, and n refers to any of the three indices

k, l, m of summation.
The condition in Eq. (3) may fail in either of two

ways: (a) If it fails for every value of n in the interval
u, b, (as will be the case if in (1) kT is of the order of the
spacing of the levels), then there is a gradual accumula-
tion of the particles with diminishing temperature in the
lowest energy state; (b) (3) may fail only for the lowest
value of e in the interval a, b. If the value of the temper-
ature at which this occurs is weH defined, we have an
abrupt accumulation of particles in the lowest state. If
this accumulation temperature depends only on S/V as
X~~, i.e. is independent of the size of the system, we

may expect discontinuities in the thermodynamic
properties at this temperature. It is then a condensation
temperature. This was first shown by Einstein, and
subsequently examined in detail by others, ' Even when
weak interactions between the particles are included the
condensation occurs. '

interval in m), we shall 6rst examine the conditions
under which the lower limits of integration on k, l, m can
be replaced by 0, instead of $ as required by (2). This
will give us an expression for E equivalent to that for a
cubical box, plus correction terms which when large
indicate that the film is too thin to be considered a three-
dimensional system. The condition for largeness of the
correction term will turn out to be the same as the con-
dition forbidding replacement of a sum (over m) by an
integral. From (4)

dkdldm
Ji J) a)

(exp((k'+P+ m' M)e/kT+a) 1). —(5)

Letting

k'+P+M'm'= p' g= (/+GAP/4)&~Jf/2

X= (1/M) ) (s/2) p'd p/(e px(p'e/kT+ a)—1), (6)

where the fa,ctor s/2 is a consequence of the fact we use
box rather than periodic boundary conditions, and so
integrate only over one octant in k, l, m space. Letting
p= p'+g, and expanding that part of the exponential
which is linear in p', and using the definition

THE IDEAL GAS IN A THIN HLM

In order to illustrate these points, let us consider the
case of an ideal three-dimensional Bose-Einstein gas
confined to a thin film. We shall show, using the above
consideration, how thin. the film must be for the well-
known three-dimensional condensation to be prevented,
and that for still thinner balms (effectively two-dimen-
sional gas') an abrnpt accnmllalion can still occur.

For the thin film, the expression for the total number
of particles of mass M' in a box (/=0 on walls) of
dimensions

we find, after some manipulation

&=(s/2M)(kT/e)&Lr(3/2)U(s s'e/kT+a)/2
+q(e/kT)&U(0 rPe/kT+a)
+g'I'(1/2) (e/2kT) U( ——,', rPe/k T+a)j

+Order (g(e/kT)&). (8)

The four terms of (8) come in order from the three terms
of p'= p"+2qp'+rP in the numerator of (6) and the
linear term in p' in the expansion of the denominator,
the last being valid so long as sap'/kT is small in the
region of the principal contribution to the integrand.
This is so if ge/kT is small. If one takes into account the
following properties of the U functions,

I.,=L,„=L, L,=L/M, M))1

1/(exp((k~+P+m M )e/kT+a) 1), —
him (4)

e=k'/SM'L'
U(-,', a) U(-,', 0),
U(0, a)~—lna,

U(—-'„a) a~,

0& n((1,

Assuming for the moment that all these summations for
can be replaced by integrals (despite the large energy

' A. Einstein, Ber. Berl. Akad. (1924), 261; (1925), 3.
'R. H. Fowler and H. Jones, Camb. Phil. Soc. Proc. 34, 573

(1938).' L. I. Shift, Phys. Rev. 59, 758 (1941).
~ Correspondence and conversation with F. London on this

problem led to the distinction between "condensation" and
accQmlllatlon.

and compares the above formulas with those of reference
1, one can easily verify the following statements. Toy is
the condensation temperature for the three-dimensional
case given in reference 1.

(1) For a)0 and ge/kT((1, T) To~, the 2nd, 3rd,
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S= P 1/(exp((k'+P) p/kT+n) —1),
k, 1;I

L,=L„=L, p =h'/8mLP (10)

If the conditions (3) for replacing the sums over k, 1 by
integrals are met we have

E=
J )t dkdf (exp((k'+I')p/kT+n) —1) (11)

s

= —(p.kT/4p) ln(1 —exp( —n')), (12)
' J. G. Daunt and K. Mendelssohn, Proc. Roy. Soc. 170, 423,

429 (1939).

and 4th terms of Kq. (8) are negligible, and the first
term gives just the conditions for determining 0, for the
gas in a cubical box, given in reference 1.

(2) For a(0 and gp/kT«1, the 2nd, 3rd and 4th
terms of (8) are still negligible, and the first term de-
termines the condensation temperature To~ as given in
reference 1. Below this temperature, the condition (3)
for integrating 0, l or m fails for k=l=m=i. The 6rst
term of the summation must be separated from the
integral, and o. is determined by

n+ (2+HI') «/kT= 1/X(1 —(T/Tpi)&.

(3) For rip/kT~1, there is no condensation phe-
nomenon. The 2nd, 3rd and 4th terms are not negligible,
but (8) cannot be used to determine a, as gp/kT 1 is
just the condition for a gradual accumulation in the
lowest s direction level (m=1) and the failure of the
integration condition (3) for all values of m.

(4) For gp/kT&)1 practically all of the particles are in

the no=1 state, the gas can properly be considered as
two dimensional, and must be reexamined for integra-
bijity on k and l.

Application to Liquid Helium

Before proceeding to a discussion of the two-dimen-
sional case we can estimate for helium how thin a 61m
has to be before condensation will be prevented. If
gp/kT~1 we find for T= Tpi ——3.4' (theoretical),
I., j0 7 cm. This is small compared to the observed
thickness of 5.10 ' cm for superQuid helium films. '
Therefore, the observed thickness of superQuid helium
films is not in contradiction with the idea that super-
fluidity is a consequence of a Bose-Einstein condensa-
tion. This calculation ignores the effect of the surface
forces of the material on which the 6lm lies in modifying
the energy levels.

THE T%'0 DIMENSIONAL IDEAL GAS

Though primarily of academic interest, this problem
has been the subject of some controversy, and is
illuminating in showing the distinction between an
abrupt accumulation and a condensation. It is also sug-
gestive of the nature of the effects of geometry and
impurities. The expression determining 0, for a square
film is

n = exp( —4pE/n. k T) —p/k T,

or in terms of a'
a'= exp( —Tpi'/T),

where by definition

Tp i' ——hPiV/2PrmkS,

S=1.,1.„.

(13)

(14)

To&' is very nearly the condensation temperature for a
three-dimensional gas whose surface density is the same
as that for the two dimensional case. But To~' is not a
condensation temperature in this problem.

However, it is not legitimate, in view of the integra-
tion criterion (3) to use the above expression (13) for
u( p/kT. When a( p/kT, we must use

iV= 1/(exp(2p/kT+n) —1)

~00 00

+ dkdf (e px((k'+I') /kpT+ n) 1), (1—5)"3/2 3/2

X= 1/(n'+ 3p/2k T)

—(mkT/4p) ln(. 1—exp( —Sp/2kT —a')). (16)

In Eq. (16) the first term represents the population of
the ground state and the second term represents the
population of all the higher states. We shall continue the
discussion in terms of o. since it is the behavior of this
quantity as a function of T, rather than n, which will

simplify the argument. Let us ask at what temperature
Tpp', where we expect Tpp'«Tpi Eqs. (16) and (12) give
different results for 0.', so that for T& T02' we must use
the more exact expression Eq. (16}.

Tpp' is a temperature such that n'(Tpp') = (5p/2)/kTpp'.
To see this we first observe that by (14) n' is a very
violent function of the temperature for T((TO~'. Thus,
since T02 ((Toy', at temperatures slightly above T02', o.'

dominates the logarithm in (16), and (16) and (12) are
equivalent. However, at temperatures slightly less than
Tpp in (16), the logarithm in Eq. (16) is practically
independent of n'. Then (16) and (12) give different
results for o.', so one must use the more exact expression,
Kq. (16), in which a will primarily be determined by
the 6rst term.

Finally, we remark that the condition to determine
Tpp a (Tpp )= Sp/2kTpp giving the temperature at
which (16) and (12) begin to disagree, and the condition
to use Eq. (16) given by imp/2kTpp' for the failure of
the integration condition in Eq. (3), will in practice give
almost exactly the same numerical value for Tg2'. The
reason for this is that n' is such a violent function of the

where by de6nition
a'—=p/kT+u.

The expression (12), determining a, unlike its three
dimensional analogue, does have a solution for n for all
values of T. In fact for n small (low temperatures) we
find
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temperature in the vicinity of To~' that both of the
equalities a'(T) = So/2kT and n(T) = o/2kT are met in s,

very small temperature range.
Let us now determine what the relative populations

of the ground, and all higher states are, above and below
To&'. Above To&', since the right-hand side of Eq. (12)
(the total population) and the second term of Eq. (16)
agree, we see that the population of the ground state
(1st term of Eq. (16)) is negligibly small. Below To&' we
have that the population of the higher states (2nd term
of Eq. (16)), since n'((o/kT, is MT lnMT, where
M k/o is large . Now M. T lnMT varies approximately
linearly in T, since its principal variation with T is in the
factor of the logarithm. Moreover, it must provide, at
the temperature To&', practically all of the particles iV,
since above To~' few of the pa, rticles are in the ground
state. Therefore, we are compelled to conclude that, for
T& T02' the population of the higher states must vary
approximately like cV T/Too', and since the total number
of particles must add up to E the ground state popula-
tion varies like .V(1—T/Too ). In other words, since in
Eq. (16), the second term is independent of n' (for
T& To&', a'((So/2kT) and is linear in T (like ET/Too'),
n' in the first term must vary in just such a way that the
first term makes the total number of particles add up
to S.

Ke, therefore, conclude that To~' must be an accumu-
lation temperature. Ke do not yet know how abrupt it
is, and if it is also a condensation temperature.

To answer these questions we first determine T02' by
substituting n'=So/2kT, T= Too' in (16) and solving
for T02'. Doing this one finds

where 5 is small, of order 1/lnV. This shows that Too' is
not a condensation temperature since T02'—+0 as S~~.

As an accumulation temperature T02 is moderately
"abrupt. "To show this one calculates from Eq. (16) the
relative population of ground and excited state at the
tempera, ture T02', and also the maximum departure
from linearity in T of the second term of (16), as n'

varies in the range n'= So/2k Tto n'= —3o/2kT (the
lowest allowed value according to first term of (16)).
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I'IG. 1. Populations of the ground state {broken line) and all
higher states {full line) of a two-dimensional B, E. gas. TO1' is the
approximate condensation temperature of a three-dimensional
B. E. gas of the same surface density.

Doing this one finds that the band of transition AT from
condition "above" Too' (negligible number of particles
in ground state) to condition "below" Too' (the ground
state population ~1V(1—T/To&')) is given by

6T Too'/inÃ.

This means T02' is a moderately abrupt accumulation
temperature. Thus, if one had a "surface gram molecule"
of material, E=(X~„„,q„)*' the accumulation at To, '

would occur at a temperature of 1/35 the corresponding
three-dimensional condensation temperature, and in a,

temperature range about 3 percent of T02' wide. All these
conclusions are summarized in Fig. 1.

To interpret these results, one can say that in any
physical situation where these calculations would be
applicable, the results would be sensitive to any bound-
aries or impurities on the surface which would tend to
modify the lowest energy state and break up the total
number of particles X into subsystems. EGects of this
type really represent the essence of surface and geometry
e6ects in calculating from a statistical mechanical
standpoint the properties of matter in the bulk. For
example, one ordinarily considers the condensation
temperature of water to be independent of the amount
of material, but a moment's reflection shows that this is
only approximately true. For small drops the condensa-
tion temperature (water-steam) is higher because of the
increased pressure of.surface tension. In this case, the
condensation temperature also goes down (but not to
zero) with an increased amount of material.


